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Abstract

In this article, the homotopy analysis method (HAM) for obtaining the analytical solution of the
inverse parabolic problem and computing the unknown time-dependent parameter is introduced.
The series solution is developed and the recurrence relations are given explicitly. Special attention
is given to satisfy the convergence of the proposed method. A comparison of HAM with the vari-
ational iteration method is made. In the HAM, we use the auxiliary parameter ~ to control with
a simple way in the convergence region of the solution series. Applying this method with several
examples is presented to show the accuracy, simplicity and efficiency of the proposed approach.
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1. Introduction

The HAM is developed in 1992 by Liao in Liao (1992) and Liao (2004). This method has been
successfully applied to solve many types of nonlinear problems in science and engineering by
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many authors (Abbasbandy (2007), Hayat et al. (2004), Inc (2007), and Jafari and Seifi (2009)),
and references therein. We aim in this work to effectively employ the HAM to establish the analyti-
cal solution of the inverse parabolic problem and compute the unknown time-dependent parameter
(Moebbi and Dehghan (2010), and Tatari and Dehghan (2007)). By using the present method,
numerical results can be obtained with using a few iterations. The HAM contains the auxiliary
parameter ~, which provides us with a simple way to adjust and control the convergence region of
solution series for large values of x and t. Unlike other numerical methods are given low degree of
accuracy for large values of x and t. Therefore, the HAM handles linear and nonlinear problems
without any assumption and restriction (Khader (2013), Sweilam and Khader (2011)).

Recently, it has caught much attention that many physical phenomena can be described in terms
of parabolic partial differential equations with a source control parameter. These models arise, for
example, in the study of heat conduction processes, thermo-elasticity, chemical diffusion and con-
trol theory (Cannon et al. (1994) and Cannon et al. (1992)).

In recent papers growing attention has been given, to analysis and implement of accurate methods
for the numerical solution of parabolic inverse problems, i.e., the determination of an unknown
function c(t) in the parabolic partial differential equations. In this paper, we implement the HAM
to obtain the solution of the proposed problem. Test problems have been considered to ensure that
the HAM is accurate and efficient compared with the previous ones. Also, a comparison of HAM
with the variational iteration method (VIM) is made (He (1999)) where the VIM is a special case
of the presented method HAM (Gorder (2015)).

The paper has been organized as follows. In Section 2, the mathematical formulation is given. In
Section 3, the basic idea of homotopy analysis method is described. In Section 4, applying HAM
for inverse parabolic problem and computing an unknown time-dependent parameter is introduced
and study the convergence of the exact solution. Discussion and conclusions are presented in Sec-
tion 5.

2. Mathematical formulation

The inverse parabolic equation in a bounded domain takes the following form,

ψt(x̄, t) = ∆ψ(x̄, t) + c(t)ψ(x̄, t) + s(x̄, t), 0 ≤ t ≤ T, x̄ ∈ <n, (1)

with initial condition

ψ(x̄, 0) = f(x̄), x̄ ∈ <n. (2)

We add an additional condition in the following form

ψ(x̄0, t) = E(t), 0 ≤ t ≤ T, x̄ ∈ <n, (3)
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where ∆ is the Laplace operator, <n is the spatial domain of the problem, n = 1, 2, 3, x̄ =

(x1, x2, ..., xn), and s and E are given functions while ψ and c are unknown functions (Tatari and
Dehghan (2007)).

Equation (1) can be interpreted as the heat transfer process with a source parameter present where
the temperature at a point x̄0 in the spatial domain at time t is given by Equation (3) (Dehghan
(2002)).

