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Abstract 
 
In this paper, we employ the infinite series method for travelling wave solutions of the coupled 
Klein-Gordon equations. Based on the idea of the infinite series method, a simple and efficient 
method is proposed for obtaining exact solutions of nonlinear evolution equations. The solutions 
obtained include solitons and periodic solutions. 
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1.   Introduction 
 
Over the last few decades, directly searching for exact solutions of nonlinear partial differential 
equations has become a more attractive topic in the physical and nonlinear sciences. The 
investigation of the travelling wave solutions of nonlinear partial differential equations plays an 
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important role in the study of nonlinear physical phenomena. Nonlinear phenomena appear in a 
wide variety of scientific applications such as plasma physics, solid state physics and fluid 
dynamics. 
 
In order to better understand these nonlinear phenomena, many mathematicians and physical 
scientists make the effort to seek more exact solutions. Several powerful methods have been 
proposed to obtain exact solutions of nonlinear evolution equations, such as the tanh method   
[Malfliet (1992), Malfliet and Hereman (1996)], the extended tanh method [El-Wakil et al. 
(2007), Fan (2000), and  Wazwaz (2005)], the hyperbolic function method [Xia and Zhang 
(2001)], the sine-cosine method  [Wazwaz (2004], Yusufoglu and  Bekir (2006), Jacobi elliptic 
function  expansion method [Inc and Ergut (2005)],  F-expansion method  [Zhang (2006)], and 
the direct algebraic method [Hereman et al. (1986), Hereman  and  Takaoka  (1990)] . 
 
Ablowitz and Segur (1981) implemented the inverse scattering transform method to handle the 
nonlinear equations of physical significance where soliton solutions and rational solutions were 
developed. Recently, the tanh method established in [Malfliet (1992), Malfliet and Hereman 
(1996)], was effectively used in [Hereman and Takaoka (1990), Goktas and Hereman (1997), 
Hereman and Nuseir (1997)] among many others. The tanh method was subjected by some 
modifications using the Riccati equation. 
 
Xu and Li and Liu (2003) introduced a unified method for finding travelling wave solutions of 
nonlinear evolution equations. This method is based on the arbitrariness of the manifold in 
Painleve' analysis. The original idea behind all the direct methods goes back to Hirota (1980), 
who systematically solved large classes of nonlinear evolution equations using a bilinear 
transformation. 
 
The technique we use in this paper is due to Hereman et al. (1986). By this method, solutions     
are developed as series in real exponential functions which physically corresponds to mixing     
of elementary solutions of the linear part due to nonlinearity.                                                      
 
The method of Hereman et al. (1986) falls into the category of direct solution methods for 
nonlinear partial differential equations.   This method is currently restricted to traveling wave 
solutions.  In addition, depending on the number of nonlinear terms in the partial differential 
equation with arbitrary numerical coefficients, it is sometimes necessary to specialize to 
particular values of the velocity in order to find closed form solutions. On the other hand, the 
Hereman et al. series method does give a systematic means of developing recursion relations.  
Hereman et al. (1986) direct series method can be used to solve both dissipative and non 
dissipative equations.  They regard solutions of the linear equation to be of the form 
 

exp[ ( )( )],k c x ct   
 
where ( )k c  is a function of the velocity .c  The velocity is assumed constant but in general is 
related to the wave amplitude. It is from the solutions of the linear part that the solution of the 
full nonlinear partial differential equation is synthesized. With wave number ,k  the dispersion 
relation ( )w k c  gives the angular frequency. 
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Here, we apply the infinite series method for solving the coupled Klein-Gordon equation. 
 
 
2.   Infinite Series Method 
 
Consider the nonlinear partial differential equation: 
 

( , , , ,...) 0,t x xxF u u u u                                                                                                           (1) 

 
where  ( , )u u x t  is the solution of the Eq.  (1). We use transformations 
 

( , ) ( ),u x t f            ,x t                                                                                             (2) 
 
where   is constant, to obtain 
 

(.) (.),
t




 


 
      (.) (.),

x 
 


 

     
2 2

2 2
(.) (.),

x 
 


 

...  .                                            (3) 

 
We use (3) to change the nonlinear partial differential equation (1) to the nonlinear ordinary 
differential equation 
 

2

2

( ) ( )
( ( ), , ,...) 0.

f f
G f

 
 

 


 
                                                                                            (4) 

 
Next, we apply the approach of Hereman et al. (1986) we solve the linear terms and then suppose 
the solution in the form 
 

 
1

( ) ( ),n
n

n

f a g 




                                                                                                                (5) 

 
where ( )g   is a solution of linear terms and  the expansion coefficients ( 1, 2,...)na n   are to be 

determined. To deal with the nonlinear terms, we need to apply the extension of Cauchy’s 
product rule for multiple series. 
 
