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Abstract 
 

In this paper we analyzed the problem of investigating locally the scalar curvature   of the two 

dimensional kinematic surfaces foliated by the homothetic motion of an eight curve in Lorentz-

Minkowski 5-space   . We express the scalar curvature   of the corresponding two dimensional 

kinematic surfaces as the quotient of hyperbolic functions {             }. From that point, we 

derive the necessary and sufficient conditions that the coefficients of hyperbolic functions vanished 

identically. Additionally, an example is given to show two dimensional kinematic surfaces with constant 

scalar curvature.  
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1.  Introduction 
 

The Lemniscate is a figure-eight curve with a simple mechanical construction attributed to Bernoulli, 

see Gray (1997). Choose two focal points   ,    at distance   (see Figure 1), then take three rods, one of 

length  , two of length   √ . The shorter ones can rotate around the focal points and they are 

connected by the long one with joints which allow rotation. This gives the Cartesian implicit equation:  
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(     )        

 
 

Figure 1: The shape of an eight curve 

 

Eight curve (Gerono lemniscate) is the shape of the movement for many of the micro-organisms and 

bacteria. When we see some movement of those objects in the microscope we find it moving in the eight 

curve shape. Also, eight curve shape can be seen in many of the mechanical and dynamic movements 

and many of the applications in the field of computer aided design and computer graphics. (see Watson 

and Crick (1953)). From the point of view of differential geometry, eight curve is a geometric curve 

with non-vanishing constant curvature    see Barros (1997). 

 

Kinematics is a study of motion apart from the forces producing the motion that is described by position, 

displacement, rotation, speed, velocity, and acceleration. In kinematics we assume that all the bodies 

under investigation are rigid bodies; thus, their deformation is negligible and does not play important 

role, and the only change that is considered in this case is the change in the position Bottema and Roth 

(1990). 

 

An equiform transformation is an affine transformations whose linear part is composed of an orthogonal 

transformation and a homothetical transformation. Such an equiform transformation maps points      

according to  

 

                                                             ( )                                                     (1) 

 

A smooth one-parameter equiform motion moves a point   via  ( )   ( ) ( ) ( )   ( ). The 

kinematics corresponding to this transformation group is called similarity kinematics, see Bottema and 

Roth (1990), Farin (2002) or Odenhnal (2006). Recently there appeared some articles on differential 

geometry studying some properties of surfaces obtained by the equiform motions of special curves in 

Euclidean and Minkowski space-time; see Solouma et al. (2007), Solouma (2012), Solouma (2015) or 

Solouma and Wageeda (2016) (for a list of references).  

 

In the present paper we shall investigate locally the scalar curvature   of the two dimensional kinematic 

surfaces foliated by the homothetic motion of an eight curve    in Lorentz-Minkowski space    under a 

one-parameter homothetic motion of moving space     with respect to fixed space  . Suppose that           

      is moved according to homothetic motion. The point paths of an eight curve generate a two 
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dimensional kinematic surfaces  , containing the position of the starting eight curve. At any moment, 

the infinitesimal transformations of the motion will map the points of eight curve    into the velocity 

vectors whose end points will form an affine image of    that will be in general an eight curve in the 

moving space  . Both curves are planar and therefore, they span a subspace  of   , with     ( )   . 

This is the reason why we restrict our considerations to dimension    . 

 

2.  Preliminaries 
 

In this section, we give some definitions and fundamental facts about Minkowski space-time and scalar 

curvature that will be used throughout the paper. 

 

The Lorentz-Minkowski 5-space    is the Euclidean 5-space    provided with the standard flat metric 

given by  

 

      
     

     
     

     
   

 

where (              ) is a rectangular Cartesian coordinate system of   . Since   is an indefinite 

metric, recall that a nonzero vector      can have one of the three Lorentzian causal characters; it can 

be spacelike if  (   )    or    , timelike if  (   )   , and lightlike if  (   )    and    . In 

particular, the norm (length) of a vector      is given by ‖ ‖  √ (   ) and two vectors   and   are 

said to be orthogonal, if  (   )     (for more details see O'Neill (1983) and Weinsten (1995)). 

