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Abstract 

The Navier–Stokes equations are fundamental in fluid mechanics. The finite element method 

has become a popular method for the solution of the Navier-Stokes equations. In this paper, 

the Galerkin finite element method was used to solve the Navier-Stokes equations for two-

dimensional steady flow of Newtonian and incompressible fluid with no body forces using 

MATLAB. The method was applied to the lid-driven cavity problem. The eight-noded 

rectangular element was used for the formulation of element equations. The velocity 

components were located at all of 8 nodes and the pressure variable is located at 4 corner of 

the element. From location of velocity components and pressure, it is obvious that this 

element consists of 16 unknowns for velocities and 4 unknowns for pressure. As a result, the 

unknown variables for velocities and pressure are 20 per each element. The quadratic 

interpolation functions represent velocity components while bilinear interpolation function 

represents pressure. Finite element codes were developed for implementation. The numerical 

results were compared with benchmark results from the literature.  
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1. Introduction 
 

The Navier-Stokes equation is a set of nonlinear partial differential equations that describe 

the flow of fluids, which represent conservation of linear momentum. It is the cornerstone of 

fluid mechanics as noted by Cengel et al. (2010). It is solved jointly with continuity equation. 

These equations cannot be solved exactly. So, approximations and simplifying assumptions 

are commonly made to allow the equations to be solved approximately. Recently, high speed 

computers have been used to solve such equations by replacing with a set of algebraic 

equations using a variety of numerical techniques like finite difference, finite volume, and 

finite element methods. 

 

Finite element method is the most powerful numerical technique for computational fluid 

dynamics which is readily applicable to domains of complex geometrical shape and provides 

a great freedom in the choice of numerical approximations. It reduces a partial differential 

equation system to a system of algebraic equations that can be solved using traditional linear 

algebra techniques. In finite element method, the domain of interest is subdivided into small 

subdomains called finite elements. Over each finite element, the unknown variable is 

approximated by a linear combination of approximation functions called shape functions 

which are associated with the node of the element characterize the element. The piecewise 

approximations for elements are assembled together to obtain a global system to the whole 

domain. One of the major advantages of the finite element method is that a general purpose 

computer program can be developed easily to analyze various kinds of problems as noted by 

Kwon et al. (1997). In particular, any complex shape of problem domain with prescribed 

boundary conditions can be handled with ease using the finite element method. 

 

Jiajan (2010) discussed the Galerkin finite element formulation of two dimensional unsteady 

incompressible Navier-Stokes equations using the quadratic triangular element (6-nodes). 

The pressure variable was located at the corner nodes and the velocity components were 

located at all of the six nodes. Ghia et al. (1982) studied high Reynolds number solutions for 

incompressible flow using the Navier-Stokes equation and the multigrid method. Persson 

(2002) implemented a finite element based solver of the incompressible Navier-Stokes 

equations on unstructured two dimensional triangular meshes. He solved the lid-driven cavity 

flow problem for four different Reynold’s numbers: 100, 500, 1000 and 2000.  

Glaisner et al. (1987) discussed finite-element procedures for the Navier-Stokes equations in 

the primitive variable formulation and the vorticity stream-function formulations. Steady-

state solution of lid-driven cavity flow was obtained by the velocity-pressure formulation 

using the nine-node rectangular element in their work. Taylor et al. (1981) and Smith et al. 

(2014) used eight-noded rectangular element mesh to solve two-dimensional incompressible 

Navier-Stokes Equations with FORTRAN programming language. Rhaman et al. (2014) 

presented Galerkin finite element method to simulate the motion of fluid particles which satisfies the 

unsteady Navier-Stokes equations through a programming code developed in FreeFem++. 

 

Simpson (2017) used nine noded rectangular elements with two degree of freedom on each 

node for finite element simulation of a coupled reaction-diffusion problem using MATLAB. 

Khennane (2013) developed MATLAB codes for 4-nodded and 8-noded quadrilateral 

elements for the linear elastic static analysis of a two dimensional problem using finite 

element method.  
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2. Governing Equations  

 
For steady Newtonian incompressible fluid with no body forces, the governing equations for 

two-dimensional flow are:  

Continuity equation: 
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Navier-Stokes equation: 
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where u and v are the x, y components of the velocity vector, p is static pressure,   is density 

and   dynamic viscosity of the flowing fluid. 