Lemma 1 (Extension of Cauchy’s product rule):  
 
If 

1

1

( ) ( )

1

,
I

i i
n

n

F a


                              1,..., ,i I                                                                            (6) 

 
represents I infinite convergent series, then 
                     

1 1 1
( ) (1) (2) ( )

1 1 2 11

... ... .
I n k m

i I
l m l n r

n r I m li

F a a a
   

 
    

                                                                                    (7) 
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Proof:   
 
See Hereman et al. (1986).  
 
Substituting (5) into (4) yields recursion relation which gives the values of the coefficients. 
 
 
3.   Coupled Klein-Gordon Equation 
 
The nonlinear coupled Klein-Gordon equation Alagesan et al. (2004) is very important equation 
in the area of Theoretical Physics. The nonlinear coupled Klein-Gordon equation was first 
studied by Alagesan et al. (2004), and then Shang (2010) and Yusufoglu and Bekir (2008) gave 
further result by using the ideas of the tanh method and the general integral method.  They also 
obtained the solutions and periodic solutions. In paper Sassaman and Biswas (2009), the 
quasilinear coupled Klein-Gordon, which have several forms of power law nonlinearity, are well 
studied by using soliton perturbation theory. 
 
Let us consider the coupled Klein-Gordon equation Alagesan et al. (2004)   

 

 
32 2 0,

4 0,
xx tt

x t t

u u u u uv

v v uu

    

  
                                                                                                (8) 

 
by using the infinite series method. 
 
We use the wave transformations 
 

( , ) ( ),u x t u        ( , ) ( ),v x t v        .x ct                                                              (9)   
 
Substituting (9) into equation (8), we have the ordinary differential equations (ODEs) for ( )u    
and ( )v   
 

2 3(1 ) ( ) ( ) 2 ( ) 2 ( ) ( ) 0,

(1 ) ( ) 4 ( ) ( ) 0.

c u u u u v

c v cu u

    
  
    
   

                                                                    (10) 

 
By integrating the second equation with respect to  , and neglecting the constant of integration 
we obtain 
 

 22
( ) ( ).

1

c
v u

c
  


                                                                                                            (11) 

 
Substituting (11) into the first equation of equation (10) and integrating the resulting equation, 
we find    
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2 32(1 )

(1 ) ( ) ( ) ( ) 0.
1

c
c u u u

c
     


                                                                              (12) 

 
 
3.1. Using Infinite Series Method 
 
The linear equation from (12) has the solution in the form 
 

2
( ) exp( ).

1
g

c

 


                                                                                                                              

 
Thus, we look for the solution of (12) in the form 
 

2
1

( ) exp( ).
1

n
n

n
u a

c









                                                                                                    (13) 

 
Substituting (13) into (12) and by using Lemma 1, we obtain the recursion relation follows 
 

1a  is arbitrary, 

2 0,a   
1 1

2

2 1

2(1 )
( 1) 0,

(1 )

n m

n l m l n m
m l

c
n a a a a

c

 

 
 


  

                    3.n                                                (14) 

 
Then, by (14), we have 
 

2

2 1
1

2 1 3

0,

1
( 1) 2 ( ) ,

1 2

d

d
d d d

d d

a

ac
a

c








 



                                 1, 2,3,....d                                          (15) 

 
Substituting (15) into (13) gives 
 

12 1 2
1

3 22
0 1

2

exp( )
1 (2 1) 1( ) ( 1) 2 ( ) exp( ) .
1 2 1 21 1 ( ) exp( )

1 4 1

d
d d d

d
d

a
ac d cu

c acc
c c










    
  

 



 
 
By using (11), we get 
 

1 2
2

2
1

2

exp( )
2 1( ) ( ) .