 

Definition 2.1. Gundogan and Kecilioglu (2006)  

 

Let   (   )    
  and   (   )    

 . Lorentzian matrix multiplication is defined as  

 

   (        ∑      

 

   

)  

 

Definition 2.2. Gundogan and Kecilioglu (2006) 

 

A matrix     
  is called Lorentzian invertible if there exists an     matrix   such that    

     . Then   is called the Lorentzian inverse of   and is denoted by    .   

 

Definition 2.3. Gundogan and Kecilioglu (2006) 

 

The transpose of a matrix   (   )    
  is denoted by    and defined as    (   )    

 .   

 

Definition 2.4. Gundogan and Kecilioglu (2006)  

 

A matrix     
  is called Lorentzian orthogonal matrix if       . The set of Lorentzian orthogonal 

matrices is denoted by   ( ).  
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Next, recall that an arbitrary curve    ( ) in    can be locally spacelike, timelike or lightlike if all of 

its velocity vectors   ( ) are spacelike, timelike or lightlike, respectively. 

 

Let   be a smooth surface immersed in   . We say that   is spacelike, respectively, timelike, if the 

induced metric on the surface is a positive definite Riemannian metric, respectively, Lorentz metric. 

Furthermore, the normal vector on the spacelike surface is a timelike vector. 

 

Let    (   ) be a local parametrization of a surface   defined in the (   )-domain. The tangent 

vectors to the parametric curves of   are  

 

    
  

  
      

  

  
   

 

In each tangent plane, the induced metric   is determined by the first fundamental form 

 

   (     )                    
 

with differential coefficients  

 

   (     )       (     )        (     )  
 

The Christoffel symbols of the second kind are defined by  

 

   
  

 

 
∑    (

    
   

 
    

   
 

    

   
)

 

   

  

 

where    {   }, {     } are indices that take the value 1 or 2 and (   ) is the inverse matrix of  (   ). 

From that point, the scalar curvature of  (   )  is given by the formula  

 

  ∑    [
    

 

   
 

    
 

   
 ∑(   

    
     

    
 )

 

   

]

 

       

  

 

3.  Representation of the motion 
 

In two copies   ,   of the Lorentz-Minkowski 5-space   , we consider a Lorentzian eight curve    in 

the   -plane of    centered at the origin and described by  

 

 ( )  (                      )     . 

 

According to a one-parameter homothetic motion of    in the moving space    with respect to fixed 

space  , the position of a point  ( )     at time   can be described in the fixed system as 

 

                                               (   )   ( ) ( ) ( )   ( )                                              (2) 
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where  ( )  (  ( )   ( )   ( )   ( )   ( ))
 defines the position of the origin of    at the time  , 

 ( )  (   )        , is a semi orthogonal matrix and  ( ) provides the scaling factor of the 

moving system. For varying   and fixed  ( ),  (   ) gives a parametric representation of the path (or 

trajectory) of  ( ). Moreover, we assume that all involved functions are of class   . Expanding the two 

dimensional kinematic surfaces given by Equation. (2) using the Taylor’s expansion up to the first order, 

then we have  

 

 (   )  [ ( ) ( )  [ ̇( ) ( )   ( ) ̇( )] ] ( )   ( )    ̇( )  
 

where (   
 

  
). As the homothetic motion has an invariant point, we assume that the moving space    

and the fixed space   are coincide at the zero position    , this mean that 

 

 ( )     ( )    and  ( )   . 

 

Thus,  

 

 (   )  [  ( ̇( )   ) ] ( )    ̇( )  
 

where     ̇( )  (  ),        is a semi skew-symmetric matrix. Throughout this paper all 

values of  ,    and their derivatives are computed at     and for simplicity, we write    and   
  instead 

of  ̇( ) and   ̇ ( ) respectively. In these frames, we can write  (   ) in the form  

 

(

 
 

  

  

  

  

  )

 
 

(   )  

(

 
 

           

           

   

   

   

 

    

   

    

     
    

    

   

      

      

   

     
     

   

    

     )

 
 

(

 
 

     
          

 
 
 )

 
 

  

(

  
 

  
 

  
 

  
 

  
 

  
 )

  
 

   

 

 or in the simple form  

 

          

(

 
 

  

  

  

  

  )

 
 

(   )  

(

 
 

     
   

   

   

   )

 
 

      

(

 
 

   

     
    

    

    )

 
 

             

(

  
 

  
 

  
 

  
 

  
 

  
 )

  
 

                     (3) 

   

For any fixed   in Equation (3), we generally get Lorentzian eight curve centered at the point 

 (  
    

    
    

    
 ) subject to the following conditions  

 

                  
                                                  

    
    

    
    

    
    

    
                                            (4) 

                                             

where     . 
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4.  Scalar curvature of kinematic surfaces 
 

In this section, we compute the scalar curvature   of the two dimensional kinematic surfaces  (   ). 

