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Abstract
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1 Introduction

Several recent papers and books have dealt with SI age-structured epidemic models, for
example, Busenberg, et al. (1993), (1991), El-Doma (2006), (2004a), (2004b), (2004c),
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(2000), (1987), Brauer (2002a), (2002b), Louie, et al. (1994), Anderson, et al. (1991),
May, et al. (1988) and Hoppenstead (1975).

In this paper, we study an SI age-structured epidemic model, where age is the chrono-
logical age i.e., the elapse of time since birth. The disease causes so few fatalities that
they can be neglected and is horizontally as well as vertically transmitted. Horizon-
tal transmission of infection is the transfer of infection through some direct or indirect
contact with infected individuals, for example, malaria is horizontally transmitted. A
particular form of horizontal transmission known as proportionate mixing is assumed in
this paper. Vertical transmission of infection is the passing of infection to offspring of
infected parentage, for example, AIDS, chagas and hepatitis B are vertically (as well as
horizontally) transmitted diseases. This form of transmission plays an important role in
maintaining some diseases, for example, see Busenberg, et al. (1993). We note that some
sexually transmitted diseases such as herpes and AIDS, are of SI type.

We establish the well posedness of the model and prove global stability results and
show that, if q 6= 1, then the endemic equilibrium is globally stable. We also show that if
q = 1, and other conditions hold, then the endemic equilibrium is also globally stable. The
local stability of the endemic equilibrium as well as the global stability of the disease-free
equilibrium are reported in El-Doma (2004a). We note that if q = 1, then either there
exists a unique endemic equilibrium, which is globally stable, or problem (2.1) gives rise
to a continuum of endemic equilibriums, in the case of non-fertile infectibles.

The global stability results that we obtain are under very general conditions, and,
in fact, we do not require any condition other than the existence of a unique endemic
equilibrium.

The organization of this paper is as follows: in section 2 we describe the model and
obtain the model equations; in section 3 we reduce the model equations to several sub-
systems and prove the well posedness of the model equations; in section 4 we determine
the steady states; in section 5 we prove global stability results; in section 6 we conclude
our results.

2 The Model

We consider an age-structured population of variable size exposed to a communicable
disease. The disease is vertically as well as horizontally transmitted and causes so few
fatalities that they can be neglected. We assume the following.

1. s(a, t) and i(a, t), respectively, denote the age-density for susceptible and infective
of age a at time t. Then∫ a2

a1

s(a, t)da = total number of susceptible at time t of ages between a1 and a2,
∫ a2

a1

i(a, t)da = total number of infective at time t of ages between a1 and a2. We

assume that the total population consists entirely of susceptible and infective.

2. Let k(a, a′) denote the probability that a susceptible individual of age a is infected
by an infective of age a′. We further assume that, k(a, a′) = k1(a).k2(a

′), which is
known as the “proportionate mixing assumption”, see Dietz, et al. (1985). There-
fore the horizontal transmission of the disease occurs at the following rate:

k1(a)s(a, t)

∫ ∞

0

k2(a
′)i(a′, t)da′,
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where k1(a) and k2(a) are bounded, nonnegative, continuous functions of a. The
term

k1(a)

∫ ∞

0

k2(a
′)i(a′, t)da′,

is called “force of infection” and we let

λ(t) =

∫ ∞

0

k2(a)i(a, t)da.

3. The fertility rate β(a) is a nonnegative, continuous function, with compact support
[0, A], (A > 0). The number of births of susceptible per unit time is given by

s(0, t) =

∫ ∞

0

β(a)[s(a, t) + (1 − q)i(a, t)]da, q ∈ [0, 1], where q is the probability

of vertically transmitting the disease. Accordingly, all newborns from susceptible
parents are susceptible but a portion q of newborns from infected parents are in-
fective, i.e., they acquire the disease via birth (vertical transmission) and therefore,

i(0, t) = q

∫ ∞

0

β(a)i(a, t)da.

4. The death rate, µ(a), is the same for susceptible and infective and µ(a) is a non-
negative, continuous function and ∃ a0 ∈ [0,∞) such that µ(a) > µ̄ > 0, ∀ a > a0

and µ(a2) > µ(a1), ∀ a2 > a1 > a0.

5. The initial age distributions s(a, 0) = s0(a) and i(a, 0) = i0(a) are continuous,
nonnegative and integrable functions of a ∈ [0,∞).

