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Abstract

In this paper, a hybrid method based on method of steps and a Chebyshev-tau spectral
method for solving linear time delay systems of differential equations is proposed. The
method first converts the time delay system to a system of ordinary differential equations
by the method of steps and then employs Chebyshev polynomials to construct an approx-
imate solution for the system. In fact, the solution of the system is expanded in terms of
orthogonal Chebyshev polynomials which reduces the solution of the system to the solution
of a system of algebraic equations. Also, we transform the coefficient matrix of the algebraic
system to a block quasi upper triangular matrix and the latter system can be solved more
efficiently than the first one. Furthermore, using orthogonal Chebyshev polynomials enables
us to apply fast Fourier transform for calculating matrix-vector multiplications which makes
the proposed method to be more efficient. Consistency, stability and convergence analysis of
the method are provided. Numerous numerical examples are given to demonstrate efficiency
and accuracy of the method. Comparisons are made with available literature.
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1. Introduction

Delay differential equations (DDEs) have been applied to model real phenomena. These
equations often appear in many real-world problems. They occur in a wide variety of physi-
cal, chemical, engineering, economic and biological systems and their networks. One can cite
many examples where delay plays an important role. As an example, in biological mathemat-
ics that delay plays a crucial role is drug therapy for the disease of human immunodeficiency
virus (HIV) infection (Kirschner (1996), Nelson and Perelson (2002)). These equations also
known as difference-differential equations, are a special class of differential equations called
functional differential equations (Hale and Lunel (2013), Elsgolts and Norkin (1973)). Delay
differential equations were initially introduced in the 18th century by Laplace and Condorcet
(Gorecki et al. (1989)).

Numerically approximating a solution to a DDE has been studied by many authors (see, for
example, Bellen and Zennaro (2013), Bellman and Cooke (1965) and Feldstein and Neves
(1984)). Currently, most DDE solver are generated using adapted continuous numerical meth-
ods for solving ODE. To obtain a numerical solution of a DDE by means of a discrete method
often we need to know the solution on a set of points that differ from the grid. To calculate
the approximate solutions on non-grid points, a local interpolation is needed. In such situ-
ation, stability of discrete method may be lost. Bellen and Zennaro (1988), introduced the
concept of stable interpolant for Runge-Kutta methods. In other words, a stable interpolant
maintains the stability properties of the Runge-Kutta method itself. Hermite interpolation
can be also used to solve a DDE numerically. Oberle and Pesch (1981), combined Runge-
Kutta methods and Hermite interpolation for the numerical solution of a DDE. In fact, they
have been shown that the combination has high order of accuracy and it is reliable.

Nevertheless, the most popular discrete methods are Runge-Kutta methods that use inter-
polation to obtain the numerical solution of a DDE. Wherever the step size must be reduced
often to produce answers at specified points, a Runge-Kutta formula becomes inefficient.
Bogacki and Shampine (1990), have been presented a structural way to handle this issue.
When a high order method for solving a DDE is applied, the amount of computations for
the interpolation process increase considerably. To overcome this difficulty, Zennaro (1985a),
presented a one-step collocation method. Also, for super convergence rate, Zennaro (1985b),
considered one-step collocation method at Gaussian points. Wang and Wang (2010), pro-
posed the single-step and multiple-domain Legendre-Gauss collocation integration processes
for nonlinear DDEs. One of the most important advantages of their method is its accuracy
and efficiency.

Another class of numerical methods that can be considered are Spline methods. Spline col-
location methods are used by Banks and Kappel (1979), Kappel and Kunisch (1981) and
Kemper (1975). So far, all of the mentioned methods for solving a DDE have finite or-
der of accuracy. To get infinite order of accuracy for a smooth problem usually spectral
methods are applied. For more details about these methods, see for example Gottlieb and
Orszag (1977) and Canuto et al. (1987). Ito et al. (1991), have been employed shifted Leg-
endre polynomials to construct a spectral approximate solution for a DDE. More precisely,
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they considered Legendre-tau method to construct an approximate solution for a DDE with
one constant delay. Sedaghat et al. (2012) proposed a numerical scheme to solve delay dif-
ferential equations of pantograph type. Their method consists of expanding the required
approximate solution as the elements of the shifted Chebyshev polynomials. Aziz and Amin
(2016) applied Haar wavelet collocation method to obtain the numerical solution of DDEs.
Behroozifar and Yousefi (2013) introduced hybrid of block-pulse functions and Bernstein
polynomials to construct an approximate solution for DDEs. Ghasemi and Tavassoli Kajani
(2011) employed Chebyshev wavelets to obtain a numerical scheme for solving DDEs. They
introduced operational matrix of delay and utilize it to reduce the solution of time-varying
delay systems to the solution of algebraic equations.