Before applying the proposed procedure to Equation (1), we use a pair of transformations as fol-
lows (Dehghan (2002) and Dehghan (2003)):

u(x̄, t) = ψ(x̄, t) exp
(
−
∫ t

0
c(τ)dτ

)
, (4)

r(t) = exp
(
−
∫ t

0
c(τ)dτ

)
. (5)

Then, Equation (1) transforms to a new partial differential equation which we call reformed equa-
tion for (1),

ut(x̄, t) = ∆u(x̄, t) + r(t)s(x̄, t), 0 ≤ t ≤ T, x̄ ∈ <n, (6)

subject to the initial condition

u(x̄, 0) = f(x̄), x̄ ∈ <n, (7)

and the boundary condition

u(x̄0, t) = r(t)E(t), 0 ≤ t ≤ T. (8)

Assume E(t) 6= 0, the later is equivalent to

r(t) =
u(x̄0, t)

E(t)
, (9)

with this transformation, c(t) is disappeared and its role is represented implicitly by r(t). So, we
can overcome the difficulties in handling with c(t) and obtain the following equation (Dehghan
(2001))

ut(x̄, t) = ∆u(x̄, t) +
u(x̄0, t)

E(t)
s(x̄, t), 0 ≤ t ≤ T, x̄ ∈ <n. (10)
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3. Basic idea of HAM

To illustrate the basic idea of HAM (Liao (1992) and Liao (2004)), we consider the following
differential equation

N [u(`, t)] = 0, (11)

where N is a linear operator for this problem, ` and t denote independent variables, u(`, t) is an un-
known function. For simplicity, we ignore all boundary and initial conditions, which can be treated
in the similar way.

3.1. Zeroth-order deformation equation

In Liao (1992), Liao constructed the so-called zeroth-order deformation equation

(1− q)£[φ(`, t; q)− u0(`, t)] = q~N [φ(`, t; q)], (12)

where £ is an auxiliary linear operator, u0(`, t) is an initial guess, ~ 6= 0 is an auxiliary parameter
and q ∈ [0, 1] is the embedding parameter. Obviously, when q = 0 and q = 1, it holds respectively

φ(`, t; 0) = u0(`, t), φ(`, t; 1) = u(`, t). (13)

Thus, as q increases from 0 to 1, the solution φ(`, t; q) varies from u0(`, t) to u(`, t). Expanding
φ(`, t; q) in Taylor series with respect to the embedding parameter q, one has

φ(`, t; q) = u0(`, t) +

∞∑
m=1

um(`, t)qm, (14)

where

um(`, t) =
1

m!

∂mφ(`, t; q)

∂qm

∣∣∣
q=0

. (15)

Assume that the auxiliary linear operator, the initial guess and the auxiliary parameter ~ are selected
such that the series (14) is convergent at q = 1, Then, at q = 1, and using (13), the series (14)
becomes

u(`, t) = u0(`, t) +

∞∑
m=1

um(`, t). (16)

3.2. The mth order deformation equation

Define the vector

~um(`, t) = [u0(`, t), u1(`, t), ..., um(`, t)]. (17)
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Differentiation of Equation (12) m times with respect to the embedding parameter q, then, setting
q = 0 and dividing them by m!, finally using (15), we have the so-called mth-order deformation
equations

£[um(`, t)− δmum−1(`, t)] = ~<m(~um−1), (18)

where

<m(~um−1) =
1

(m− 1)!

∂m−1N [φ(`, t; q)]

∂qm−1

∣∣∣
q=0

, (19)

and

δm =

{
0, m ≤ 1;
1, m > 1.

(20)

Applying £−1 on both sides of Equation (18), we get

um(`, t) = δmum−1(`, t) + ~£−1[<m(~um−1)]. (21)

In this way, it is easily to obtain um for m ≥ 1, at N th order, we have

u(`, t) ∼=
N∑
m=0

um(`, t). (22)

When N → ∞, we get an accurate approximation of the original Equation (11). For the conver-
gence of the proposed method, we refer the reader to Liao (2003). If Equation (11) admits unique
solution, then, this method will produce this unique solution. If Equation (11) does not possess a
unique solution, HAM will give a solution among many other (possible) solutions. For more details
about the convergence, we state the following theorem.

Theorem 3.1. (Yin-Ping and Zhi-Bin (2008))

As long as the series (16) is convergent, where um(`, t) is governed by the higher-order deformation
equation (18) under the definitions (19) and (20), it must be a solution of the original Equation (11).