The proof of our results involves explicit computations of the scalar curvature   of the surface  (   ). 

As we shall see, the equation            reduces to an expression that can be written as a linear 

combination of the hyperbolic functions {             },     namely,  

 

∑(  ( )          ( )       )

  

   

    

 

where    and    are two functions depend on the variable  . In particular, the coefficients must vanish.  

 

The work then is to compute explicitly these coefficients    and    by successive manipulations. The 

author was able to obtain the results using the symbolic program Mathematica 9  to check his work. See 

López (2001) for an example in a similar context.  

 

The tangent vectors to the parametric curves of  (   ) are 

 

  (   )  [     ] ( )            (   )  [  (     ) ]  ( ). 
 

Under the conditions given in Equation (4), a straightforward computation commanding the coefficients 

of the first fundamental form are given by  

 

                                           
 

 
          

 

  
 

 
  (             )  

 

 
(         (       )        (  

     )       ) 

 

                                                                                                                     
 

 
(  (      )      )    (5) 

 

                    (     )  
 

 
(          

 )(             ), 

 

 and  

 

            ∑   
   

      
  

 
 

 
(     )    

 

             (     
      

      
      

      
 )                                                                            (6) 

   

              (     
      

      
      

      
 )  

 

            
 

 
(     ∑   

  
   )  
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The key in our proofs lies that we can write the scalar curvature   in the form   

 

                                              
 (             )

 (             )
 

∑ (  ( )          ( )       )  
   

∑ (  ( )          ( )       )  
   

 .                         (7)  

 

The assumption of the constancy of the scalar curvature   indicated that Equation (7) can be converts 

into  

 

    ∑ (  ( )          ( )       )  
    ∑ (  ( )          ( )       )  

                 (8)  

 

 Equation (8) means that if we write it as a linear combination of the functions {             } 
namely, ∑ (  ( )          ( )       )  

     , the corresponding coefficients must vanish. 

Then, we will delinate all two dimensional kinematic surfaces with constant scalar curvature foliated by 

homothetic motion of a Lorentzian eight curve   . 

 

5.  Two dimensional kinematic surfaces with     
 

In this section we assume that     on the surface  (   ). From Equation (7), we have  

 

                         {
 (             )  ∑ (  ( )          ( )       )  

      

 (             )  ∑ (  ( )          ( )       )  
      

                    (9)  

 

Then, the work consists in the explicit computations of the coefficients    and   . We distinguish all 

different cases that fill all possible cases (Note that we used the symbolic program Mathematica to have 

all solutions under the condition     ).  

 

5.1.  Case    
    

    
 

By solving the Equation  (9), we have        ,     
 

 
    and     . Then, all coefficients    

and    for all        vanish identically. Also, the coefficients    and      for       . 

For example the coefficient    is given by    
   

   
     . That means the Equation (9) holds (i.e., 

 (             )  ∑ (  ( )          ( )       )  
     ). From expression (6), we have 

the following conditions  

    
      

      
     

 

    
      

      
     

 

                                                                 
    

    
      
 

In this case, the Lorentzian eight curve generating the two kinematic surfaces are coaxial. 

 

5.2.  Case    
   

    but either   
  or   

  is not zero 
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We have two possibilities:  

  

 If   
    and   

   , then we have          
 ,     ,     

 

 
    and     . Then, the 

coefficients        , for         and at least the coefficient    
 

 
  

  
    . This 

implies that the Equation (9) is satisfied and the scalar curvature    . Also from expression (6), 

we have  

 

    
      

      
      

      
      

     
 
                                           

    
    

     
 

 If   
    and   

   , then we have     ,         
 ,     

 

 
    and     . Then the 

coefficients        , for         and at least the coefficient     
 

  
  

  
     . This 

leads to the Equation (9) is satisfied and from expression (6), have the same result as the previous 

case.  

