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Abstract  

The present work concerns the fluid mechanical study on the effects of the permeability of the 
wall through an artery with a composite stenosis. The expressions for the blood flow 
characteristics, the flow resistance, the wall shear stress, shearing stress at the stenosis throat 
have been derived. Results for the effect of permeability on these flow characteristics are shown 
graphically and discussed briefly. 
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1.  Introduction 

The frequently occurring cardiovascular disease, stenosis or arteriosclerosis is the abnormal and 
unnatural growth in the arterial wall thickness that develops at various locations of the 
cardiovascular system under diseased conditions and occasionally results into serious 
consequences (cerebral strokes, myocardial infarction, angina pectoris, cardiac arrests, etc.). It is 
believed that deposits of cholesterol, fatty substances, cellular waste products, calcium, and 
fibrin may be responsible for the development of the disease. Regardless of the cause, it is 
known that once an obstruction has developed, it results into significant changes in pressure 
distribution, wall shear stress and impedance (flow resistance).  

In the constricted region, the flow accelerates and consequently the velocity gradient near the 
wall region is steeper due to the increased core velocity resulting relatively large shear stress on 
the wall even for a mild stenosis. The knowledge that hemodynamic factors play an important 
role in the genesis of the disease, since the first investigation of Mann et al. (1938), a large 
number of researchers including [Young (1968), (1979); Young and Tsai (1973); Caro et al. 
(1978); Shukla et al. (1980); Ahmed and Giddens (1983); Sarkar and Jayaraman (1998); Pralhad 
and Schultz (2004); Jung et al. (2004); Liu et al. (2004); Srivastava and coworkers (1996, 2009, 
2010a,b,c); Mishra et al. (2006); Misra and Verma (2007); Ponalagusamy (2007); Layek et al. 
(2005), (2009); Joshi et al. (2009); Mekheimer and El-Kot (2008); Tzirtzilakis (2008); Mandal 
and coworkers (2005), (2007a,b); Politis et al. (2007, 2008); and Singh et al. (2010)] and many 
others, have addressed the problem in various contexts. 

It is well established fact that endothelial walls are permeable with ultra microscopic pores 
through which filtration occurs. Cholesterol is believed to increase the permeability of the 
arterial wall. Such increase in permeability results from dilated, damaged or inflamed arterial 
walls. It is worthwhile to study the effects of permeability of the wall of an arteriosclerotic blood 
vessel. Due to the permeability of the arterial wall, the no slip condition at the wall is no longer 
valid and one has to consider a slip condition at the artery wall. A survey of the literature 
indicates that the majority of the investigations, reported so far, have considered axisymmetric 
and non-symmetric single stenoses. However, in realistic situations stenosis may develop in 
series (multiple stenosis), overlapping or of composite in nature [Srivastava et al. (2010b)]. In 
view of the discussion given above the present research is devoted to study the flow of blood 
through a stenotic artery with permeable wall.  
 
The flow in the permeable boundary is described by Darcy law which states that the rate at 
which a fluid flows through a permeable substance per unit area is equal to the permeability (a 
property of the substance through which the fluid is flowing) times the pressure drop per unit 
length of flow, divided by the viscosity of the fluid. Blood is assumed to be represented by a 
Newtonian fluid and to generalize the problem further the shape of the stenosis is considered to 
be composite in nature. The wall in the vicinity of the stenosis is usually solid when stenosis 
develops in living vasculature. Further, to neglect the entrance, end and special wall effects the 
artery length is considered large enough as compared to its radius. 
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2.   Formulation of the Problem 

Consider the axisymmetric flow of blood through a composite stenosis in a circular tube with 
permeable wall specified at the position as shown in Fig.1. The geometry of the stenosis, 
assumed to be manifested in the arterial segment, is described [Joshi et al. (2009): Srivastava et 
al. (2010b)] as   
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Figure1. Flow geometry of a composite stenosis in an artery with permeable wall 

 
 
where )(zRR  is the artery radius in the obstructed region, 0R  is the radius of the normal 

artery, 0L  is the stenosis length and d indicates its location, δ is the maximum projection (height 

of the throat) of the stenosis located at 20 /Ldz  , z being the axial coordinate.  