In this paper, we propose a method for solving linear time delay systems of differential
equations. At the first step, the proposed method uses the method of steps (Bellen and
Zennaro (2013)) to convert the linear system of DDE on a given interval to an ODE over
that interval, by employing the known history function, say φ(t), for that interval. Then,
the approximate solution for this system is obtained by tau-Galerkin method (Gottlieb and
Orszag (1977), Canuto et al. (1987)). We construct an approximate solution by Chebyshev
polynomials expansion (Fox and Parker (1968)). More precisely, we consider the solution of
the ODE system as a truncated series of Chebyshev polynomials. This leads us to solve a
linear system of algebraic equations. Furthermore, we transform the coefficient matrix of the
algebraic system to a block quasi upper triangular form. Therefore, the algebraic system can
be solved more efficiently than the original one. In addition, properties of the Chebyshev
polynomials, enriches the proposed method to apply fast Fourier transform for computing
matrix-vector multiplications. At the next step, the newly found approximate solution is used
as the history function for the next interval and the above process is carried out iteratively to
obtain the approximate solution for the whole time interval. Also, the consistency, stability
and convergence of the proposed method are provided. Numerical results are presented to
demonstrate the accuracy and efficiency of the proposed method. In the following subsection
we explain notations, preliminaries and the problem statement.

1.1. Notations, preliminaries and problem statement

We adopt the following notations throughout this paper.

Rn is Euclidean space with corresponding norm | · |, Rn×n is space of real square matrices,
L2([−1, 1];Rn) or for short L2(−1, 1) is the Hilbert space of square integrable functions that
map [−1, 1] to a member of Rn with inner product

(f, g)w =

∫ 1

−1
f(x)g(x)w(x)dx,

where
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w(x) = (1− x2)−1/2

(that for simplicity we may drop the subscript w), and corresponding norm || · ||L2
w
,

H1([−1, 1];Rn) or for convenience H1(−1, 1) is the Sobolov space of absolutely continuous
functions with square integrable derivative with norm || · ||1,w.

Let Ω be an open bounded domain in R, with piecewise smooth boundary Γ. We assume
that we want to approximate the boundary-value problem

Lx = f in Ω, (1)

Bx = 0 on Γ, (2)

where L is a linear differential operator in Ω, and B is a set of linear boundary differential
operators on Γ. Let X to be a space of real functions defined in Ω that are square integrable
with respect to w(x). The domain of definition of L, i.e., the subset D(L) of those functions
x of X for which Lx is still an element of X, is supposed to be a dense subspace of X. Thus,
L is a linear operator from D(L) to X. Prescribing the boundary conditions (2) amounts to
restricting the domain of L to the subspace DB(L) of D(L) defined by

DB(L) = {x ∈ D(L)| Bx = 0 on Γ}.

Suppose that XN and YN are finite-dimensional subspaces of X having the same dimension.
In the tau method, we have

xN ∈ XN ,

(LxN , v) = (f, v) ∀ v ∈ YN .

Let PN be the orthogonal projection of L2
w onto the space spanned by {pk}Nk=0, in which pk

is a polynomial of degree k and we denote this set by PN.

Lemma 1.1. Canuto et al. (1987)

Suppose that

PNx(t) =

N∑
k=0

âkTk(t),

where Tk(t) is the Chebyshev polynomial of degree k. Then, for all x(t) ∈ H1(−1, 1) we have

||x(t)− PNx(t)||L2
w
≤ CN−1||x(t)||1,w, (3)
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where the positive constant C is independent of the function x, the integer N , and the
diameter of the domain.

Theorem 1.2. Lax-Richtmyer equivalence theorem, Gottlieb and Orszag (1977)

A consistent approximation to a well-posed linear problem is stable if and only if it is
convergent.

Lemma 1.3. Babus̆ka inf-sup condition, Canuto et al. (1987)

Let XN ⊂ F and YN ⊂ G for all positive N . If there exists a constant α > 0 independent of
N such that

α||x||F ≤ sup
v∈YN

v 6=0

(Lx, v)

||v||G
∀x ∈ XN ,

then the following estimate holds

||xN ||F ≤
C

α
||f ||,

where the positive constant C is independent of N .