Proof:

As the series (16) is convergent, it holds that

lim
m→∞

um(`, t) = 0.

Using (18) and (20), we have
∞∑
m=1

£[um(`, t)− δmum−1(`, t)] = ~
∞∑
m=1

<m(~um−1).
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Due to the linearity of the derivative, it follows
∞∑
m=1

£[um(`, t)− δmum−1(`, t)] = £

[ ∞∑
m=1

[um(`, t)− δmum−1(`, t)]

]

= £
[

lim
m→∞

um(`, t)
]

= £[0] = 0.

Therefore,

~
∞∑
m=1

<m(~um−1(`, t)) = 0.

Since ~ 6= 0, we have according to the definition (18) that

∞∑
m=1

<m(~um−1(`, t)) =

∞∑
m=1

 1

(m− 1)!

[
∂m−1

∂qm−1
N

[ ∞∑
n=1

un(`, t)qn

]]
q=0

 = 0.

We note that there is no derivative with respect to q in the nonlinear operator N .

So, N [
∑∞

n=0 un(`, t)qn] can be looked upon as a polynomial on q. By using the binomial ex-
pansion theorem, we obtain N [

∑∞
n=0 un(`, t)] = 0, such as for N = u(`, t)u2` . Letting u(`, t) =

u0(`, t) + u1(`, t)q + u2(`, t)q
2, it can be easily verified that

∞∑
m=1

 1

(m− 1)!

[
∂m−1

∂qm−1
N

[
2∑

n=1

un(`, t)qn

]]
q=0


= [u0(`, t) + u1(`, t) + u2(`, t)].[(u0(`, t) + u1(`, t) + u2(`, t))`]

2

= N [u0(`, t) + u1(`, t) + u2(`, t)].

This ends the proof. �

4. Applications the proposed method

We apply the HAM to problem (He (1999)) to illustrate the strength and the efficiency of the
method. We will make a comparison with the VIM (He (1999)).

One dimensional inverse parabolic problem (Example 1)

Consider problem (10) in the case n = 1, T = 1, in the domain [0, 1], (Shakeri and Dehghan (2007),
Tatari and Dehghan (2007)), where

f(x) = cos(πx) + sin(πx), E(t) =
√

2 e−t
2

,

s(x, t) = (π2 − (t+ 1)2)e−t
2

(cos(πx) + sin(πx)),
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with x0 = 0.25. The exact solution of this problem is

u(x, t) = e−t
2

(cos(πx) + sin(πx)),

and c(t) = 1+t2. Also, ψ(x, t) = e−
t3

3
−t2−t (cos(πx)+sin(πx)), is the exact solution of the reformed

problem.

Now, to implement HAM, we choose the linear operator

£[φ(x, t; q)] =
∂φ(x, t; q)

∂t
, (23)

with the property £[c1] = 0 where c1 is a constant. We now define a linear operator as

N [φ(x, t; q)] = φt(x, t; q)−∆φ(x, t; q)− φ(x0, t; q)

E(t)
s(x, t). (24)

Using above definition, we construct the zeroth-order deformation equation

(1− q)£[φ(x, t; q)− u0(x, t)] = q~N [φ(x, t; q)]. (25)

For q = 0 and q = 1, we can write

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t). (26)

Thus, we obtain the mth-order deformation equations

£[um(x, t)− δmum−1(x, t)] = ~<m(~um−1),

where

<m(~um−1) =
∂φm−1(x, t; q)

∂t
−∆φm−1(x, t; q)−

φm−1(x0, t; q)

E(t)
s(x, t). (27)

Now the solution of the mth order deformation equations for m ≥ 1 becomes

um(x, t) = δmum−1(x, t) + ~£−1[<m(~um−1)]. (28)

This in turn gives the first few components of the approximate solution.
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We start with initial approximation u0(x, t) = cos(πx) + sin(πx). Since ũ = u0 +u1 +u2 + .... From
the above equations (28), we obtain um’s as follows

u0(x, t) = cos(πx) + sin(πx),

u1(x, t) = ~ (t+ t2 +
t3

3
) (cos(πx) + sin(πx)),

u2(x, t) = ~2
(t+ t2 + t3

3 )2

2!
(cos(πx) + sin(πx)),

u3(x, t) = ~3
(t+ t2 + t3

3 )3

3!
(cos(πx) + sin(πx)),

other components of the approximate solution can be obtained in the same manner.