  

5.3.  Case   
   

    

 

At          
 ,         

 ,     
 

 
    and     . Then, all coefficients    and    for all 

        vanish identically. Additionally, the coefficients    and      for       . For 

example     
 

  
   (  

     
 )   . That means the Equation (9) holds and the scalar curvature   

equal zero. From expression (6) we have  

 

    
      

      
     

 

    
      

      
     

 

  
    

    
                 

 

As a consequence with the above results in subsections 5.1, 5.2 and 5.3, we conclude the following 

theorem 

 

Theorem 5.1.     
 

Let  (   )be a two dimensional kinematic surfaces in the Lorentz-Minkowski 5-space    obtained by 

the homothetic motion of a Lorentzian eight curve    given by Equation (3) under conditions (4). 

Assume   
     

   , then the scalar curvature   vanishes identically on the surface if and only if the 

following conditions hold: 

 

1.     ;        7  
 

2.   
   ;             
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Example 5.2.  

 

We assume  ( )         such that     { } and  ( )  (                ) .                                    

Then     ,   
      

    and   
    

    
   . Now consider the following orthogonal matrix. 

 

                         

(

 
 

   
   

           
 
 

 
 

      

     
      

 

   

  
  

            

      
           

 
          

     )

 
 

               (10) 

 

Then, we have         ,                    7   .  Theorem 5.1 says that    . In Figure 2, we 

display a piece of   (   ) of Example 5.1 in axonometric viewpoint  (   ). For this, the unit vectors 

   (         ) and    (         ) are mapped onto the vectors (     ) and (     ), respectively 

see Gordon and Sement Sov (1980). Then, 

 

 (   )  

(

 
 

 
  
 
 
 )

 
 

 

(

 
 

    
 
 
 
 )

 
 

      

(

 
 

 
    

 
 
 )

 
 

          , 

 

  (   )   (
 
 
 
)  (

    
 
 

)       (
 

    
 

)           . 

 

  
  

Figure  2.  A piece of two dimensional kinematic surfaces in axonometric view  (   ) with zero scalar 

curvature 
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Figure  3.  Corresponding two dimensional kinematic surfaces  (   ) with Eqn. (2) that approximate 

 

 

6 . Two dimensional kinematic surfaces with     
 

In this section, we assume that the scalar curvature   of the two dimensional kinematic surfaces  (   ) 

defined by Equation (3) does’t equal zero and   
     

   . Equation (8) can be written as  

 

                          ∑ (  ( )          ( )       )  
                    (11) 

 

Following the same scheme as in the case     studied in Section 5, we begin to compute the 

coefficients    and   . Let us put    . The coefficient     and     are  

 

    
 

  
   

       

 

     
 

  
    (  

    
   )  

 

Then, the coefficients       and       implies that   
    

   . The the coefficient     can be 

written as  

    
 

   
        

 

Then,      , implies that     , and the coefficients    is given by the formula  

 

    
  

   
    . 
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So, the coefficient      mean      or       which gives a contradiction.   

    

As a conclusion of the above reasoning, we conclude the following theorem.  

 

Theorem 6.1.    
 

There are no two dimensional kinematic surfaces in the Lorentz-Minkowski 5-space   obtained by the 

homothetic motion of a Lorentzian eight curve    given by Equation (3) under conditions (4) whose 

scalar curvature   is a non-zero constant. 

 

Corollary 6.2.   
 

Let  (   )be a two dimensional kinematic surfaces in the Lorentz-Minkowski 5-space    obtained by 

the homothetic motion of a Lorentzian eight curve    defined by Equation (3) under conditions (4). If 

the scalar curvature   is constant, then    . 

 

7. Conclusion:  
 

As a conclusion of our results, the two dimensional kinematic surfaces  (   ) which is obtained by the 

homothetic motion of a Lorentzian eight curve    given by Equation (3) have generally zero constant 

scalar curvature     on the surface in cases such that there is a translation in the plane containing the 

starting Lorentzian eight curve    or not, as shown by the results in Theorem 5.1. Also, if   is constant, 

then 

 

  
  

   
  

   
  

     
      

      
   , 

 

                                             
      

      
    

    
    

     
    

    
   , 

 

and the condition                  is now fulfilled everywhere. 
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