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Abstract   
 
We construct a discrete time self-financing portfolio comprised of call options short and stock shares long which is 
riskless and grows at a fixed rate of return. It is also shown that when shorting periods tend to zero then so devised 
portfolio turns into the Black-Scholes bond replication. Unlike in standard approach the analysis presented here 
requires neither Ito Calculus nor solving the Heat Equation for option pricing. 
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1.  Introduction 
 
Black and Scholes (1973) discovered that a portfolio of one call option short and ( , )C t S

S
∂
∂

 stock 

shares long, where ( , ) and C t S S is the option and stock price at time t  respectively, has no risk 
and consequently it replicates a bond portfolio earning a fixed rate of return, 
provided ( , )C t S satisfies certain partial differential equation.  Since then a great deal of studies 
circled around discrete time option pricing originated by Cox -Ross-Rubinstein (1979), 
Rubinstein and Leland (1981), which focused entirely on no-arbitrage option replication 
portfolio determined from a martingale measure corresponding to the discounted stock price on 
binomial tree.  Meanwhile no attention has been given to the fact that the bond portion of such 
hedging portfolio, in contrast to its continuous time counterpart, is never riskless!  In fact, the 
bond portion is a unique random process whose distribution at each time step is determined by 
terminal stock prices under the martingale measure. The above raises a question of whether it is 
possible to construct riskless portfolio in discrete time analogous to continuous time Black-
Scholes bond replication portfolio.  
 
The aim of this article is to answer the question in the positive and explain how the findings 
bridge the long-standing differences between the two models.  Namely, we first construct a self-
financing bond replication portfolio by augmenting a combination of suitably chosen number of 
stock shares long and one call option short with a third position in carry-on cash flow (excess or 
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shortage of funds resulting from creating the stock-option position) and then we convert the cash 
flow position into the risk free combination of stocks and options.  The key feature of this 
discrete time portfolio lies in the fact that it does not suffer from the well-known shortcomings 
present in the continuous model: an impossible to implement continuous time trading coupled 
with prohibitive(infinite) transaction costs associated with it.  The model presented here applies 
to both small and large time period situations and works particularly well in the latter case.  For 
example, when the time intervals are days, months or years and the underlying security can be 
modeled by assuming only two different outcomes at the end of each time period (e.g., success 
or failure with a price tag) then over the multi-step period the model provides a hedging strategy 
that has no risk and for which the transaction costs may in fact be assumed negligible, whereas in 
the continuous Black-Scholes model the costs cannot be ignored unless the realities of the actual 
security trading are being rejected!  
 
2.  Notation, assumptions and binomial model facts 
 
Let  ( ,  , )PΩ  be a probability space 1 N{( ,..., ) | { , },1 }, 2i U D i Nω ω ω ΩΩ = ∈ ≤ ≤ = , 

# ' # '
1 N(( ,..., )) (1 )U s D sP p pω ω = − , with 10 1r dp

u d
+ −

< = <
−

  subject to 0 1,  1d r u< < + <   where 

r is a fixed risk-free rate of return per one time period, 1 n(( ,..., )) n σ ω ω= and 
{ , },  1,...,n N= ∅ Ω = .  Then the risk-neutral stock process n nS ∈    is defined by P(stock 

goes up) = 1 1( ) ( )n n n nP S S S u P U pω− −= = = =   and P(stock goes down) = 

1 1( ) ( ) 1n n n nP S S S d P D pω− −= = = = − . Here 1 1 1 n-1( ,..., )n nS S ω ω− −= and  

1 n-1( ,..., , )n nS S Uω ω= , or 1 n-1( ,..., , )n nS S Dω ω= , respectively, and nS  is binomial with 

0( ) (1 )k n k k n k
n

n
p

k
P S S u d p− − 

 
 

= = − .  We emphasize that the probability distribution of the actual 

stock process is irrelevant as it does not play any role in determining no-arbitrage option pricing, 
aside from the fact that it is rarely known!  The only thing the two stock processes have in 
common is the identical sample space 0 1{ ,  ...,  }NS S S  which constitutes the binomial binary tree.  
 