 
Assuming that the flowing blood is represented by a Newtonian fluid and considering the 
axisymmetric, laminar, steady one-dimensional fully developed flow of blood in an artery, the 
equations governing the flow in the case of a mild stenosis ( 0Rδ )  may therefore be written 

[Young (1968), Srivastava and Rastogi (2009)] as 
 

,
1
















 r

 u
r μ

 rrdz

dp
                                                                                                            (4) 

 

, 0
dr

dp
                                                                                                                                  (5) 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1798 – 1813]                                   61 

 

 
where u is the axial velocity,  is the fluid viscosity, r is the radial coordinate and p is the 
pressure. 
 
The boundary conditions [Beavers and Joseph (1967)] are 
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porous  , porousu  is the velocity in the permeable boundary, Bu  is the slip velocity, 

aD is the Darcy number and α (called the slip parameter) is a dimensionless quantity depending 

on the material parameters which characterize the structure of the permeable material within the 
boundary region. 
 
3.   Analysis 
 
The expression for the velocity, obtained as the solution of equations (4) and (5) subject to the 
boundary conditions (6) and (7), is given as 
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An application of equation (9) in to (8), yields 
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The volumetric flow flux, Q is thus calculated as 
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From equation (11), one now obtains           
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The pressure drop, )0( Lzatp,zatpΔp  across the stenosis in the tube of length, L is 
derived as 
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The first and the fourth integrals in the expression for ψ  obtained above are straight forward 
whereas the analytical evaluation of second and third integrals are almost a formidable task and 
therefore shall be evaluated numerically.  

 

The flow resistance (resistive impedance),  , the wall shear stress, w  and the shearing stress at 

the stenosis throat (located at z = d+ Lo/2), s  are now calculated as 
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Following now the reports of Srivastava and Rastogi (2009, 2010a), one derives the expressions 
for the impedance (flow resistance), λ , the wall shear stress distribution in the stenotic 
region, w  and shearing stress at the stenosis throat, s  in their non-dimensional form as 
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4.  Numerical Results and Discussion 
 
In order to have an estimate of the quantitative effects of the various parameters involved in the 
analysis, computer codes are developed to evaluate the analytical results obtained for 
dimensionless resistance to flow, λ, the wall shear stress, wτ in the stenotic region and the 

shearing stress at stenosis throat, sτ  [equations (17-19] in a tube of radius 0.01cm for parameter 

values: 0d  ; 1(cm)L0  ; 5,2,1L(cm)  0.40.3,0.2,0.1,α  ; 4.0,3.0,2.0,1.0Da  ; δ/R0= 0, 

0.05, 0.10, 0.15, 0.20. 
 

The impedance (flow resistance), λ increases with increasing values of the Darcy number, aD  

(square root of the Darcy number and hereafter referred as the Darcy number) for a given value 
of slip parameter, α and any stenosis height, δ/R0 (Figure 2). One notices that the blood flow 
characteristic, λ increases with the slip parameter, α for a given value of Darcy 

number, aD (Figure 3). For a given Darcy number, aD , the impedance, λ decreases with 

increasing tube length, L for any given value of the slip parameter, α which interns implies that λ 
increases with stenosis length L0 (Figure 4). The blood flow characteristic, λ also increases with 

stenosis size, L0 for a given Darcy number, aD and for any value of the slip parameter, α     

(Figure 5). For any given stenosis height, δ/R0 the flow resistance, λ decreases with increasing  
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Darcy number, aD  for a given slip parameter α and assumes an asymptotic magnitude at 

15.0Da   for a given value of the slip parameter, α (Figure 6). However, for a given Darcy 

number, aD , λ increases with the slip parameter and assumes an asymptotic magnitude at about 

α = 0.25 for any given stenosis height, δ/R0 (Figure 7).   
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Finally, to have an exact estimate of the effects of the Darcy number and the slip parameter on 
the flow characteristics due to the presence of a stenosis. Some of the results are summarized in 