Using the initial approximation u0 and from the above equations, we can identify um’s for
m = 1, 2, ... and therefore ũ = u0 + u1 + u2 + ... is obtained. From (4), (5) and (9), we can ob-
tain r̃, ũ and c̃ as approximations for r , u and c, respectively, as follows,

r̃ =
ũ(x̄0, t)

E(t)
, ũ =

ψ(x̄, t)

r̃(t)
, c̃ = − r̃

′(x̄0, t)

r̃(t)
. (29)

For the case ~ = −1, these components can be reduced to the following form,

u1(x, t) = (− t
3

3
− t2 − t) (cos(πx) + sin(πx)),

u2(x, t) =
( t

3

3 + t2 + t)2

2!
(cos(πx) + sin(πx)),

u3(x, t) =
(− t3

3 − t
2 − t)3

3!
(cos(πx) + sin(πx)).

Other components of the approximate solution can be obtained in the same manner. Generally we
have

un(x, t) =
(− t3

3 − t
2 − t)n

n!
(cos(πx) + sin(πx)),

and thus,

ũ(x, t) = u0 + u1 + u2 + ... =

∞∑
n=0

(− t3

3 − t
2 − t)n

n!
(cos(πx) + sin(πx))

= e−
t3

3
−t2−t(cos(πx) + sin(πx)).



1080 M. M. Khader

This is the exact solution of the reformed equation. The solution of the main problem is obtained
in the following form

r̃ =
e−

t3

3
−t2−t(cos(0.25π) + sin(0.25π))√

2 e−t2
= e−

t3

3
−t, (30)

ũ =
e−

t3

3
−t2−t(cos(πx) + sin(πx))

e−
t3

3
−t

= e−t
2

(cos(πx) + sin(πx)), (31)

c̃ = −(−t2 − 1)e−
t3

3
−t

e−
t3

3
−t

= 1 + t2. (32)

Figure 1. The approximate solution (Left) at ~ = −0.5 and the exact solution (Right).

Figure 1, presents the behavior of the approximate solution with ~ = −0.5 and the exact solution
in the interval t ∈ [0, 1]. From this figure, we can conclude that the approximate solution by using
the proposed method is in excellent agreement with the exact solution.

Two dimensional inverse parabolic problem (Example 2)

Consider problem (10) in the case n = 2, T = 1, in the domain [0, 1]2, (Shakeri and Dehghan
(2007), Tatari and Dehghan (2007)), where

f(x, y) = sin
(π

4
(x+ 2 y)

)
,

s(x, y, t) =
(5π2

16
− 5 t

)
et sin

(π
4

(x+ 2 y)
)
,

E(t) = sin(0.2π) et,
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with (x0, y0) = (0.4, 0.2). The exact solution of this problem is

u(x, y, t) = et sin
(π

4
(x+ 2 y)

)
,

and c(t) = 1 + 5 t. Also, ψ(x, y, t) = e−
5 t2

2 sin
(
π
4 (x + 2 y)

)
, is the exact solution of the reformed

problem.