These assumptions lead to the following system of nonlinear integro-partial differen-
tial equations with non-local boundary conditions, which describes the dynamics of the
transmission of the disease.





∂s(a, t)

∂a
+

∂s(a, t)

∂t
+ µ(a)s(a, t) = −k1(a)s(a, t)λ(t), a > 0, t > 0,

∂i(a, t)

∂a
+

∂i(a, t)

∂t
+ µ(a)i(a, t) = k1(a)s(a, t)λ(t), a > 0, t > 0,

s(0, t) =

∫ ∞

0

β(a)[s(a, t)+ (1 − q)i(a, t)]da, t ≥ 0,

i(0, t) = q

∫ ∞

0

β(a)i(a, t)da, t ≥ 0,

λ(t) =

∫ ∞

0

k2(a)i(a, t)da, t ≥ 0,

s(a, 0) = s0(a), i(a, 0) = i0(a), a ≥ 0.

(2.1)

We note that problem (2.1) is an SI age-structured epidemic model that has been
studied in El-Doma (2004a), where the steady states are determined and the local asymp-
totic stability of the endemic equilibrium and the disease-free equilibrium as well as the
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the global stability of the disease-free equilibrium are reported. The same model but
with k1 and k2 constants is studied in El-Doma (1987). Also, in Brauer (2002a), (2002b),
problem (2.1) is studied when k1 and k2 are constants and q = 0 (the case of no vertical
transmission).

In what follows, we establish the well posedness of the model equations and prove the
global stability of the endemic equilibrium when q 6= 1. We also show that if q = 1 and
another condition holds, then the endemic equilibrium is globally stable.

3 Reduction of the Model and its well posedness

In this section, we develop some preliminary formal analysis of problem (2.1) and show
that problem (2.1) is well posed. We define p(a, t) by p(a, t) = s(a, t)+ i(a, t). Then from
(2.1), by adding the equations, we find that p(a, t) satisfies the following McKendrick-Von
Forester equation:





∂p(a, t)

∂a
+

∂p(a, t)

∂t
+ µ(a)p(a, t) = 0, a > 0, t > 0,

p(0, t) = B(t) =

∫ ∞

0

β(a)p(a, t)da, t ≥ 0,

p(a, 0) = p0(a) = s0(a) + i0(a), a ≥ 0.

(3.1)

Note that problem (3.1) has a unique solution that exists for all time, see Bellman, et
al. (1963), Feller (1941) and Hoppensteadt (1975). The unique solution is given by

p(a, t) =

{
p0(a − t)π(a)/π(a− t), a > t,
B(t− a)π(a), a < t,

(3.2)

where π(a) is given by

π(a) = e−
∫ a
0 µ(τ)dτ ,

and B(t) has the following asymptotic behavior as t → ∞:

B(t) = [c + θ(t)]ep∗t, (3.3)

where p∗ is the unique real number which satisfies the following characteristic equation:
∫ ∞

0

β(a)π(a)ep∗tda = 1, (3.4)

θ(t) is a function such that θ(t) → 0 as t → ∞ and c is a constant.
Also, from (2.1), s(a, t) and i(a, t) satisfy the following systems of equations:





∂s(a, t)

∂a
+

∂s(a, t)

∂t
+ µ(a)s(a, t) = −k1(a)s(a, t)λ(t), a > 0, t > 0,

s(0, t) =

∫ ∞

0

β(a)[s(a, t)+ (1 − q)i(a, t)]da, t ≥ 0,

s(a, 0) = s0(a), a ≥ 0,

(3.5)
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



∂i(a, t)

∂a
+

∂i(a, t)

∂t
+ µ(a)i(a, t) = k1(a)s(a, t)λ(t), a > 0, t > 0,

i(0, t) = q

∫ ∞

0

β(a)i(a, t)da, t ≥ 0,

i(a, 0) = i0(a), a ≥ 0.