We make the following assumptions about discrete time portfolio modeling: 
(p1)  prices of stocks, options and bonds change at 0,...,  and stay constant throughout 
        [ 1, ),  1,..., ;
(p2)  portfolio values are declared at 0,...,  and stay constant during [ 1, ),

n N
n n n N

n N n n

=
− =

= −  1,..., ;
(p3)  positions (rebalanced holdings) are decided based on time -1 prices, take effect 
        instantaneously after time -1 and are held unchanged throughout ( -1, ],  1,..., ;
(p4)  por

n N
n

n n n n N

=

=
tfolio is self-financing  in the sense that its value at time 1 and after rebalancing are

        equal, 1,..., ;and
(p5)  portfolio transaction costs are zero, borrowing along with short and fracti

n
n N

−
=

onal sales are 
        allowed, option pricing assumes no-arbitrage. 
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The significance of (p3) stems from the fact that different portfolio positions must necessarily be 
held over non-overlapping time intervals until the securities undergo price change in order to 
unambiguously define portfolio holdings and value when rebalancing. Moreover, (p3) 
incorporates the fact that security prices must be known first before the portfolio adjustments can 
be made and consequently one way to implement this is to consider the discrete time sequence as 
a subset of the continuous time with a proviso that rebalancing takes effect instantaneously after 
the prices have changed.   

 
Allowing the portfolio to undergo content and value changes periodically at discrete time 
instances only, while keeping the portfolio intact at all other times, considerably simplifies the 
analysis of the portfolio dynamics.  In addition, it offers a practical alternative to a continuous 
time model while retaining its validity for both large and small scales of portfolio inactivity 
period. 
 
A basic fact from binomial asset pricing model Karatzas & Shreve (1998) or Williams (2001) 
states that a European call option can be replicated through a hedging strategy by holding a 
portfolio of uniquely determined combination of stocks and bonds.  Since the option replication 
serves as basis for our bond replication construction we first recall all necessary facts needed for 
further analysis.  
 
Given a strike price 0K >  the value of the call option at time N is defined by 
  ( ,0) ( )N N NC Max S K S K += − ≡ −   
and we use the following notation: 

nS  is the stock price at time n 

nC  is the call option price at time n 

0 (1 )  is the bond price at time n
nB B r n= +  

na  is the number of stock shares held during ( 1, ]n n−  

nb  is the number of bonds shares held during ( 1, ]n n−  
r  is a fixed risk-free return rate per period 

 
Then by (p3)-(p4) portfolio values{ ,0 }nX n N≤ ≤ satisfy 

0 0 0 0 0 1 0 1 0X a S b B a S b B= + = +  

1 1 1 1 1 1 1   and  ,       1,...,n n n n n n n n n n n n n nX a S b B a S b B X a S b B n N− − − − − − −= + = + = + =           (1) 
 
Remark.  Since the initial assets allocation 0 0( , )a b  for 0X  is limited to time 0n =  and then 
instantaneously replaced by 1 1( , )a b  we may assume without loss of generality that 

0 1 0 1 and a a b b= =  because by 0 0 0 0 0 1 0 1 0X a S b B a S b B= + = +  this has no bearing on the initial 
portfolio value. Therefore 1 1( , )a b  is taken as the initial allocation throughout [0,1]  (not just 
(0,1]) which renders the choice of 0 0( , )a b  as a technical assumption and allows 
identifying nX allocations with a sequence ( , ),  1,..., .n na b n N=  
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A call option replication portfolio { , ( , ),  0 }c n n nX a b n NΠ = ≤ ≤  is determined by 
( )(1 ) [( ) | ],       0,...,N n

n n n n n n N nX a S b B C r E S K n N− − += + = = + − =              (2) 

1 1
1

1 1

( ) ( )
 ,            1,...,n n n n

n n
n n

C S u C S d
a n N

S u S d
− −

−
− −

−
= ∈ =

−                                           (3) 

1 1
1

1

 ,       1,...,n n n n n n
n n

n n

C a S C a S
b n N

B B
− −

−
−

− −
= = ∈ =                                         (4) 

 
One checks that nX , 0na ≥  but nb can be negative in which case an investor owes n nb B−  or 
equivalently the investor sold nb shares of bond short. nC  is determined by backward recursion 
that starts at the terminal time N of the binomial tree according to 

1 1 1 1
1( ) [ ( ) (1 ) ( )],         , 1,..., 2,1

1n n n n n nC S pC S u p C S d n N N
r− − − −= + − = −

+
             (5) 

 
3.  Construction of bond replication portfolio 
 
The first step is to built the option replication portfolio { , ( , ),  0 }c n n nX a b n NΠ = ≤ ≤   satisfying 
(1)-(5).  The second step amounts to recursive construction of a portfolio with values 
{ ,0 }nY n N≤ ≤  subject to (p1)-(p5) which is based on cΠ  and grows risk free. 
 
