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Abstract 
 
In this paper new fractional derivative and direct algebraic method are used to construct exact solutions 

of the nonlinear time fractional Sharma-Tasso-Olver equation. As a result, three families of exact 

analytical solutions are obtained. The results reveal that the proposed method is very effective and 

simple for obtaining approximate solutions of nonlinear fractional partial differential equations. 
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1. Introduction 
 
There are several definitions to the generalization of the notion of fractional differentiation. The 

Riemann-Liouville derivative, Caputo’s derivative, Hilfer derivative and Grunwald-Letnikov derivative 

are the most popular definitions (Podlubny, 1998; Hilfer, 2000). Most of the existing fractional 

operators are defined via the fractional integrals with singular kernels which is due to their nonlocal 

structures. In addition, most of the nonlocal fractional derivatives do not obey the basic chain, quotient 

and product rules. Recently, to overcome these and other difficulties, Khalil et al. (Khalil et al., 2014) 

introduced a new well-behaved definition of local fractional (non-integer order) derivative, called the 

conformable fractional derivative. The conformable fractional derivative is theoretically very easier to 
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handle. The conformable calculus is very fascinating and is gaining interest; see (Abdeljawad, 2015; 

Chung, 2015; Kurt et al., 2015; Zheng et al., 2015; Rezazadeh et al., 2016; Benkhettou et al., 2016; 

Ünal and Gökdoğan, 2017) and reference therein. 
 

Definition 1.1. 
 

Let : (0, )f    be a function. Then the conformable fractional derivative of f of order  is defined 

by 
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If the above limit exists then we say f is  -differentiable. 
 

Some useful properties for the suggested conformable fractional derivative given in (Khalil et al., 2014) 

are as follows: 
 

Theorem 1.1. 
 

Suppose (0,1) and , : (0, )f g   be  -differentiable at a point 0t  .Then 
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Theorem 1.2. 

 
Suppose : (0, )f   is a function such that f  is differentiable and also  differentiable. Let g  be 

a function defined in the range of f  and also differentiable and for all 0, ( ) 0t g t  ; then, one has the 

following rule (Abdeljawad, 2015) 
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Corollary 1.1. 
 

From Theorem 1.2 we obtain 
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Definition 1.2. 
 

Suppose 0, 0,a t   and f is defined on (0,  ],t then the  fractional integral is given by 
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Nonlinear partial differential equations with integer or fractional order have played a very important 

role in various fields of science and engineering, such as mechanics, electricity, chemistry and so on. In 

all these scientific fields, it is important to obtain exact solutions of partial differential equations with 

integer or fractional order (Biswas, 2008; Biswas and Kara, 2010; Taghizadeh et al., 2010; Kudriashov, 

2012; Bhrawy et al., 2013; Bhrawy et al., 2016; Ebadi et al., 2013; Mirzazadeh et al., 2014a; 

Mirzazadeh et al., 2014b; Mirzazadeh et al., 2014c; Eslami et al., 2014a; Eslami et al., 2014b; Savescu 

et al., 2014; Aminikhah et al., 2015; Ekici et al., 2016; Arnous et al., 2017a; Arnous et al., 2017b; Bekir 

et al., 2016; Biswas et al., 2014; Ekici et al., 2016a; Ekici et al., 2016b; Ekici et al., 2017a; Ekici et al., 

2017b; Mirzazadeh et al., 2016a; Mirzazadeh et al., 2016b; Mirzazadeh et al., 2016c; Ullah et al., 2017). 

In recent months, many powerful methods for obtaining exact solutions of nonlinear conformable 

fractional partial differential equations have been presented such as, the First integral method (Eslami 

and Rezazadeh, 2015; Eslami, 2016), the tanh-function method (Tariq, and Akram, 2016), the (G'/G)-

expansion method (Taghizadeh et al., 2016), the sub equation method (Aminikhah et al., 2016; 

Rezazadeh and Ziabarya, 2016) and Modified Kudryashov method (Hosseiniet al., 2016). 
 