(3.6)

Using (3.1)-(3.2), we obtain that B(t) satisfies

B(t) =

∫ ∞

0

β(a)π(a)B(t− a)da +

∫ ∞

t

β(a)p0(a − t)
π(a)

π(a− t)
da. (3.7)

Using (3.7) and Gronwall′s inequality, we obtain

B(t) ≤ ‖β(a)‖∞ ‖p0(a)‖L1 [0,∞) e
(‖ β(a)‖∞−µ∗)t, (3.8)

where µ∗ is given by
µ∗ = inf

a∈[0,∞)
µ(a). (3.9)

From (3.2) and (3.8), we obtain the following a priori estimate:
∫ ∞

0

p(a, t)da ≤ ‖p0(a)‖L1 [0,∞) e
(‖ β(a)‖∞−µ∗)t. (3.10)

By integrating problem (3.6) along characteristic lines t− a = const., and using s(a, t) =
p(a, t)− i(a, t), we find that i(a, t) satisfies

i(a, t) =





i0(a− t)e−
∫ t
0 [µ(a−t+τ)+k1(a−t+τ)λ(τ)]dτ

+
p0(a− t)π(a)

π(a− t)

[
1 − e−

∫ t
0 k1(a−t+τ)λ(τ)dτ

]
, a > t,

i(0, t − a)π(a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτ

+B(t − a)π(a)
[
1 − e−

∫ t
0 k1(τ)λ(t−a+τ)dτ

]
, a < t.

(3.11)

It is worth noting that if we can establish a solution for problem (3.11), then a solution
for problem (3.5) via (3.2) is determined, and consequently a solution for problem (2.1)
is determined. To establish the existence and uniqueness of solution to problem (2.1), we
define the following set E to satisfy:

E =
{
i(a, t) : i(., t) ∈ L1([0,∞));C[0, t0]), a ∈ [0,∞), t ∈ [0, t0], ‖i(a, t)‖ = sup

t∈[0,t0]

‖i(a, t)‖L1

}
,

where C[0, t0] denotes the Banach space of continuous functions in [0, t0] and L1([0,∞))
denotes the space of equivalent classes of Lebesgue integrable functions. We note that E
is a Banach space.

In order to facilitate our future calculations, we need the following lemma:
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Lemma 3.1 Suppose that x, y ≥ 0, then |e−y − e−x| ≤ |y − x| .

Proof. Let f(x) = e−x, then use the mean value theorem to establish the required result.
In the next theorem, we prove the existence and uniqueness of solution to problem

(2.1) via a fixed-point theorem.

Theorem 3.2 Problem (2.1) has a unique solution that exists for all time.

Proof. Define the set Q by Q = {i(a, t) ∈ E, i(a, t) ≥ 0, ‖i(a, t)‖ ≤ M} , where M is a
constant which satisfies the following:

M > ‖p0(a)‖L1 e(‖β(a)‖∞−µ∗)t0. (3.12)

We note that Q is a closed set in E. Now, for fixed initial age-distributions s0(a), i0(a),
and p0(a), define the mapping T : Q ⊂ E → E by

T i(a, t) =





i0(a − t)e−
∫ t
0 [µ(a−t+τ)+k1(a−t+τ)λ(τ)]dτ

+
p0(a − t)π(a)

π(a− t)

[
1 − e−

∫ t
0 k1(a−t+τ)λ(τ)dτ

]
, a > t,

i(0, t − a)π(a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτ

+B(t− a)π(a)
[
1 − e−

∫ t
0 k1(τ)λ(t−a+τ)dτ

]
, a < t.

(3.13)

We note that since s0(a), i0(a), and p0(a), and B(t) are non-negative, continuous and
integrable functions, we can use (3.8) and (3.10) to show that T maps Q into Q. Now,
we look for a fixed point of this mapping to provide existence and uniqueness of solution
for problem (2.1). To this end, we let i(a, t) and i1(a, t) be elements of Q, then using
(3.8)-(3.10), and Lemma (3.1), we obtain the following:

‖T i(., t)− T i1(., )‖L1 ≤ K(M, t0)

∫ t

0

‖i(., σ)− i1(., σ)‖L1 dσ, (3.14)

where K(M, t0) is a constant which depends on M and t0. Therefore,

‖T i(., t)− T i1(., t)‖ ≤ t0K(M, t0) ‖i(., σ)− i1(., σ)‖ . (3.15)

And thus, by induction, for each positive integer n, we obtain

‖T ni(., t)− T ni1(., t)‖ ≤ [t0K(M, t0)]
n

n!
‖i(., t)− i1(., t)‖ . (3.16)

Inequality (3.16) implies that there exists a positive integer N such that T N is a strict
contraction on Q. Thus T has a unique fixed point in Q. Since t0 is arbitrary, it follows
that problem (2.1) has a unique solution that exists for all time. This completes the proof
of the theorem. �

In the next theorem, we show that solutions of problem (2.1) depend continuously on
the initial age-distributions, therefore, problem (2.1) is well posed.
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Theorem 3.3 Let p(a, t) and p1(a, t) be two solutions of problem (2.1) corresponding
to initial age-distributions p0(a), s0(a), i0(a) and p01(a), s01(a), i01(a), respectively. Also,
suppose that p(0, t) = B(t) and p1(0, t) = B1(t), and let i(a, t) and i1(a, t) be the corre-
sponding solutions of problem (3.6). Then the following properties hold:

|B(t)− B1(t)| ≤ ‖β(a)‖∞ ‖p0(a) − p01(a)‖L1 e(‖β(a)‖∞−µ∗)t, (3.17)

‖p(., t)− p1(., t)‖L1 ≤ ‖p0(a) − p01(a)‖L1 e(‖β(a)‖∞−µ∗)t, (3.18)

‖i(., t)− i1(., t)‖L1 ≤
[
‖i0(a) − i01(a)‖L1 + 2 ‖p0(a) − p01(a)‖L1 e‖β‖∞t0

]
etK(M,t0). (3.19)

Proof. Note that (3.17) and (3.18) follow directly from (3.8) and (3.10), respectively,
by linearity.

To obtain (3.19), first we use (3.11) and (3.17)-(3.18), and then (3.14) to obtain the
following:

‖i(., t)− i1(., t)‖L1 ≤
[
‖i0(a)− i01(a)‖L1 + 2 ‖p0(a)− p01(a)‖L1 e‖β‖∞t0

]

+ K(M, t0)

∫ t

0

‖i(., σ)− i1(., σ)‖L1 dσ.

Now, the foregoing inequality yields (3.19) by the aid of Gronwall′s inequality. This
completes the proof of the theorem. �

We note that (3.17)-(3.19), show that solutions of problem (2.1) depend continuously
on the initial age-distributions, and therefore, problem (2.1) is well posed.

4 The Steady States

In this section, we look at the steady state solution of problem (2.1), under the assumption
that the total population has already reached its steady state distribution p∞(a) = cπ(a),
i.e., we assume that (3.4) is satisfied with p∗ = 0, see, for example, Busenberg, et al.
(1988).

A steady state s∗(a), i∗(a) and λ∗ must satisfy the following equations:




ds∗(a)

da
+ µ(a)s∗(a) = −k1(a)s∗(a)λ∗, a > 0,

s∗(0) = c − i∗(0),

(4.1)





di∗(a)

da
+ µ(a)i∗(a) = k1(a)s∗(a)λ∗, a > 0,

i∗(0) = q

∫ ∞

0

β(a)i∗(a)da,

(4.2)
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λ∗ =

∫ ∞

0

k2(a)i∗(a)da. (4.3)

Anticipating our future needs, we define a threshold parameter R0, and is given by

R0 = c

∫ ∞

0

∫ a

0

k1(σ)k2(a)π(a)dσda +

cq

∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)dσda

[∫ ∞

0

k2(a)π(a)da

]

[1 − q]
.

(4.4)
Here, we note that the threshold parameter R0, usually called the basic reproduction

number, and is interpreted as the expected number of secondary cases produced, in a
lifetime, by an infective, in a totally susceptible population.

In the following result, we determine the steady state solution of problem (2.1) when
q 6= 1.

Theorem 4.1 (see El-Doma (2004a) for a proof.) Suppose that q 6= 1, then:

(1) If R0 > 1, then λ∗ = 0 and λ∗ > 0 are possible steady states. A steady state with
λ∗ > 0 is unique when it exists and it satisfies

1 = c

∫ ∞

0

∫ a

0

k1(σ)k2(a)π(a)e−λ∗ ∫ a
σ k1(τ)dτdσda

+

cq

∫ ∞

0

∫ a

0

β(a)π(a)e−λ∗∫ a
σ k1(τ)dτk1(σ)dσda

[∫ ∞

0

k2(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτda

]

[
1 − q

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτda

] . (4.5)

And in this case s∗(a) and i∗(a) are given by

s∗(a) = s∗(0)π(a)e−λ∗ ∫ a
0 k1(τ)dτ, (4.6)

i∗(a) = i∗(0)π(a) + λ∗s∗(0)π(a)

∫ a

0

k1(σ)e−λ∗ ∫ σ
0 k1(τ)dτdσ, (4.7)

where i∗(0) satisfies

i∗(0) =

cqλ∗
∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)e−λ∗ ∫ a
σ k1(τ)dτdσda

[
1 − q

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτda

] . (4.8)

(2) If R0 ≤ 1, then the disease-free equilibrium, λ∗ = 0, is the only steady state, i.e.,
s∗(a) = cπ(a) and i∗(a) = 0.