The interval [0,1].  Set 0 0 0 0 1 0 0Y a S C a S C= − ≡ − as the initial capital.  Define 
           0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 = ( )      during (0,1)Y a S C a S C Y C a S a S C g= − − + + − ≡ − + . 
Then 

1 1 1 1 0 (1 ),Y a S C Y r= − = +  
since 1 0 0a S C−  becomes 1 1 1 1 1 1 0 1 0 0 0(1 ) = ( )(1 ) (1 ) a S C b B b B r a S C r Y r− = − = − + − + = + due to 

0 0 0 0 0 0 1 0 1 0C X a S b B a S b B= = + = +  and 1 1 1 1 1 1C X a S b B= = +  while 1 0.g ≡  
 
The interval (1,2].  Use the first step and define 

1 0 2 1 1 1 1 2 1 2 1 1 2(1 )  + ( )      during (1,2)Y Y r a S C Y C a S a S C g= + = − + − ≡ − +  
Then 

2
2 2 2 2 2 0 +  (1 ) (1 )Y a S C g r Y r= − + = + , 

since 2 1 1a S C−  becomes 2 2 2 2 2a S C b B− = −  and 2g  earns interest  r during (1,2) yielding 
2

2 1 1 2 1 1 2 1 0 2 2(1 ) (1 ) ( )(1 ) (1 ) (1 ) (1 )g r Y r C a S r Y r b B r Y r b B+ = + + − + = + + + = + +  due to 

1 1 1 1 1 1 2 1 2 1.C X a S b B a S b B= = + = +  
 
The interval ( 1, ],  3,...,n n n N− = .  Use the 1n −  step and define 

1
1 0 1 1 1 1 1 1 1(1 )  + ( )    on  ( -1, )n

n n n n n n n n n n n nY Y r a S C Y C a S a S C g n n−
− − − − − − − −= + = − + − ≡ − +  

Then 
0 1 + (1 ) (1 )  ,  n

n n n n n n nY a S C g r Y r g −= − + = + ∈    
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by an argument similar to the case 1,2.n =  
 
Summing up, given 1 n 1 1 1{ ,  ,  ,  }n n n nS a C Y− − − −∈   create portfolio positions for 1,...,n N=  as 
follows:  
 
Open a position taking effect instantaneously after time 1n −  according to 
● sell the entire holdings to receive 1nY −  
● sell one option short to receive 1nC −  
● buy 1 shares of stock to spend  n n na a S −  
● hold the cash flow 1 1 1n n n n ng Y C a S− − −= + −  earning interest  r over ( 1, )n n−  
 
Close the position at time n 
● declare the portfolio value nY   
 
Theorem 1:    
Let { , ( , ),  0 }c n n nX a b n NΠ = ≤ ≤  be the option replication portfolio.  Then there exists a bond 
replication portfolio { , ( , ),  0 }n n nY a g n NΠ = ≤ ≤  of na shares of stock long, one call option 
short and a carry-on cash flow ng  such that   
 (i)  1 1 1   n n n n nY a S C g− − −= − +                               during the time period (n-1,n) 
(ii)   (1 ) =n n n n nY a S C g r= − + + 0 (1 )nY r+        at time n ,              1,...,n N=                 (6)            
 
Proof:  By construction, it is a consequence of unique 0Y ≡ 0 0 (1 ) [( ) ]N

Na S r E S K− +− + − , 

0 1 , ,n na a a C≡  found from (3) - (5) and 1 1 1 1 1( )n n n n n n ng Y C a S b b B− − − −= + − = − , because 
1 1

1 0 1 0 1 1 1 1 and (1 ) (1 )  thanks to n n
n n n n n n n n na S C b B Y Y r b B r b B C X− −

− − − −− = − = + = − + = − =  

1 1 1 1 1 1.n n n n n n n na S b B a S b B− − − − − −= + = +  
 
Below we provide concrete calculations in the case 3.N =  
 
Example 1.  Let 0

5 4 1 1 1
,  , .