Now, to implement HAM, we choose the linear operator

£[φ(x, y, t; q)] =
∂φ(x, y, t; q)

∂t
, (33)

with the property, £[c1] = 0, where c1 is a constant. We now define a linear operator as

N [φ(x, y, t; q)] = φt(x, y, t; q)−∆φ(x, y, t; q)− φ(x0, y0, t; q)

E(t)
s(x, y, t). (34)

Using above definition, we construct the zeroth-order deformation equation

(1− q)£[φ(x, y, t; q)− u0(x, y, t)] = q~N [φ(x, y, t; q)]. (35)

For q = 0 and q = 1, we can write

φ(x, y, t; 0) = u0(x, y, t), φ(x, y, t; 1) = u(x, y, t). (36)

Thus, we obtain the mth order deformation equations

£[um(x, y, t)− δmum−1(x, y, t)] = ~<m(~um−1),

where

<m(~um−1) =
∂φm−1(x, y, t; q)

∂t
−∆φm−1(x, y, t; q)−

φm−1(x0, y0, t; q)

E(t)
s(x, y, t). (37)

Now the solution of the mth order deformation equations for m ≥ 1 becomes

um(x, y, t) = δmum−1(x, y, t) + ~£−1[<m(~um−1)]. (38)

This in turn gives the first few components of the approximate solution.

We start with initial approximation u0(x, y, t) = sin
(
π
4 (x + 2 y)

)
. Since ũ = u0 + u1 + u2 + ....

from the above equations (38), we can obtain um’s as follows

u0(x, y, t) = sin
(π

4
(x+ 2 y)

)
,

u1(x, y, t) = ~ (
5 t2

2
) sin

(π
4

(x+ 2 y)
)
,

u2(x, y, t) = ~ (
5 t2

2
) sin

(π
4

(x+ 2 y)
)

+ ~2
(5 t2

2
+

(5 t
2

2 )2

2!

)
sin
(π

4
(x+ 2 y)

)
,
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u3(x, y, t) = ~2
(5 t2

2
+

(5 t
2

2 )2

2!

)
sin
(π

4
(x+ 2 y)

)
+ ~3

(5 t2

2
+

(5 t
2

2 )2

2!
+

(5 t
2

2 )3

3!

)
sin
(π

4
(x+ 2 y)

)
.

Other components of the approximate solution can be obtained in the same manner. For the case
~ = −1, these components can be reduced to the following form,

u1(x, y, t) =
(
− 5 t2

2

)
sin
(π

4
(x+ 2 y)

)
,

u2(x, y, t) =
(−5 t2

2 )2

2!
sin
(π

4
(x+ 2 y)

)
,

u3(x, y, t) =
(−5 t2

2 )3

3!
sin
(π

4
(x+ 2 y)

)
.

Other components of the approximate solution can be obtained in the same manner. Generally we
have

un(x, y, t) =
(−5 t2

2 )n

n!
sin
(π

4
(x+ 2 y)

)
,

and thus,

ũ(x, y, t) = u0 + u1 + u2 + ... =

∞∑
n=0

(−5 t2

2 )n

n!
sin
(π

4
(x+ 2 y)

)
= e−

5 t2

2 sin
(π

4
(x+ 2 y)

)
.

This is the exact solution of the reformed equation. The solution of the main problem is obtained
in the following form

r̃ =
e−

5 t2

2 sin(π4 (0.4 + 0.4))

et sin(0.2π)
= e−

5 t2

2
−t, (39)

ũ =
e−

5 t2

2 sin(π4 (x+ 2 y))

e−
5 t2

2
−t

= et sin
(π

4
(x+ 2 y)

)
, (40)

c̃ = −(−5 t− 1)e−
5 t2

2
−t

e−
5 t2

2
−t

= 1 + 5 t. (41)

Figure 2. The approximate solution (Left) at ~ = −0.5 and the exact solution (Right) at y = 0.2.
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Figure 2 presents the behavior of the approximate solution with ~ = −0.5 and the exact solution at
y = 0.2 in the interval t ∈ [0, 1]. From this figure, we can conclude that the solution by using the
proposed method and the exact solution are in excellent agreement.