One important class of delay differential equations is linear time invariant systems (LTI) or
briefly time-delayed LTI systems. General representation of a time-delayed LTI systems can
be given by


ẋ(t) = A0x(t) +

∑N
k=1Akx(t− τk) + u(t),

x(t) = φ(t), t ∈ [−τ, 0),

x(0) = x0,

(4)

where

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN = τ

are positive delays, x(t), u(t) ∈ Rn are the state and input vectors respectively, Ak(k =

0, 1, 2, · · · , N) ∈ Rn×n are system matrices which are given and φ ∈ L2([−τ, 0];Rn).

Theorem 1.4. Delfour and Mitter (1975)

Let (x0, φ) ∈ M2 = Rn × L2([−τ, 0];Rn). Then, the system (4) for any T ≥ 0 admits a unique
solution x(t) ∈ L2([−τ, T ];Rn) ∩ H1([−τ, T ];Rn), which depends continuously on the initial
data (x0, φ) ∈M2.
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In this paper, we consider the system (4) with two discrete commensurate delays. However
the method can be applied to systems with more than two commensurate delays. It can be
also extended to solve nonlinear time delay problems.

The remaining sections of this paper is organized as follows. In Section 2, we recall some
properties of Chebyshev polynomials, while Section 3 describes the Chebyshev-tau spec-
tral approach for solving the system (4) with two commensurate delays. Section 4 provides
the stability and convergence analysis of the method while Section 5 presents illustrative
examples. Finally, Section 6 contains some concluding remarks.

2. Properties of Chebyshev polynomials

Here, we review some properties of Chebyshev polynomials (Fox and Parker (1968)). The
Chebyshev polynomials of the first kind, Tk(x), k = 0, 1, . . . , −1 ≤ x ≤ 1, can be defined as
the solution of the following ordinary differential equation

d

dx

(√
1− x2dTk

dx
(x)
)

+
k2√

1− x2
Tk(x) = 0, (5)

which satisfy Tk(1) = 1. Thus, T0(x) = 1, T1(x) = x, and so on.

Chebyshev polynomials {Tk(x)}∞k=0 satisfy the orthogonality relation

(Tk, Tl)w = 0, for k 6= l, (6)

and they form a basis for L2(−1, 1). More precisely, any u ∈ L2(−1, 1) can be written as

u =

∞∑
k=0

ûkTk,

where

ûk =
2

πck

∫ 1

−1
u(x)Tk(x)w(x)dx, k ≥ 0,

and

ck =

{
2, k = 0,

1, k ≥ 1,
(7)

with



AAM: Intern. J., Vol. 12, Issue 1 (June 2017) 451

||u||2L2
w

=

∞∑
k=0

ckπ

2
û2k.

These polynomials also satisfy the recursion relation

Tk+1(x) = 2xTk(x)− Tk−1(x). (8)

If u is represented as

u =

N∑
k=0

ûkTk(x),

then

u̇ =
du

dx
=

N−1∑
k=0

û
(1)
k Tk(x), (9)

where

û
(1)
k =

2

ck

N∑
j=k+1
j+k odd

jûj , k = 0, 1, · · · , N − 1. (10)

One important property that we will use it for efficient implementation of the method is the
following relation (Canuto et al. (1987))

2Tk(x) =
1

k + 1
T

′

k+1(x)− 1

k − 1
T

′

k−1(x), k ≥ 1. (11)

From (11), we have

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1, k ≥ 1,

and so

ckû
(1)
k = û

(1)
k+2 + 2(k + 1)ûk+1, 0 ≤ k ≤ N − 1. (12)

The generalization of (12) is given by (Canuto et al. (1987))
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ckû
(q)
k = û

(q)
k+2 + 2(k + 1)û

(q−1)
k+1 , k ≥ 0. (13)

3. Chebyshev-tau approximation

Now, we focus on the Chebyshev approximation of solutions to the system (4) with two
discrete point delays which are commensurate. The proposed method uses the method of
steps (Bellen and Zennaro (2013)) and Chebyshev-tau spectral method (Gottlieb and Orszag
(1977), Canuto et al. (1987)). We begin our discussion by considering the following system


ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2) + u(t)

x(t) = φ(t), t ∈ [−τ2, 0)

x(0) = x0,

(14)

where 0 < τ1 ≤ τ2, τ2τ1 = k ∈ N (N stands for natural number set). It is clear that for t ∈ [0, τ1],
the linear delay system (14) is equivalent to the following initial value problem

{
ẋ(t) = A0x(t) +A1φ(t− τ1) +A2φ(t− τ2) + u(t), t ∈ [0, τ1],

x(0) = x0.
(15)

It is assumed that the approximate solution xN (t) to be expanded in terms of Chebyshev
polynomials, i.e.,

xN (t) =

N∑
k=0

âkTk(
2t− τ1
τ1

), t ∈ [0, τ1], (16)

where Tk(θ) are the Chebyshev polynomials, âk ∈ Rn, k = 0, 1, 2, . . . , N, are the unknowns
to be computed. On the other hand, we also expand φ(t − τ1), φ(t − τ2) and u in terms of a
truncated Chebyshev series as follows

φN (t− τ1) =

N−1∑
k=0

φ̂
(1)
k Tk(

2t− τ1
τ1

), (17)

φN (t− τ2) =

N−1∑
k=0

φ̂
(2)
k Tk(

2t− τ1
τ1

), (18)

uN (t) =

N−1∑
k=0

ûkTk(
2t− τ1
τ1

), t ∈ [0, τ1], (19)

where
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φ̂
(1)
k =

2

πck

∫ 1

−1
φ
(τ1

2
(s− 1)

)
Tk(s)

1√
1− s2

ds,

φ̂
(2)
k =

2

πck

∫ 1

−1
φ
(τ1(s+ 1)− 2τ2

2

)
Tk(s)

1√
1− s2

ds,

ûk =
2

πck

∫ 1

−1
u
(τ1

2
(s+ 1)

)
Tk(s)

1√
1− s2

ds,

and the ck are given by (7).

Now, by using the method of weighted residuals (Canuto et al. (1987)), we obtain

(
ẋN (t)−A0x

N (t)−A1φ
N (t− τ1)−A2φ

N (t− τ2)− uN (t), Tk(
2t− τ1
τ1

)
)
ω

= 0, (20)

for 0 ≤ k ≤ N−1. From (16), (17), (18), (19), the orthogonality of the Chebyshev polynomials
and

ẋN (t) =
2

τ1

N−1∑
k=0

bkTk(
2t− τ1
τ1

),

where bk are defined to be the same as û(1)k in (10), we obtain

2

τ1
bk = A0âk +A1φ̂

(1)
k +A2φ̂

(2)
k + ûk, 0 ≤ k ≤ N − 1. (21)

Linear algebraic system (21) has N + 1 unknowns but only N equations. To obtain a unique
solution for the system, we need an additional equation that deals with the initial condition.
We note that the important difference between the tau approximation (Gottlieb and Orszag
(1977), Canuto et al. (1987)), and the Galerkin approximation is that the basis functions
Tk(θ) are not required to satisfy the initial condition in (15). The additional equation is

xN (0) =

N∑
k=0

âkTk(−1) =

N∑
k=0

âk(−1)k = x0. (22)

Rewriting (21) and (22) in matrix form, leads to the following algebraic system for the N +1

unknowns âk

V N~aN = WN~aN +~bN , t ∈ [0, τ1], (23)

where
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~aN = (â0, â1, . . . , âN )T ,

~bN = (A1φ̂
(1)
0 +A2φ̂

(2)
0 + û0, A1φ̂

(1)
1 +A2φ̂

(2)
1 + û1, . . . , A1φ̂

(1)
N−1 +A2φ̂

(2)
N−1 + ûN−1, x0)

T ,

and

WN = diag(A0, A0, . . . , A0, 0).

For N even (for N odd, only the last column of V N is different), V N is given by

V N =
2

τ1



0 1 0 3 0 . . . N − 1 0

0 0 4 0 8 . . . 0 2N

0 0 0 6 0 . . . 2(N − 1) 0
...

...
...

...
...

...
...

...
0 0 0 2(N − 1) 0

0 0 0 0 2N

− τ1
2

τ1
2 −

τ1
2 − τ1

2
τ1
2


⊗

I, (24)

where I is n × n identity matrix and
⊗

denotes the Kronecker product. We can repeat the
above procedure to solve (14) on [τ1, 2τ1], [2τ1, 3τ1], and so on. We note that for each time
interval [iτ1, (i+ 1)τ1], i = 0, 1, · · · , only the right hand side of Equation (23) changes, but the
coefficient matrix V N −WN remains unchange.