4 5 40 2
40,    which gives r d

u d
S K u d r p + −

=
−

= = = = = =  A special choice 

of  1
21 ,  and consequently  ud r p= =  is only for keeping calculations simple but there are no 

such restrictions in general, other than as specified in section 2.  Solving (5) backward for nC and 
using (3) we obtain 0 17.90, C a= = .636 and 0 1 0 0 17.54Y a S C= − = . 

2 2 3 3 3

3 1 1 2 2 2
1

2 3 3 3 38

Then { ( ) .826,  ( ) .338},{ ( , ) 1,  ( , ) ( , ) .555,  
( , ) 0},{ ( ) 13.83,  C ( ) 2.38},{ ( , ) 23.47,  ( , ) ( , )

4.88, ( , ) 0},{ ( , , ) 38 ,  ( , , ) ( , , ) ( , , ) 10,  

a U a D a U U a U D a D U
a D D C U D C U U C U D C D U

C D D C U U U C U U D C U D U C D U U

= = = = =
= = = = = =

= = = = =

3 3 3 3( , , )  ( , , ) ( , , ) ( , , ) 0}C U D D C D U D C D D U C D D D= = = = . For the stock process  
31

1 1 2 2 2 22 5{ ( ) 50,  S ( ) 32},{ ( , ) 62 ,  S ( , ) ( , ) 40,  S ( , ) 25 },S U D S U U U D S D U D D= = = = = =  
1

3 3 3 3 3 38{ ( , , ) 78 ,  S ( , , ) ( , , ) ( , , ) 50,  S ( , , )  S ( , , )S U U U U U D S U D U S D U U U D D D U D= = = = =  
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12
3 3 25( , , ) 32,  ( , , ) 20 }S D D U S D D D= = = .   

 
Calculations were carried out in several decimal places but only two or three digits are displayed 
here as needed. We remark that the bond position 3b  in the call option replication 
portfolio { , ( , ),  0 }c n n nX a b n NΠ = ≤ ≤  is a random variable with a distribution corresponding to 
binomial probabilities and thus not riskless!  Indeed, by 3 ( , ) 1a U U =  it follows that 

2 2
3 2 0 3

2 2
2 0 2 0 3 2 0

( , , ) ( , , ) ( , , ) ( , , )3 3 3 3
3 3(1 ) (1 )

( ) ( ) ,  ( )

( ) 2 (1 ),  ( 0) ( ) (1 ) .

C U U U S U U U C U D U S U D U

r r
P b P S S u p P b

P S S ud S S du p p P b P S S d p

− −

+ +
= = = = = =

= ∪ = = − = = = = −
  

 
We illustrate the actual portfolio trading and rebalancing on a single stock path which first goes 
up then down and then up again, i.e., 0 1 040,  ( ) ,S S U S u= =  2 0( , ) ,S U D S ud=  

3 0( , , ) 50.S U D U S udu= =   Open a position on (0,1]  by selling one option short and 

0 0 1

0 1

1 1 1 1

receive 7.90, which combined with initial 17.54 buys  .636 shares of stock 
at the price 40 and leaves the cash flow 0.  Close the position at time 1 with 
holdings valued ( ) (

C Y a
S g

Y a S U C U

= = =
= =

= − 0

1 1

2 1 1 2 1

) 17.98 (1 ).  Open a position on (1,2] by 
selling one call option short to receive ( ) 13.83,  which combined with initial 17.98  
requires to borrow ( ) = ( ) ( ) (U) = 9.49  to buy 

Y r
C U Y

g U Y C U a U S

= = +
= =

+ − − 2

1 1 2 1 1 2

2 2 2 2 2
2

0

( ) .826 shares 
of stock at the price ( ) 50 and arrive at  ( ) ( ) (U) ( ).  Close the 
position at time 2 with holdings valued ( ) ( , ) ( , ) ( )(1 )