Three-dimensional inverse parabolic problem (Example 3)

Consider problem (10) in the case n = 3, T = 1, in the domain [0, 1]3, (Shakeri and Dehghan
(2007), Tatari and Dehghan (2007)), where

f(x, y, z) = sin
(π

4
(x+ 2 y + 3 z)

)
,

s(x, y, z, t) =
(7π2

16
− 10 t

)
et sin

(π
4

(x+ 2 y + 3 z)
)
,

E(t) = et,

with (x0, y0, z0) = (0.6, 0.4, 0.2). The exact solution of this problem is

u(x, y, z, t) = et sin
(π

4
(x+ 2 y + 3 z)

)
,

and c(t) = 1 + 10 t. Also, ψ(x, y, z, t) = e−5 t
2 sin

(
π
4 (x + 2 y + 3 z)

)
is the exact solution of the

reformed problem.

Now, to implement HAM, we choose the linear operator

£[φ(x, y, z, t; q)] =
∂φ(x, y, z, t; q)

∂t
, (42)

with the property £[c1] = 0 where c1 is a constant. We now define a linear operator as

N [φ(x, y, z, t; q)] = φt(x, y, z, t; q)−∆φ(x, y, z, t; q)− φ(x0, y0, z0, t; q)

E(t)
s(x, y, z, t). (43)

Using above definition, we construct the zeroth-order deformation equation

(1− q)£[φ(x, y, z, t; q)− u0(x, y, z, t)] = q~N [φ(x, y, z, t; q)]. (44)

For q = 0 and q = 1, we can write

φ(x, y, z, t; 0) = u0(x, y, z, t), φ(x, y, z, t; 1) = u(x, y, z, t). (45)
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Thus, we obtain the mth order deformation equations

£[um(x, y, z, t)− δmum−1(x, y, z, t)] = ~<m(~um−1),

where

<m(~um−1) =
∂φm−1(x, y, z, t; q)

∂t
−∆φm−1(x, y, z, t; q)−

φm−1(x0, y0, z0, t; q)

E(t)
s(x, y, z, t). (46)

Now the solution of mth order deformation equations for m ≥ 1 becomes

um(x, y, z, t) = δmum−1(x, y, z, t) + ~£−1[<m(~um−1)]. (47)

This in turn gives the first few components of the approximate solution

We start with initial approximation u0(x, y, z, t) = sin
(
π
4 (x+2 y+3 z)

)
. Since ũ = u0+u1+u2+ ....

from the above equations, we can obtain um’s as follows,

u0(x, y, z, t) = sin
(π

4
(x+ 2 y + 3 z)

)
,

u1(x, y, z, t) = ~ (5 t2) sin
(π

4
(x+ 2 y + 3 z)

)
,

u2(x, y, z, t) = ~ (5 t2) sin
(π

4
(x+ 2 y + 3 z)

)
+ ~2

(
5 t2 +

(5 t2)2

2!

)
sin
(π

4
(x+ 2 y + 3 z)

)
,

u3(x, y, z, t) = ~2
(
5 t2 +

(5 t2)2

2!

)
sin

(π
4
(x+ 2 y + 3 z)

)
+ ~3

(
5 t2 +

(5 t2)2

2!
+

(5 t2)3

3!

)
sin

(π
4
(x+ 2 y + 3 z)

)
.

Other components of the approximate solution can be obtained in the same manner.

For the case that ~ = −1, these components can be reduced to the following form,

u1(x, y, z, t) = (−5 t2) sin
(π

4
(x+ 2 y + 3 z)

)
,

u2(x, y, z, t) =
(−5 t2)2

2!
sin
(π

4
(x+ 2 y + 3 z)

)
,

u3(x, y, z, t) =
(−5 t2)3

3!
sin
(π

4
(x+ 2 y + 3 z)

)
.