Tables 1 and 2. We observe that the impedance increases with the Darcy number aD and the 

slip parameter, α. However, for increasing values of any of these parameters ( aD or α), the 

impedance attains significantly higher magnitude in stenosed artery than a normal artery. In 
particular, for α = 0.1 and δ/R0 = 0.1 (i.e., 19% stenosis by area reduction). The percentage 

increase in the magnitude of λ is 9.22% and 13.90% respectively for aD  = 0.1 and 0.2. The 

percentage increase in λ for α = 0.1 and δ/R0 = 0.15 (28% stenosis) is 15.38% and 23.94% , 
 

  Table 1. Variations of λ  and sτ for 0.1α   and different aD and 0δ/R . 
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aD  

                             
                     0.1                                                                           0.2                         
            

  λ                                 sτ                                       λ                                sτ  

1.0009                        1.0000                              1.0009                        1.0000 
1.0426                        1.0029                              1.0684                        1.0354 
1.0932                        1.0108                              1.1472                        1.0754 
1.1548                        1.0240                              1.2405                        1.1206 
1.2348                        1.0429                              1.3529                        1.1721 
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0.10 
0.15 
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Respectively, for aD  = 0.1 and 0.2. Likewise, for aD  = 0.1 and δ/R0= 0.1, the percentage 

increase in λ is 14.62% and 16.30%, respectively, for α = 0.1 and 0.2. The percentage increase in 

λ for aD  = 0.1 and δ/R0= 0.15 is 23.97% and 26.71%, respectively, for α = 0.1 and 0.2. 

 
 

Table 2. Variations of λ  and sτ for 0.1Da   and different α and 0δ/R  
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    λ                                 sτ                                       λ                                sτ  

1.0009                        1.0000                              1.0009                        1.0000 
1.0685                        1.0356                              1.0761                        1.0452 
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1.3534                        1.1727                              1.3940                        1.2154 
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The non-dimensional wall shear stress, wτ  increases with stenosis height, δ/R0 at any axial 

distance z/L0 for a given value of slip parameter, α and the Darcy number, aD .  wτ  increases 

from its approached magnitude at 0z/L0   to its peak value at the stenosis throat at 0.5z/L0   

and then decreases from its value at the throat to its approached magnitude at end point of the 
constriction profile (Figure 8). The blood flow characteristic wτ  also increases with the Darcy 
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number, aD  at any axial distance z/L0 (Figure 9). One observes that in the stenotic region, 

1z/L0 0  , wτ  increases with the slip parameter, α for any given stenosis height δ/R0 and the 

Darcy number, aD (Fig. 10). 
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It is interesting to note that the nature of the variations of wτ  remains similar with respect to any 

of the parameters, δ/R0, α and aD  (Figures 8-10). 
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The shear stress at stenosis throat sτ  increases with the Darcy number, aD  for any given value 

of the slip parameter α and the stenosis height δ/R0 (Figure 11). The flow characteristic sτ is 

observed to be increasing with the slip parameter, α for any given Darcy number, aD and 

stenosis height δ/R0 (Figure 12). The nature of the variations of shear stress at stenosis throat 

sτ is found to be similar to that of the impedance, λ with respect to any parameter (Figures 2, 3, 

11, and 12). 
 
 
5.    Conclusions 
 
To observe the effects of wall permeability on blood flow characteristics in a stenosed artery, the 
flow of a Newtonian fluid through a composite stenosis in a circular tube with permeable wall 
has been discussed. The impedance increases with the Darcy number as well as with the slip 
parameter. The flow resistance also increases with the stenosis size (height and length both) for 
any given set of parameters. On the basis of the results summarized in Tables 1 and 2, it is 
concluded that the impedance assumes significantly higher magnitude in a permeable stenosed 
artery than its corresponding value in a normal artery (no stenosis). The shear stress at the 
stenosis throat possesses characteristics similar to the impedance with respect to any parameter. 
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