18.43 (1 ) .  Open 

a U
S U Y a U S U C g U

Y a U S U D C U D g U r
Y r

=
= = − +

= − + + =

= +

2 2 3

2 3 2 2

a position on (2,3] by selling one call option short to receive 
( , ) 4.88,  which combined with initial =18.43 buys ( , ) .555 shares of stock 

at the price ( , ) 40 and leaves ( , ) = (
C U D Y a U D

S U D g U D Y C
= =

= + 3 2

3 3 3
3

3 3 0

, ) ( , ) ( , ) = 1.11 
to invest at rate .  Close the position at time 3 with holdings valued ( , ) ( , , )

( , , )  ( , )(1 ) 18.89 which again matches the desired (1 ) .  The 
anal

U D a U D S U D
r Y a U D S U D U

C U D U g U D r Y r

−
=

− + + = +

0

ysis of the other seven cases is similar and shows that in each time step the porfolio so 
devised matches the fixed rate of return given the initial investment .Y
 
Theorem 2:   There exists a bond replication portfolio * * *{ , ( , ),  0 }b n n nY a d n NΠ = ≤ ≤  of *

na  
shares of stock long and *

nd  call options short which replicates the bond exactly in each time 
interval according to  
 
(i)  * * *

1 1 1n n n n nY a S d C− − −= −                                 during the time period ( 1, )n n−  
(ii) * * *

0 (1 )n
n n n n nY a S d C Y r= − = +                    at time n ,                 1,...,n N=                (7) 

 
where  
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              * *1 1  ,  n n n
b b
b bn n

a a d= =    with ( , )n na b  determined by { , ( , )}c n n nX a bΠ =            (8) 

 
Proof:  It follows from Theorem1 because by 1 1 1 1n n n n n nC X a S b B− − − −= = +  we have    

1 1 1 1 1
1 1 11 1 which multiplied by  gives ( ) ( )n n n n n n n n n

b b b bn
b b bn n n

b B a S C g a S C− − − − −
−

− −
−

− = − = −  

and consequently 1 1 1 1 1
1 1  n n n n n n n n

b b
b bn n

Y a S C g a S C− − − − −= − + = − = *
1nY −  as claimed. 

 
To avoid the phrase instantaneously after time n the working assumption below is to use the term 
at time n whenever referring to buy or sell in reference to opening or closing any given position. 
 
Example 2.  As before we illustrate the hedging for the up-down-up case.  Solving for 1b ,  

* *
2 2 3 3 1 1 1

* * * *
2 2 3 3

1

1 1
2 3

( ),  ( , ) gives .654 and 1.0627,  whence ( , ) ( ,1),  

( , ) (.5405,  .654),  ( , ) (.5903,  1.0627).  The first step is the same as in Example1 
because 0.  That is, st

b b
b b

b b U b b U D a d a

a d a d
g

= = = = =

= =
= 0 0

*
1 1 0 1

1 1

art at time 0 with 17.54,  short one call at 7.90 and buy 

.636 shares of stock at  40,  then at time 1 sell the stock at ( ) 50 and buy 
back call at ( ) 13.83 to arrive at 17.98

Y C
a a S S U

C U Y Y

= =

= = = =
= = = 0 1

* *
2 1 2 1

2 2

(1 ).  At time 1, with 17.98,  short

( ) = .654 calls at ( ) 13.83 and buy ( )=.5405 shares of stock at ( ) 50,  then 
at time 2 sell the stock at ( , ) 40 and buy back calls at ( , ) 4

r Y
d U C U a U S U

S U D C U D

+ =

= =
= = 2

2 *
0 2 3 2

*
3 2

3

.88 to arrive at 

18.43 (1 ) .  At time 2, with 18.43,  short  ( , ) = 1.0627 calls at ( , )

4.88 and buy ( , ) .5903 shares of stock at ( , ) 40,  then at time 3 sell the stock 

at (

Y
Y r Y d U D C U D

a U D S U D
S

=

= + = =

= =
3

3 3 0, , ) 50 and buy back calls at ( , , ) 10 to arrive at 18.89 (1 ) .U D U C U D U Y Y r= = = = +
 
4.  Convergence to Black-Scholes bond replication portfolio 
 
Continuous time modeling assumes the actual stock price to follow exponential Brownian 
motion process 

21
2( )