Now, we discuss some implementation issues. First, computation of the right hand side of
Equation (23) needs to compute the Chebyshev coefficients φ̂(1)k , φ̂(2)k of the initial function
and Chebyshev coefficients ûk of the forcing function on each time interval [iτ1, (i + 1)τ1],
i = 0, 1, · · · . In fact we use the matrix Cjk = cos πjkN , k =, 1, . . . , N − 1, to transform Cheby-
shev space to physical space and inverse transform, i.e., transform from physical space to
Chebyshev space that done by

(C−1)jk =
2

Nc̄j c̄k
cos

πjk

N
,

where

c̄j =

{
2, j = 0, N,

1, j = 1, . . . , N − 1.

Both transforms may be evaluated by the fast Fourier transform (Canuto et al. (1987)).

Second, the linear system of Equation (23) can be reduced to a block quasi upper triangular
form with two off-diagonal band. If ordinary Gauss elimination were used to solve the linear
system of Equations (23) with n(N + 1) equations and unknowns, it would be require about
(n(N + 1))3 multiplications for the LNUN decomposition of V N −WN .
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However, by taking into consideration the spectral structures of matrix V N and WN the
LU-factorization can be carried out in only c1n(N + 1) multiplications and about c2n(N + 1)

multiplications for each right hand side, where c2 < c1 and cj � N, j = 1, 2. From (21), we
have

bk =
τ1
2

(
A0âk +A1φ̂

(1)
k +A2φ̂

(2)
k + ûk

)
. (25)

If we invoke the recursion relation(13) with q = 2, then

âk+1 =
1

2(k + 1)

(
ckbk − bk+2

)
. (26)

Now, from (25) we obtain

âk+1 =
1

2(k + 1)

(
ck
(τ1

2
(A0âk +A1φ̂

(1)
k +A2φ̂

(2)
k + ûk)

)
−τ1

2

(
A0âk+2 +A1φ̂

(1)
k+2 +A2φ̂

(2)
k+2 + ûk+2

))
. (27)

By simplifying, for 0 ≤ k ≤ N − 1 we obtain

2(k + 1)âk+1 −
τ1ck

2
A0âk +

τ1
2
A0âk+2 =

τ1ck
2
A1φ̂

(1)
k +

τ1ck
2
A2φ̂

(2)
k

+
τ1ck

2
ûk −

τ1
2
A1φ̂

(1)
k+2 −

τ1
2
A2φ̂

(2)
k+2 −

τ1
2
ûk+2.

If we put

gk =
τ1
2

(
ckA1φ̂

(1)
k + ckA2φ̂

(2)
k + ckûk − ûk+2 −A1φ̂

(1)
k+2 −A2φ̂

(2)
k+2

)
,

we arrive at a linear system of equations with the following coefficient matrix

AN =



−τ1A0 2 τ1
2 A0 0 0 . . . 0 0

0 − τ1
2 A0 4 τ1

2 A0 0 . . . 0 0

0 0 − τ1
2 A0 6 τ1

2 A0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 − τ1
2 A0 2(N − 1) τ1

2 A0 0

0 0 0 − τ1
2 A0 2N τ1

2 A0

− τ1
2 I

τ1
2 I − τ1

2 I − τ1
2 I

τ1
2 I


, (28)

for the right hand side ~g = (g0, g1, . . . , gN−1, x0)
T and the unknown vector ~aN =

(â0, â1, . . . , âN )T . Therefore, the following linear system of equations should be solved
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AN~aN = ~g. (29)

The linear system of Equations (23) and (29) are equivalent. However, the system matrix
in (29) is of block quasi upper triangular form and therefore, Equation (29) can be solved
more efficiently than Equation (23). One way is to apply Gaussian elimination procedure
to a block at a time (Isaacson and Keller (1996)). An operation count reveals that block
elimination for a block quasi upper triangular matrix of the form (29) requires about 2n3N

multiplications and about as many additions (or subtractions) for the LU-factorization plus
about 3n2N for solving (29) for each right-hand side (Ito et al. (1991)).