Here, we note that the disease will die out if R0 ≤ 1 and persists if R0 > 1. The effect
of vertical transmission via its parameter q is seen, since the right-hand side of (4.4) is
an increasing function of q and therefore, a contributing factor for an endemic disease to
occur.
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In order to determine the solution of problem (2.1), when q = 1, we consider the
following transformation, called the age profile of infective:

v(a, t) =
i(a, t)

p∞(a)
,

and note that s(a, t) = p∞(a) − i(a, t), since we are assuming that the total population
has already reached its steady state distribution p∞(a) = cπ(a). Therefore, from (3.6),
v(a, t) satisfies the following:





∂v(a, t)

∂a
+

∂v(a, t)

∂t
= k1(a)[1− v(a, t)]λ(t), a > 0, t > 0,

v(0, t) = q

∫ ∞

0

β(a)π(a)v(a, t)da, t ≥ 0,

v(a, 0) = v0(a) = i0(a)/p∞(a), a ≥ 0,

λ(t) = c

∫ ∞

0

k2(a)π(a)v(a, t)da, t ≥ 0.

(4.9)

Then from (4.9), we see that v(a, t) = 1 is a solution of the above problem when q =
1, and therefore by uniqueness of solution (see section 3), it is the only solution for this
case. Therefore, i(a, t) = p∞(a) = cπ(a) is the solution for problem (2.1) when q = 1.

We note that from (4.7) and q = 1, we obtain that

λ∗s∗(0)

∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)e−λ∗ ∫ σ
0 k1(τ)dτdσda = 0. (4.10)

Thus if λ∗ = 0 in (4.10), then using (4.7), we obtain that i∗(0) = 0 (we are assuming
that k2(a) is not identically zero), and therefore i∗(a) = 0. Accordingly, we obtain the
following steady state (disease-free equilibrium):

s∗(a) = cπ(a), i∗(a) = 0. (4.11)

Now, if we suppose that

∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)e−λ∗ ∫ σ
0 k1(τ)dτdσda 6= 0 and λ∗ 6= 0, then

i∗(0) = c, and thus we obtain the following steady state:

i∗(a) = cπ(a), s∗(a) = 0, λ∗ = c

∫ ∞

0

k2(a)π(a)da. (4.12)

Finally, if

∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)e−λ∗
∫ σ
0

k1(τ)dτdσda = 0, and λ∗ 6= 0, then s∗(0) is

undetermined and thus for each fixed s∗(0) ∈ [0, c), and using equations (4.7) and (4.3),
we obtain

λ∗
[
1 − s∗(0)

∫ ∞

0

∫ a

0

k2(a)π(a)k1(σ)e−
∫ σ
0 λ∗k1(τ)dτdσda

]
= (c − s∗(0))

∫ ∞

0

k2(a)π(a)da.

(4.13)
We note that the left-hand side of (4.13) equals zero when λ∗ = 0, and increases to +∞,
when λ∗ → +∞. Accordingly, for each fixed s∗(0) ∈ [0, c), we can see that (4.13) gives rise
to an endemic equilibrium, and hence problem (2.1) gives rise to a continuum of endemic
equilibriums in this special case.

AAM: Intern. J., Vol. 1, No. 2 (2006) 133



5 Global Stability Results

In this section, we prove the global stability of the endemic equilibriums for problem (2.1).
By integrating (4.9) along characteristic lines t − a = const., we find that v(a, t)

satisfies

v(a, t) =





v0(a − t)e−
∫ t
0 k1(a−t+τ)λ(τ)dτ +

∫ t

0

k1(a− t + σ)e−
∫ t

σ k1(a−t+τ)λ(τ)dτλ(σ)dσ, a > t,

v(0, t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτ +

∫ a

0

k1(σ)λ(t − a + σ)e−
∫ a

σ k1(τ)λ(t−a+τ)dτdσ, a < t.