0
tt W

tS S e µ σ σ− += with 0
t

tES S eµ= . In the special case of rµ =  it turns into the 

risk-neutral process 
21

2( )
0

tr t W
tS S e σ σ− += which corresponds to the discrete time risk-neutral 

process nS discussed earlier.  Here{ ,0 }tW t T≤ ≤  is the standard Brownian motion, µ  is the 
average return rate on stock, r is the bond return rate and σ  is the stock volatility.  Notice that 
the expected return on the risk-neutral process 0

r t
tES S e=  and when volatility is set to zero then 

the risk-neutral process turns into the bond process itself.  The Black-Scholes no-arbitrage option 
price ( ) [( ) | ]r T t

t T tC e E S K S− − += − , where the conditional expected value is taken with respect to 
the martingale measure corresponding to the discounted risk-neutral process, says that given the 
actual stock price 

21
2( )

0
tt W

tS S e µ σ σ− +=  the option price at time  t  is calculated as follows: 
( ) ( )

[ln[ ], )[( ) | ] [( )1 ( )]K
S

r T t r T t Z
t T t tC e E S K S e E S e K Z− − + − −

∞
= − = −           (9) 

where  
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21
2( )( ) ( ) ,T tr T t W W Z

T t tS S e S eσ σ− − + −= ≡  2 21
2 is normal ~ (( )( ), ( ))Z N r T t T tσ σ− − −       (10) 

 
Furthermore, the Black-Scholes bond replication portfolio { , ( ,1),  0 }B S t tY a t T−Π = ≤ ≤  of  at  

shares of stock long and 1 call option short satisfies the following 
 

0
r t

t t t tY a S C Y e= − =  with 0 0 0 [( ) ]rT
TY a S e E S K− += − −          (11) 

 
with ta  is determined by 
  

( ) ( )
[ln[ ], )ln[ ]

| ( ) ( ) | [ 1 ( )]KKt t StS

r T t z r T t Zt
t S S Z S S

C da e Se K dF z e E e Z
S S

∞− − − −
= = ∞

∂
= = − =
∂ ∫                  (12) 

 
Evaluating the above expectations gives ( )( ) ( )r T t

t tC S e Kα β− −= Φ − Φ  and ( )ta α= Φ  

where 
21ln ( )( )2  , 
)

  and ( )
St r T tK

T t
T t x

σ

σ
α β α σ

+ + −

−
= = − − Φ is the standard normal cumulative 

distribution. 
 
To see how our previously constructed riskless portfolio bΠ  on binomial tree becomes the 
celebrated Black-Scholes portfolio B S−Π  in the limit, additional notation with certain particular 
choices for underlying variables are in order.  Let in the discrete time model 

1,  the time period  ,  ,   be the return rate per period,  ,  ,t

u
TN n t n m r t u e d
n

σ ∆= ∆ = = ∆ = =  

r te d
u d

p
∆ −
−

= .  Furthermore, let for any 1 1, 2,..,  ,...,n nnn U U= be a sequence of independent 

identically distributed random variables with ( ) ,  ( ) 1ni niP U u p P U d p= = = = − .  Then for 

1 ,m n≤ ≤  we have 1( ... )
 0 1 0  and 's are i.i.d.  ( 1) ,n nmt

m n nm ni niS S U U S e P pσ ε ε ε ε∆ + += ⋅ ⋅ ⋅ = = =  
( 1) 1 .niP pε = − = −  In the sequel, whenever invoking basic facts about convergence in 

distribution, Billingsley (1999) is a standard reference without further mention.  Denoting by [x] 
the integer part of x we have the following convergence in distribution  

2 21
1 1 1 2( ... ) Z  ~ (( ) , )dm

n nmZ t N r t tσ ε ε σ σ= ∆ + + → −  , [ ]t
Tm n= → ∞        (13) 

and 
2 21

1 1 2( ... ) Z ~ (( )( ), ( ))dn
m nm nnZ t N r T t T tσ ε ε σ σ+ += ∆ + + → − − − , [ ]t

Tm n= → ∞ . (14) 
This follows because 1 1 ...  + ,  ,  0m

m ni i ni ni iZ W W mE t W t E t EWσ ε σ ε σ ε= + + ∆ = ∆ − ∆ = , 
2 2 3 3 31

2( ) ( ),  Var( ) ( ),  | | ,ni i iE t r t o t W t o t E W t m t tσ ε σ σ σ∆ = − ∆ + ∆ = ∆ + ∆ ≤ ∆ ∆ →  and 
( ) 0 as m o t n m∆ → ≥ → ∞ .  Therefore from Lindeberg’s Central Limit Theorem 