Generally we have

un(x, y, z, t) =
(−5 t2)n

n!
sin
(π

4
(x+ 2 y + 3 z)

)
,

and thus,

ũ(x, y, z, t) = u0 + u1 + u2 + ... =

∞∑
n=0

(−5 t2)n

n!
sin
(π

4
(x+ 2 y + 3 z)

)
= e−5 t

2

sin
(π

4
(x+ 2 y + 3 z)

)
.
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This is the exact solution of the reformed equation. The solution of the main problem is obtained
in the following form

r̃ =
e−5 t

2sin
(
π
4 (0.6 + 0.8 + 0.6)

)
et

= e−5 t
2−t, (48)

ũ =
e−5 t

2sin
(
π
4 (x+ 2 y + 3 z)

)
e−5 t2−t

= etsin(
π

4
(x+ 2 y + 3 z)

)
, (49)

c̃ = −(−10 t− 1)e−5 t
2−t

e−5 t2−t
= 1 + 10 t. (50)

From Equations (48)-(50), we can see that HAM solution converges to the exact solution. Also, for
different values of the parameter ~ we note that there is a complete agreement between computed
results by present method and the exact solution. Table 1 gives a comparison between the error of
the proposed method (HAM) and VIM (He (1999)) at x = 0.6, y = 0.4. From these results we can
see that the presented approach is more efficient than the other different methods, regarding HAM
which takes four components only of the solution.

It is noted that our approximate solutions converge at ~ = −0.5 (see Tables 1 and 2). The ex-
plicit analytic expression given by Equation (47) contains the auxiliary parameter ~, which gives
the convergence region and rate of approximation for the HAM. However, the errors can be further
be reduced by calculating higher order approximations. This proves that the HAM is a very useful
analytic method to get accurate analytic solutions to linear and strongly nonlinear problems (Ab-
basbandy (2007), Inc (2007), Liao (2004)).

Table 1: Comparison between the error of HAM and VIM at ~ = −1.

t 0.0 0.2 0.4 0.6 0.8 1.0
VIM 4.4409 e-15 2.9636 e-9 4.2147 e-9 4.1563 e-9 2.8473 e-9 2.2205 e-15
HAM 4.4408 e-15 2.9636 e-9 4.2146 e-9 4.1563 e-9 2.8472 e-9 2.2205 e-15

Table 2: The error of solution using HAM at different values of time at ~ = −0.5.

t 0.0 0.2 0.4 0.6 0.8 1.0
HAM 2.6645 e-15 4.2109 e-4 6.5477 e-4 6.1783 e-4 3.5913 e-4 2.2205 e-15

Liao (1992) showed that whatever a solution series converges it will be one of the solutions of the
considered problem. Liao (1992) and Liao ( 2004) presented the controlled auxiliary parameter ~ to
control in the rate of convergence of the approximate solutions obtained by the HAM. We obtain
the VIM solution of the inverse parabolic problem and compute the unknown time-dependent
parameter when ~ = −1. Also, it is noted that our approximate solutions converge at ~ − 0.5 (see
Tables 1 and 2). The present exact solution is calculated at the above mentioned values of ~. The
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explicit analytic expression contains the auxiliary parameter ~, which gives the convergence region
and rate of approximation for the HAM. If we take ~ = −1 in the series solution (47) then, we get
the VIM. Also the homotopy perturbation method (HPM) is a special case of HAM at ~ = −1. But
VIM and HPM solutions are valid only for the value of ~ = −1. This proves that the HAM is a
very useful analytic method to get accurate analytic solutions to linear problems (Liao (1992) and
Liao (2004)).

5. The discussion and conclusion

In this article, we used HAM for obtaining the numerical solutions of the inverse parabolic prob-
lem and computing the unknown time-dependent parameter. A clear conclusions can be drawn
from the numerical results that HAM provides highly accurate numerical solutions without spatial
discretizations for the nonlinear PDEs. From Figures 1 and 2 and Tables 1 and 2, we can conclude
that the numerical solution using HAM is given in more accuracy. The proposed technique was
tested on some examples and gave the satisfactory results. This method avoids linearization and
physically unrealistic assumptions. The capability, effectiveness and convenience of this method
were revealed by obtaining the analytical solutions of the model and comparing them with ADM.
The main advantage of the HAM is that this method provides the solution of the problem without
calculating Adomian’s polynomials as in Adomian decomposition method (Dehghan (2004)).
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