1 1 2
1 ( ) exp( )

1 4 1

a
c cv
c ac

c c






 
 


 
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In ( , )x t variables, we have the exact soliton solution of the coupled Klein-Gordon equation in 
the following form 
 

1 2

2
1

2

exp( )
1( , ) ,

1 2( )
1 ( ) exp( )

1 4 1

x ct
a

cu x t
ac x ct

c c




 


 

                                                                                (16) 

1 2
2

2
1

2

exp( )
2 1( , ) ( ) .

1 1 2( )
1 ( ) exp( )

1 4 1

x ct
a

c cv x t
c ac x ct

c c



 
  


 

                                                                  (17) 

 

In (16) and (17) if we choose 1

1
2 ,

1

c
a

c


 


 then 

 

2

2

2

2exp( )
1 11( , ) sec [ ],

2( )1 1 11 exp( )
1

x ct

c c x ctcu x t h
x ctc c c

c


     

  


 

 
since 
                         

2

1 2 2
sec .

cosh 1

e
h

e e e



  
   

 
 

 
Thus, the exact solutions of the coupled Klein-Gordon equation can be expressed as: 
 

2

2

2

1
( , ) sec ( ),

1 1
2

( , ) sec ( ),
1 1

c x ct
u x t h

c c
c x ct

v x t h
c c

 
 

 


 
 

                                                                                         (18) 

 
for 2 1c  , and 
 

2

2

2

1
( , ) sec( ),

1 1
2

( , ) sec ( ),
1 1

c x ct
u x t

c c
c x ct

v x t
c c

 
 

 


 
 

                                                                                            (19) 

 
for  2 1c  . 
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3.2. Using the Cosine-Function Method 
 
In this section, the cosine function method [8 − 10] is applied to the coupled Klein-Gordon 
equation. 
 
The solution of equation (12) can be expressed in the form: 
 

( ) cos ( ),u      ,
2




                                                                                 (20) 

 
where ,   and   are unknown parameters which will be determined. Then we have: 
 

1

2 2 2 2

( ) cos ( )sin( ),

( ) cos ( ) ( 1)cos ( ).

u

u



 

   

       





  

    
                                                        (21) 

 
Substituting (20) and (21) into equation (12) gives 
 

2 2 2 2 2

3 3

(1 )[ cos ( ) ( 1)cos ( )]

2(1 )
cos ( ) cos ( ) 0.

(1 )

c

c

c

 

 

      

   

   


  


                                                        (22) 

 
By equating the exponents and the coefficients of each pair of the cosine function we obtain the 
following system of algebraic equations: 
 

2 2 2

2 2 3

( 1) 0,

2(1 )
(1 ) ( 1) 0,

(1 )

3 2.

c

c
c

c

  

   

 

  


   


 

                                                                                   (23) 

 
Solving the system (23), we have 
 

1
,

1

c

c
 
 


        1,             

2

1
.

1c
  


                                                                 (24) 

 
Combining (24) with (20), we obtain the exact solution to equation (12) as follows: 
 

2

1
( ) sec( ),

1 1

c
u

c c

 
 

 
           2 1.c                                                                           (25) 

 
Then, the exact solution to the coupled Klein-Gordon equation can be written as 
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2

2

2

1
( , ) sec( ),

1 1
2

( , ) sec ( ),
1 1

c x ct
u x t

c c
c x ct

v x t
c c

 
 

 


 
 

                                                                                            (26) 

for   2 1c  . 
 
 
Remark 1:   
 

In (16) and (17) if we choose 1

1
2 ,

1

c
a

c


 


then the solutions are obtained of the coupled Klein-

Gordon equation by using the infinite series and cosine function methods are equal. 
 
 
4.   Conclusion 
 
The infinite series method has been successfully applied here for solving the coupled Klein-
Gordon equation. This is an efficient method for obtaining exact solutions of some nonlinear 
partial differential equations. It may also be applied to nonintegrable equations as well as 
integrable ones. The method does not apply to nonlinear partial differential equations whose 
linear part cannot be separated from the nonlinear part. The solution is new and the method can 
be extended to solve problems of nonlinear systems arising in the theory of solitons and other 
areas. 
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