 

Using L and V as a characteristics (reference) length and velocity respectively, we define the 

dimensionless variables 
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The governing equations, Equation(1), Equation (2),and Equation (3) can be written in their 

dimensionless form (ignoring the astrix ‘*’) as:  
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where 
 

      


VL
Re

 
is the Reynolds number. 
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3. Formulation of Element Equations 
 

To describe the structure of finite element programming of a steady-state solution of the 

Navier–Stokes equations, let us consider a flow confined to a rectangular cavity driven by a 

uniform horizontal velocity at the top. The velocities at the other three boundaries are set to 

zero. Eight-noded rectangular elements are used to model the flow. We use all the 8 nodes of 

each element to model velocities components u and v and the 4 corner nodes to model the 

pressure p. Meshes are numbered in x-direction. Freedoms numbered are in the order u−p−v 

as used by Smith et al. (2014) and Taylor et al. (1981).  

 

 

 

 

 

 

 

 

 

                           Figure 1. Lid-driven cavity 

 

Let us denote an element by . Shape functions for the rectangular elements are expressed in 

terms of local coordinates  and  where 

 

         =2(x-xc)/lx,    =2(y-yc)/ly  

 

Here, (xc, yc) is the centroid of the 

lx, ly represent its element, and 

length in x and y-direction. 
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                Figure 2. Eight-noded rectangular element 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 3. Eight-noded rectangular elements mesh 

 

Suppose the nodes 1, 2, 3, 4, 5, 6, 7, 8 have coordinates (-1, -1), (0, -1), (1, -1), (1, 0), (1, 1), 

(0, 1), (-1, 1), (-1, 0) in the local coordinate system. Then, the general form of shape functions 

for 4-noded bilinear rectangular element (considering corner nodes) using local coordinates is  

 
      . dcbaM                                                                                                      
(7) 

 

The general form of shape functions for 8-noded quadratic rectangular element (considering 

all nodes) using local coordinates is  

 

        .2222  hgfedcbaN                                                          (8) 

 

Using Kronecker-delta property of shape functions, from Equation (7) and Equation (8) shape 

functions for 4-noded and 8-noded rectangular elements are   
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Thus, the quadratic interpolation functions are used for velocity components while bilinear 

interpolation functions for pressure. As a result, the unknown variables for velocities and 

pressure are 20 per each element. Thus, the dependent variable u, v, and p are expressed as 
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where  iii pvu and, are velocity and pressure values at the nodes. 

 

Now, expressing Equation (4), Equation (5), and Equation (6) using these shape functions we 

get 
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Employing Galerkin weighted residual approach on Equation (13), we get  

      

0
Re

1 8

1
2

28

1
2

2

4

1

8

1

8

1

8

1

8

1






















































 



 

dAu
y

N
u

x

N

p
x

M
u

y

N
vNu

x

N
uNN

j

j

j

j

j

j

l

l

l

j

j

j

k

kk

j

j

j

k

kki

                                                  (15) 

 

Using Gauss-Divergence Theorem, we have 
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where  is the boundary of the element  ,  yx nnn ,  is the unit outward normal vector to 
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i, j=1,2, ..., 8. 

 

For Dirichilet boundary condition, we have  
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i, j=1,2, ..., 8. 
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Applying similar procedure for Equation (14), we get 
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i, j=1,2, ..., 8. 

 

Employing Galerkin weighted residual approach on Equation (12) using the weight functions 

Ml , we get  
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    l = 1, 2, 3, 4 . 
 

Due to the nonlinearity, the set of algebraic equations that will be obtained here cannot be 

solved in a single shot, but an iterative solution is necessary. In such an iterative solution 

nonlinear terms can be linearized in a number of different ways. The simplest possibility, 

which will be used in this paper, is known as Picard linearization, in which the nonlinear 

terms are replaced by 
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where u  and  v  are  approximate values for the velocity components. 