4. Consistency, stability and convergence analysis

In this section, we show that the approximate solution xN converges to the exact solution x

of the system (14). In the following discussions, we put

xN,i(s) = xN ((i− 1)τ1 + s), s ∈ [0, τ1], i ≥ 1, (30)

to denote the approximate solution xN on the interval [(i− 1)τ1, iτ1]. First, we prove the con-
sistency and then the stability of the method will be proved. For the proof of the consistency
let us to define the operator L as following

Lxi ≡ ẋi −A0x
i, (31)

where

xi(s) = x((i− 1)τ1 + s), s ∈ [0, τ1], i ≥ 1.

In this case,

D(L) = {xi ∈ C1(0, τ1)}

and

DB(L) = {xi ∈ D(L)|xi(0) = xi−1(τ1)}.

Then, thanks to Lemma 1.1, we have

||xi − PNxi||L2
w
→ 0, as N →∞, for all xi ∈ DB(L). (32)
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Therefore, the method is consistent.

Second, we show that the method is stable, i.e., estimates of the form

||xN,i|| ≤ C||xN,i−1||, i = 1, 2, 3, · · · ,M, (33)

can be obtained in some appropriately chosen norm and the constant C is independent of
N . For doing this job, let us to define spaces

XN = {xi ∈ PN |xi(0) = xi−1(τ1)}

and

YN = PN−1.

Note that for all xi ∈ XN , we have

PN−1Lxi = Lxi −A0(PN−1xi − xi).

Therefore,

(Lxi,PN−1Lxi)w = ||Lxi||2L2
w
− (Lxi, A0(PN−1xi − xi))w

≥ ||Lxi||2L2
w
− ||Lxi||L2

w
||A0||||xi − PN−1xi||L2

w
. (34)

According to Lemma 1.1, we have

||A0||||xi − PN−1xi||L2
w
≤ C0N

−1||xi||1,w.

Moreover, it is possible to prove the following a priori estimate

||xi||1,w ≤ C1||Lxi||L2
w
,

for a suitable constant C1. Now, using (34), we get

(Lxi,PN−1Lxi)w ≥ (1− C0C1N
−1)||Lxi||2L2

w
≥ (2C2

1 )−1||xi||21,w,

provided N is so large that
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(1− C0C1N
−1) ≥ 1

2
.

Since

||PN−1Lxi||L2
w
≤ C3||xi||1,w,

we conclude the following estimate

(Lxi,PN−1Lxi)w
||PN−1Lxi||L2

w

≥ α||xi||1,w, (35)

where α = 2C2
1C3.

If we define

F = {xi ∈ H1(0, τ1)|xi(0) = xi−1(τ1)}

and

G = L2
w(0, τ1),

then the stability of the method (i.e., inequality (33)) results from Lemma 1.3. Now, the
convergence of the method can be established as a consequence of Lax-Richtmyer equivalence
Theorem 1.2.

5. Numerical results

In this section, we provide some numerical examples and compare the proposed method with
the exact and Runge-Kutta solutions. Runge-Kutta solutions are obtained by using dde23
function of Matlab 2014a which is adapted for solving delay differential equations. The com-
putational codes were conducted on an Intel(R) Core(TM) i7-6700K processor, equipped
with 8 GB of RAM.

Example 1.

In this example (Banks and Kappel (1979)), the equation for a damped oscillator with delay
restorting force and constant external force is considered
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{
ẍ(t) + ẋ(t) + x(t− 1) = 10,

x(t) = cos t, ẋ(t) = − sin t, t ∈ [−1, 0].
(36)

We can write the above equation in terms of a linear first order system as follows:

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

0 −1

][
x1(t)

x2(t)

]
+

[
0 0

−1 0

][
x1(t− 1)

x2(t− 1)

]
+

[
0

10

]
, (37)

where x1(t) = x(t) and x2(t) = ẋ(t). The exact solution for 0 ≤ t ≤ 1 is

{
x1(t) = 1

2 sin(t− 1)− 1
2 cos(t− 1)− e−ta+ 10t− 9 + sin(1)− 9,

x2(t) = 1
2 cos(t− 1) + 1

2 sin(t− 1) + e−ta+ 10,

where a = −10− 1
2 cos(1) + 1

2 sin(1). The exact solution for 1 ≤ t ≤ 2 is


x1(t) = 5t2 − 19t− 0.5 sin(t− 2)− e−t+1 (10 + 10t+ 0.5) cos(1)

−0.5 cos(1)te−t+1 + sin(1)
(
0.5e−t+1 + 0.5te−t+1 + t

)
− 1.36e−tb,

x2(t) = 10t− 19− 0.5 cos(t− 2) + 10te−t+1 + 0.5 cos(1)te−t+1

−0.5 sin(1)te−t+1 + sin(1) + 1.36e−tb,

where

b = 19− sin(1)− cos(1) cosh(1) + cos(1) sinh(1)− 20 cosh(1)

+20 sinh(1) + sin(1) cosh(1)− sin(1) sinh(1).