(5.1)

From (4.9), v(0, t) = q

∫ ∞

0

β(a)π(a)v(a, t)da, then using (5.1) and changing the order

of integration several times and making appropriate changes of variables yields

v(0, t) = q

{∫ t

0

β(a)π(a)v(0, t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτda

+

∫ t

0

∫ ∞

σ

β(a)π(a)k1(a− σ)λ(t − σ)e−
∫ a

a−σ
k1(τ)λ(t−a+τ)dτdadσ (5.2)

+

∫ ∞

t

β(a)π(a)v0(a − t)e−
∫ t
0 k1(a−t+τ)λ(τ)dτda

}
.

Also, from (4.9), λ(t) = c

∫ ∞

0

k2(a)π(a)v(a, t)da, then using (5.1) and changing the

order of integration several times and making appropriate changes of variables yields

λ(t) = c

{∫ t

0

k2(a)π(a)v(0, t− a)e−
∫ a
0

k1(τ)λ(t−a+τ)dτda

+

∫ t

0

∫ ∞

σ

k2(a)k1(a− σ)π(a)λ(t− σ)e−
∫ a

a−σ k1(τ)λ(t−a+τ)dτdadσ (5.3)

+

∫ ∞

t

k2(a)π(a)v0(a − t)e−
∫ t
0 k1(a−t+τ)λ(τ)dτda

}
.

Note that by Assumptions 2, 4 and 5 of section 2 and the Dominated Convergence
Theorem, we obtain

∫ ∞

t

k2(a)π(a)v0(a− t)e−
∫ t
0

k1(a−t+τ)λ(τ)dτda −→ 0, as t → ∞.

Also, by similar reasoning as above,
∫ ∞

t

β(a)π(a)v0(a − t)e−
∫ t
0

k1(a−t+τ)λ(τ)dτda −→ 0, as t → ∞.
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Therefore, setting v(0, t) = u(t), u(t) and λ(t) satisfy the following limiting equations
(see Busenberg, et al. (1988)):

u(t) = q

{∫ ∞

0

β(a)π(a)u(t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτ da

+

∫ ∞

0

∫ ∞

σ

β(a)π(a)k1(a− σ)λ(t − σ)e−
∫ a
a−σ

k1(τ)λ(t−a+τ)dτdadσ

}
, (5.4)

λ(t) = c

{∫ ∞

0

k2(a)π(a)u(t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτda

+

∫ ∞

0

∫ ∞

σ

k2(a)k1(a − σ)π(a)λ(t− σ)e−
∫ a
a−σ k1(τ)λ(t−a+τ)dτdadσ

}
. (5.5)

We integrate equations (5.4 )-(5.5) to obtain the following:

u(t) = q

{∫ ∞

0

β(a)π(a)u(t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτ da

+

∫ ∞

0

β(a)π(a)
[
1 − e−

∫ a
0 k1(τ)λ(t−a+τ)dτ

]
da

}
, (5.6)

λ(t) = c

{∫ ∞

0

k2(a)π(a)u(t− a)e−
∫ a
0 k1(τ)λ(t−a+τ)dτda

+

∫ ∞

0

k2(a)π(a)
[
1 − e−

∫ a
0 k1(τ)λ(t−a+τ)dτ

]
da

}
. (5.7)

Now, we set w(t) and g(t) to satisfy the following:

w(t) = u(t) − u∗,

g(t) = λ(t) − λ∗,

where λ∗, u∗ =
i∗(0)

c
, are defined as in section 4. Then after some computations, we

obtain that w(t) and g(t) satisfy the following:

w(t) = q

{∫ ∞

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτw(t − a)e−

∫ a
0 k1(τ)g(t−a+τ)dτda

+ [1 − u∗]

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτ

[
1 − e−

∫ a
0 k1(τ)g(t−a+τ)dτ

]
da

}
, (5.8)
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g(t) = c

{∫ ∞

0

k2(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτw(t − a)e−

∫ a
0 k1(τ)g(t−a+τ)dτda

+ [1 − u∗]

∫ ∞

0

k2(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτ

[
1 − e−

∫ a
0 k1(τ)g(t−a+τ)dτ

]
da

}
. (5.9)

In the following theorem, we prove the global stability of the endemic equilibrium
when q 6= 1.

Theorem 5.1 If q 6= 1, then the unique endemic equilibrium, given by Theorem 4.1,
is globally stable.