...1
( ... )1

  (0,1)dW Wm
Var W Wm

N+ +
+ +

→ , thanks to Lyapunov’s 
33 3 2| | ... | | 21  023( ( ... ))1

E W E W Tm
nVar W Wm

σ+ +
≤ →

+ +
  

condition, as n m≥ → ∞  concludes the proof of (13). The proof of (14) is similar. 
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Lemma:   
Let ( ), ( '),  1, 2,...,  be independent defined on ( x ', x ', x ')n nX Y n P Pω ω = Ω Ω    
such that 2sup n

n

YEe M< < ∞ .  If ( ),  and ( ) '( )d d
n nX X X Y Y F y P Y yω→ = → = ≤  

is continuous then 
 

[ ( ), ) [ ( ), )( | lim 1 ( ) 1 ( )) 1n

n

Y Y
X n Xn

P Ee Y Ee Yω ωω ∞ ∞→∞
= =          (15) 

 
Proof:  Due to Skorokhod’s representation theorem one can assume without loss of generality 
that ,nX X  are chosen in such a way that ( | lim ( ) ( )) 1nn

P X Xω ω ω
→∞

= = . 

By assumption ( ) '( ) ( )n nF y P Y y F y= ≤ →  for every real number y.  Then denoting by 
min( , ),  max( , )n n n nX X X X X X X X∧ = ∨ =  we have 

[ ( ), ) [ , ) [ , ) [ , )1 ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )n

n n n

y y yY
X n X X X X n X n XEe Y e y dF y e y dF y e y dF yω ∞ ∧ ∨ ∞ ∞= + →∫ ∫ ∫  

because by Cauchy-Schwarz inequality the first integral above is dominated by 
2

1
[ , )( ) 1 ( ) ( ) ( ( ) ( )) 0

n n

y

n X X X X n n n n n ne dF y y dF y M F X X F X X∧ ∨ ≤ ∨ − ∧ − →∫ ∫  

whence 1,n n nX X X X X X∨ → ∧ − → and continuity of  implies ( ) ( )n nF F y F y→ , whereas the 
second integral [ , )1 ( )nY

X nEe Y∞ converges to [ , )1 ( )Y
XEe Y∞  for ( )X X ω=  fixed because 

[ , )1 ( )nY
X ne Y∞ are uniformly integrable by assumption 2sup n

n

YEe M< < ∞ , and 

[ , )( ) 1 ( )y
Xh y e y∞= is continuous except when y X=  which has probability zero due to continuity 

of ( )F y . 
 
Theorem 3:   
The discrete time bond replication portfolio * * *{ , ( , ),  0 n N}b n n nY a dΠ = ≤ ≤  with 

* * * *
0 (1 )m

m m m m mY a S d C Y r t= − = + ∆ , converges to the Black-Scholes bond replication portfolio 
{ , ( ,1),  0 }B S t tY a t T−Π = ≤ ≤  with 0 ,0r t

t t t tY a S C Y e t T= − = ≤ ≤ . The convergence 
* * *{ , ( , )}   { , ( ,1),  0 }b n n n B S t tY a d Y a t T−Π = → Π = ≤ ≤  means 

 (i) * * *
0,    ,   ,    1,    rt

m t m t m t m mS S C C a a d Y Y e→ → → → →             as  [ ]t
Tm n= → ∞  

 (ii) 
21

2( )
0  { ,  0 t T}  in  [0, ]tr t Wd

nS S S e C Tσ σ− +→ = ≤ ≤                          as  n →∞  
 
Proof:  Since part (ii) is standard, e.g., it follows from Prohorov’s generalization of Donsker’s 
Invariance Principle for Brownian motion in Billinglsely (1999), it suffices to show (i). As 
before, since by (13) 1 1

0 0

mZ Zd
m tS S e S e S= → = , we may assume without loss of generality that 

m tS S→  with probability one. By (2) with the following substitutions, 
,   ,  :  and [ ]t

TN n n m r r t m n= = = ∆ = , (9)-(10),  Lemma applied to 

1 ,dn
n mY Z Z+= → ln ln

m t

K K
n S SX = →   and (15) we obtain with probability one 
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1

( )

( ) ( )
1[ [ ], ) [ [ ], )