 

We assume starting values 080201080201 .,..,,.,..,, vvvanduuu for the element and  
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The iteration process continues by replacing 
k

u0 and 
k

v0 ,  k =1, 2, ..., 8, by the average of 

velocity component values from the previous two iterations until tolerance is satisfied. 

From Equation (16), Equation (17) and Equation (18), we get a system of equations in matrix 

form as 
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4. Derivatives and Integrals Using Local Coordinates 

Let N(,) be a shape function in terms of local coordinates. If x and y are the global 
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is the Jacobian matrix of the transformation of the global coordinate system to local 

coordinate system.  

 

Then, we have  
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5. Computing the Jacobian Matrix  
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Formation of discrete finite element system requires evaluation of integrals over elements. 

Except for simplest of element geometries, this integral cannot be evaluated analytically. 

Hence, numerical integrations is the only alternatives. Gaussian quadrature is mostly 

employed. For example, using calculus for coordinate transformation, a typical integral for a 

two dimensional rectangular element can be evaluated as    
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where J is the Jacobian matrix of the transformation, i  and j  are Gaussian quadrature 

abscissa, and wi  and wj are corresponding weights.     

6. Global System of Equations 

After developing governing equations for each element, assembly of the element equations 

was performed in order to establish global system of equations for the whole domain. In 

addition to the element equations, Global coordinates to nodes, elements connectivity, and 

global degree of freedom for nodes are also used develop the global system equations. 

Applying the boundary conditions, the modified global system of equations is obtained. The 

MATLAB codes used for solution process are indicated in the appendix. 

7. Results and Discussion 

To illustrate the finite element method algorithm discussed in this paper, we considered a 

square lid-driven cavity flow of length 1 unit. The boundary conditions are such that the flow 

is driven by a unit horizontal velocity at the top boundary. The velocities at the other three 

boundaries are set to zero. Eight-node elements are used to model the vector field of 

velocities, and 4-node elements are used to model the scalar field of pressures. The flow is 

simulated with Reynolds numbers 1, 10, 50, 100, 200, 500 and 1000 using the same mesh of 

100 elements (803 nodes). The numerical results are presented here in terms of velocity 

quiver plot and pressure contour at the Reynolds numbers. The results in this work were 

generated by the series of finite element codes we developed. The computations had been 

carried out with the convergence check of 610 (tolerance).  

 

Table 1. Computational performance of five simulations performed for the cavity flow 

Re 1 10 50 100 200 500 1000 

Number of 

 iterations 
21 22 26 29 35 47 147 

Time Spent for  

Iterations (sec.) 
4.04 4.14 4.72 5.26 6.21 7.62 21.06 

 

 

 

 



AAM: Intern. J., Vol. 13, Issue 1 (June 2018)  547 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Re = 1,  Velocity

y

Re = 1

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

s
s
u
re

-10

-8

-6

-4

-2

0

2

4

6

8

10

As seen from Table1, high Reynolds numbers require more iteration and elapsed time to 
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Figure 4. (a) - (g) Velocity quiver and pressure contour plots at different 

Reynolds                  numbers 
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8. Conclusion 

In this paper, we discussed finite element solution of the two-dimensional incompressible 

Navier-Stokes equations by the benchmark of square lid-driven cavity. Dirichlet boundary 

conditions were imposed on every boundary of the domain. The finite element programming 

codes were constructed to solve these equations. These programming codes are written using 

MATLAB 7.10.0 (R2010a). The finite element programs consist of one main program and 

nine sub programs. These programs with modification can be used to solve related fluid flow 

problems. The codes for the geometry and the boundary conditions are original and very efficient. 

The numerical results from finite element programming agreed with the numerical results 

obtained from finite element analysis done by Ghia et al. (1982). 
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APPENDIX 

 

The Finite Element Programming Codes 

1. The Main program  
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2. Mesh Generating Code 
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3. Global coordinates to nodes 

 

 

 

 

 

 

 

 

 

4. Global node numbers Code 
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5. Create global degree of freedom 
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6. Calculate local matrix for each element 
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7.  Calculate local vector for each element 

 

8. Assemble local matrices into the global 
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9. Assemble local vectors into the global 
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10. Identify boundary nodes  

 

 

 