Numerical and analytical solutions are plotted in Figure 1 and the maximum error between
Rune-Kutta and the proposed method solutions is given in Table 1. As it was expected, the
proposed method is more accurate than the Runge-Kutta method. In this example, the spec-
tral method only uses 8 nodes to get the results, while Runge-Kutta method gives the results
by taking 15 nodes. Note that if one try to obtain the accuracy of the spectral method, needs
to refine the mesh and this leads to a heavy computation cost of Runge-Kutta method.

Table 1: Maximum error between the exact solution, Runge-Kutta solution and the
Chebyshev-tau spectral solution for 0 ≤ t ≤ 2 of Example 1.

xi Runge-Kutta Current work

x1 9.8569× 10−4 4.6172× 10−10

x2 1.0358× 10−3 5.3382× 10−10

Example 2.

Consider the scalar equation (Bellen and Zennaro (2013))
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Figure 1: Comparison of state vector (x1(t) and x2(t)) in the exact solution, Runge-Kutta
solution and Chebyshev-tau spectral solution (N = 8) of Example 1.

ẋ(t) = −x(t− 1),

with the initial function

x(t) = 0.5t, t ∈ [−1, 0].

The exact solution for 0 ≤ t ≤ 2 can be expressed as

x(t) =

{
−1

4 t
2 + 1

2 t, 0 ≤ t ≤ 1,
1
12(t− 1)3 − 1

4 t
2 + 1

2 t, 1 ≤ t ≤ 2.

In Figure 2 numerical and exact solutions are demonstrated. For a longer time interval, the
spectral and Runge-Kutta solutions are plotted in Figure 3 which confirms that the spectral
method produces a smoother solution compared to Runge-Kutta method. In addition, the
maximum error for Runge-Kutta method was 1.6574 × 10−1 with 37 nodes, while for the
proposed method was 1.1102× 10−16 which demonstrates the accuracy of the method as ex-
pected.
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Figure 2: Comparison between the exact solution, Runge-Kutta solution and Chebyshev-tau
spectral solution (N = 8) of Example 2.

Example 3.

Consider the following system (Banks and Kappel (1979))

ẋ(t) =

0 2 0

0 0 −1

0 0 0

x(t) +

0 0 0

1 0 0

0 2 0

x(t− 1),

which is equipped with the initial function

x(t) = 1, t ∈ [−1, 0].

The analytical solution for 0 ≤ t ≤ 1 is


x1(t) = −2

3 t
3 + 2t+ 1,

x2(t) = −t2 + 1,

x3(t) = 2t+ 1,
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Figure 3: Comparison between Runge-Kutta method and Chebyshev-tau spectral method
(N = 8) of Example 2.

and for 1 ≤ t ≤ 2 is


x1(t) = −2t2 + 4t+ 1

3 ,

x2(t) = −2t+ 2,

x3(t) = −2
3 t

3 + 2t2 + 5
3 .

Numerical simulations for N = 8 are demonstrated in Figure 4. In this case, the maximum
error between exact and numerical simulations is given in Table 2. The number of nodes for
Runge-Kutta method was 39.

Table 2: Maximum error between the exact solution, Runge-Kutta solution and the
Chebyshev-tau spectral solution for 0 ≤ t ≤ 2 of Example 3.

xi Runge-Kutta Current work

x1 6.7972× 10−4 6.6613× 10−16

x2 1.9309× 10−3 2.2204× 10−16

x3 8.8818× 10−16 1.7763× 10−15
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Example 4.

In this example, we consider the following scalar equation with rational delay (Bellen and
Zennaro (2013))

ẋ(t) = −x(t− 0.5),

with the following initial function

x(t) = 0.5t, t ∈ [−0.5, 0].

The exact solution for 0 ≤ t ≤ 2 is

x(t) =

{
−0.25(t− 0.5)2 + 1

16 , 0 ≤ t ≤ 1,
1
12(t− 1)3 − 1

16 t+ 5
48 , 1 ≤ t ≤ 2.