Proof. Let |w|∞ = lim sup
t→∞

|w(t)| and |g|∞ = lim sup
t→∞

|g(t)|. Then if we use the fact that

1−e−
∫ σ
0

k1(τ)g(t−a+τ)dτ ≤
∫ σ

0

k1(τ )g(t−a+τ )dτ, and then use Fatou′s Lemma in equations

(5.8)-(5.9), we obtain that

|w|∞ ≤ q[1− u∗]|g|∞

[1 − q]

∫ ∞

0

∫ a

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτk1(σ)dσda, (5.10)

|g|∞ ≤ c|w|∞
∫ ∞

0

k2(a)π(a)da + c[1 − u∗]|g|∞
∫ ∞

0

∫ a

0

k2(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτk1(σ)dσda.

(5.11)

Now, using inequality (5.10) in (5.11), we obtain that

|g|∞ ≤ |g|∞[1 − u∗]

{
q

[1 − q]

∫ ∞

0

∫ a

0

β(a)π(a)e−λ∗∫ a
0 k1(τ)dτk1(σ)dσda

[
c

∫ ∞

0

k2(a)π(a)da

]

+ c

∫ ∞

0

∫ a

0

k2(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτk1(σ)dσda

}
. (5.12)

We note that u∗ is given by

1 − u∗ =
[1 − q][

1 − q

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0

k1(τ)dτda

] . (5.13)

Also, λ∗ is given by

λ∗ = c

∫ ∞

0

k2(a)π(a)da + [u∗ − 1]c

∫ ∞

0

k2(a)π(a))e−λ∗ ∫ a
0 k1(τ)dτda. (5.14)

Now, using equations (5.13)-(5.14) in inequality (5.12) and then using equation (4.5),
we obtain

|g|∞ < |g|∞ [(1 − u∗) + u∗] . (5.15)
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Accordingly, |g|∞ = 0. And hence from inequality (5.10), we obtain that |w|∞ = 0.
Therefore, the endemic equilibrium is globally stable. �

In the following theorem, we prove the global stability of the endemic equilibrium
when q = 1. We note that, if q = 1, then R0 is not defined, and in this case either there
exists a unique endemic equilibrium, which is globally stable, or problem (2.1) gives rise
to a continuum of endemic equilibriums, in the case of non-fertile infectibles ( i.e., when
the support of k1(a) lies to the right of the support of β(a) ), see section 4.

Theorem 5.2 Suppose that q = 1, and

∫ ∞

0

∫ a

0

β(a)π(a)k1(σ)e−λ∗ ∫ σ
0 k1(τ)dτdσda 6= 0.

Then the endemic steady state s∗(a) = 0, i∗(a) = cπ(a), is globally stable.

Proof. We note that from (5.13), [1 − u∗] → 0 as q → 1. Also, from (5.14), we find
that λ∗ → c

∫ ∞
0

k2(a)π(a)da as q → 1. Therefore, using (5.12), we obtain the following as
q → 1 :

|g|∞ ≤ |g|∞
λ∗

∫ ∞

0

∫ a

0

β(a)π(a)e−λ∗ ∫ a
0 k1(τ)dτk1(σ)dσda

[
1 −

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0

k1(τ)dτda

] . (5.16)

Now, using equation (4.8), we obtain that |g|∞ = 0, since

λ∗
∫ ∞

0

∫ a

0

β(a)π(a)e−λ∗ ∫ a
0

k1(τ)dτk1(σ)dσda
[
1 −

∫ ∞

0

β(a)π(a)e−λ∗∫ a
0

k1(τ)dτda

] < 1.

Using |g|∞ = 0 in equation (5.10), we obtain that |w|∞ = 0. Accordingly, we obtain
the global stability for the endemic equilibrium. �

Conclusion

We studied an S I age-structured epidemic model when the disease is vertically as well
as horizontally transmitted and the force of infection of proportionate mixing assumption
type. The mortality and fertility rates are age-dependent. We note that herpes and AIDS
are examples of SI epidemics.

We established the well posedness of the model equations and proved global stability
results for the endemic equilibriums. If q 6= 1, then the endemic equilibrium is globally
stable. If q = 1, then either the endemic equilibrium is the population consisting of
infective only, and we proved that this endemic equilibrium is globally stable, or the
model gives rise to a continuum of endemic equilibriums, if individuals are susceptible
only after the end of their reproductive period.

The global stability results that we obtained are under very general conditions, and,
in fact, we did not require any condition other than the existence of a unique endemic
equilibrium.
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