(1 ) [( ) | ]                                                                              (16)

     (1 ) [( )1 ( )] [( )1 ( )]
n
m

K K
S Sm t

n m
m n m

Zn m n r T t Z
m m tln ln

C r t E S K S

r t E S e K Z e E S e K Z+

− − +

− − − −
+∞ ∞

= + ∆ −

= + ∆ − → − = tC
 

thanks to continuity of Z and the fact that 2sup n

n

YEe < ∞  which follows from 

   
1

2

2 2 2 2 2

(2 )( )

[ ] [ )(1 )] [1 (2 ) ( )]

           

n
mZ t n m t t n m n m

r T t

Ee Ee e p e p r t o t

e

σ σ σ

σ

σ+ ∆ − ∆ − ∆ − −

+ −

= = + − = + + ∆ + ∆

→
     

 
 To see that * *,   1m t ma a d→ →  it suffices to check that 1 1( ) 0m m mg b b B −= − →  

*1and  because then 1m t
b

dmbm
a a =→ → .  Namely, convergence of portfolio values 

 of  1  to m tY Theorem Y  implies convergence *  of  2  to m tY Theorem Y  provided 0.mg →  To show 
that 0mg →  it suffices to verify ,  m t m tC C a a→ → , and 
  0 (1 )m

mY Y r t= + ∆ 0 0( ( ) (1 ) [( ) ])(1 )n m
n na Y S r t E S K r t− += − + ∆ − + ∆ 0

r t
tY Y e→ =  

     0 0( ( ) [( ) ])rT r t
T Ta Y S e E S K e− += − − .   

 
The latter convergence follows from m ta a→   

(i.e., 0 0( ) ( ) for 0n Ta Y a Y t→ = ), 1 1 1
0 0

m n
mZ Z Z Zd

n TS S e S e S++ += → =  by (13)-(14) and the fact that 

nS are uniformly integrable.  Consequently, by (16), the proof will be concluded if we show that 

m ta a→ .  Given 1 1, by (2)-(3) applied to m m mS S S u− −=  and 1m mS S d−=  we have 
 

1 1

1 1

( ) ( ) = m m m m
m

m m

C S u C S da
S u S d

− −

− −

−
=

−
 

1 1

1 1

( )
1 1 1 1[ [ ], ) [ [ ], )

1 1

(1 ) { [( )1 ( )] [( )1 ( )]}
n n
m m

K K
S u S dm m

Z Zn m n n
m m m mln ln

m m

r t E S ue K Z E S de K Z

S u S d

+ +

− −

− −
− + − +∞ ∞

− −

+ ∆ − − −
=

−
 

1 1

1 1 1

( )
1 1 1 1 1[ [ ], ) [ [ ], [ ])

1 1

(1 ) { [( ) 1 ( )] [( )1 ( )]}
n n
m m

K K K
S u S u S dm m m

Z Zn m n n
m m m m mln ln ln

m m

r t E S u S d e Z E S de K Z

S u S d

+ +

− − −

− −
− − + − +∞

− −

+ ∆ − + −

−
 

1

1 11

1

( )
1 1[ [ ], [ ])( )

1[ [ ], )
1 1

(1 ) [( )1 ( )]
(1 ) { [ 1 ( )]

n
m

K Kn S u S dm mm
K

S um

Zn m n
m mln lnZn m n

mln
m m

r t E S de K Z
r t E e Z

S u S d

+

− −+

−

− −
− +− −

+∞
− −

+ ∆ −
= + ∆ +

−
  

→ ( )
[ln[ ], )[ 1 ( )]K

St

r T t Z
te E e Z a− −

∞ =  , by Lemma and (12),  as [ ]t
Tm n= → ∞  

since 1( ) | ( )  [ln[ ], ln[ ])1 1 11 1 1
| on the interval 

nZ K K KmS de K S u S dm m mS u S u S dm m m
+ − ≤ −− − −− − −

while  

1 1
1 1

1
1[ [ ], [ ])1 ( )] ( [ ]) ( [ ] ) 0,  ( ) 1K K

m mS u S dm m

n K K
m m mS d S u mln lnE Z F ln F ln u u m

− −
− −

+ ≤ − − → = → , d
mF F→  

where mF and F is the distribution function of 1
n
mZ +  and Z respectively. 
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