Approximate solution obtained by the Chebyshev-tau spectral method for N = 8 is illus-
trated in Figure 5. Moreover, the maximum error for Runge-Kutta method was 4.7516×10−2,
whereas for Chebyshev-tau spectral method was 2.0817× 10−17. If the time interval is taken
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Figure 4: Comparison of state vector (x1(t), x2(t) and x3(t)) in the exact solution, Runge-
Kutta solution and Chebyshev-tau spectral solution (N = 8) of Example 3.
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more longer, one can see that the Chebyshev-tau spectral method has a smooth transient
response compared to Runge-Kutta method by using 37 nodes. This event can be observed
in Figure 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t

x(
t)

 

 

Spectral solution
Exact solution
Runge−Kutta solution

Figure 5: Comparison between the exact solution, Runge-Kutta solution and Chebyshev-tau
spectral solution (N = 8) of Example 4.

Example 5.

In this example, we consider the following inhomogeneous system

ẋ(t) = x(t− 1) + t2,

which constrained to the following history

x(t) = t, t ∈ [−1, 0].

The exact solution for 0 ≤ t ≤ 2 is

x(t) =

{
1
3 t

3 + 1
2 t

2 − t, 0 ≤ t ≤ 1,
1
12 t

4 + 1
16 t

3 − 1
2 t

2 + 7
6 t−

13
12 , 1 ≤ t ≤ 2.
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Figure 6: Comparison between Runge-Kutta method and Chebyshev-tau spectral method
(N = 8) of Example 4.

Numerical and analytical solutions are illustrated in Figure 7. Furthermore, the maximum
error for Runge-Kutta method was 1.242×10−3 by using 21 nodes, whereas for Chebyshev-tau
spectral method was 2.131× 10−15.

Example 6.

As a final example, consider the following system with two discrete point delays

ẋ(t) = x(t− 0.5) + x(t− 1),

with the history function as

x(t) = 0.5t, t ∈ [−1, 0].

The analytical solution for 0 ≤ t ≤ 1.5 is
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Figure 7: Comparison between the exact solution, Runge-Kutta method and Chebyshev-tau
spectral method (N = 8) of Example 5.

x(t) =


0.5t2 − 0.75t, 0 ≤ t ≤ 0.5,
1
6(t− 0.5)3 − 3

8(t− 0.5)2 + 0.25(t− 1)2 − 5
16 , 0.5 ≤ t ≤ 1,

1
24 t(t− 1)3 + 1

12(t− 3
2)3 − 5

16 t−
3
8(t− 1)2 − 6

96 , 1 ≤ t ≤ 1.5.

Numerical and analytical solutions are depicted in Figure 8. The maximum error for Runge-
Kutta method was 6.2042× 10−3 by employing 37 nodes, while for the proposed method was
1.1303× 10−16 which confirms the accuracy of the method as expected.

The CPU time of the above examples are given in Table 3. As one observe, the CPU time
required by the proposed method using 8 nodes is about one half of that used by Runge-Kutta
method.

Table 3: CPU time (s) for the proposed (N = 8) and Runge-Kutta method

Example Current work Runge-Kutta No. nodes

1 0.098 0.156 15

2 0.065 0.111 37

3 0.113 0.186 39

4 0.056 0.112 37

5 0.078 0.168 21

6 0.075 0.152 37
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Figure 8: Comparison between the exact solution, Runge-Kutta method and Chebyshev-tau
spectral method (N = 8) of Example 6.

6. Conclusion

In this article, the method of steps and Chebyshev-tau spectral method are combined to
solve linear time delay systems of differential equations. Usually, Runge-Kutta method is
used to solve ODE systems. Here, we used Chebyshev-tau spectral method to solve ODE
systems which improve the accuracy of approximate solution dramatically and decrease the
computational costs. In fact, we construct the approximate solution using small number of
nodes. Implementation of the method leads to a linear system of algebraic equations which
has, in general, a dense coefficient matrix. Here we convert the coefficient matrix to a block
quasi upper triangular form using Chebyshev polynomials which can be solve more efficiently.
Moreover, employing Chebyshev-tau spectral method enables us to apply FFT which reduces
the CPU time of calculations. The consistency and stability analysis of the proposed method
is provided, and consequently its convergence is established. Numerical results show a very
good agreement with available literature. The proposed method can be extended to nonlinear
problems and systems with more than two commensurate delays. This will be the subject of
further studies.
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