In this paper, we will apply the direct algebraic method for solving nonlinear time fractional Sharma-

Tasso-Olver equation in the sense of Conformable fractional derivative by Khalil et al. The article is 

organized as follows: In Section 2, direct algebraic method is discussed. In Section 3, we exert this 

method to the nonlinear time conformable fractional Sharma-Tasso-Olver equation, and in Section 5 

conclusions are given. 
 

2. An Analysis of the Method 
 

For a given time conformable fractional partial differential equation 
 

2 2
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our method mainly consists of four steps: 
 

Step 1: We seek solutions of Equation (5) in the following form 
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( ), ,
t
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where k  and c  are real constants. Under the transformation (6), Equation (5) becomes an ordinary 

differential equation 
 

2 2( , , , , .....) 0,N u cu ku c u k u                                                                                                            (7) 

 

where  
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Step 2: We assume that the solution of Equation (7) is of the form 
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where ( 1,2,.., )ia i n  are real constants to be determined later. ( )   expresses the solution of the 

auxiliary ordinary differential equation 
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Equation (9) admits the following solutions 
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Integer n  in (8) can be determined by considering homogeneous balance between the nonlinear terms 

and the highest derivatives of ( )u   in Equation (7). 

 

Step 3: Substituting (8) into (7) with (9), then the left hand side of Equation (7) is converted into a 

polynomial in ( )  , equating each coefficient of the polynomial to zero yields a set of algebraic 

equations for , ,ia k c . 

 

Step 4: Solving the algebraic equations obtained in step 3, and substituting the results into (8), then we 

obtain the exact traveling wave solutions for Equation (5). 
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3. Nonlinear time conformable fractional Sharma-Tasso-Olver equation in the form 
 

In this section, we will exert the direct algebraic method to find the exact solutions of nonlinear time 

conformable fractional Sharma-Tasso-Olver equation. Let us consider the nonlinear time conformable 

fractional Sharma-Tasso-Olver equation (Song et al,. 2009; Lu., 2012)  
 

2 2 3
2

2 3
3 3 3 0, 0, 0 1.
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t x x x x
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                                      (11) 

 

The nonlinear time fractional Sharma-Tasso-Olever Equation (11) is a KdV-like equation, and plays an 

important role in describing the nonlinear wave phenomena. Exact solutions for it with different forms 

can describe different nonlinear waves phenomena, such as the solitary wave phenomenon and the 

periodic wave phenomenon and so on. 
 

To solve Equation (11), we consider the following traveling wave transformation 
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t
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then Equation (11) can be reduced to the following nonlinear differential equation,  
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Now we suppose that the Equation (13) has a solution in the form 
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where ia are constants to be determined later and the new variable      satisfies the following 

fractional Riccati equation: 
 

2.b                                                                                                                                          (15) 

 

Balancing the highest order derivative with nonlinear term in Equation (13) gives 1m  , from which we 

have 
 

0 1( ) .u a a                                                                                                                                  (16) 

 

Substituting Equation (16) along with Equation (15) into Equation (13) and setting the coefficients of  
j to zero, we finally obtain a system of algebraic equations, and solving these algebraic equations we 

have  
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Case 1: Substituting Equation (17) into (16) along with (10), we have the solutions of Equation (11) as 

follows: 
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Solutions (19) and (20) are topological soliton and singular soliton solution respectively while (21) and 

(22) are singular periodic solutions. 
 

Case 2: Substituting Equation (18) into (16) along with (10), we have the solutions of Equation (11) as 

follows: 
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which respectively represent topological soliton solution and singular soliton solution to the equation. 
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which are singular periodic solutions to the equations. 
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                                                                  c                                                                                 d  

Figure 1. The graphs of exact travelling wave solutions of Equation (7) (a):
1( , )u x t  with 1, 1, 1,b k c    2   

and order 0.98   (b):
6 ( , )u x t  with 3, 1, 1, 1.5b k c     and order 0.95   (c):

12 ( , )u x t  with order 

0.95   and 1, 2, 2.k c       (d):
 13( , )u x t  with order 0.9   and 2, 2, 1k c       

 

4. Conclusion 
 

In this paper, based on a conformable fractional derivative and direct algebraic method, we obtained 

many new types of the exact solutions of the nonlinear time conformable fractional Sharma-Tasso-

Olver equation. The results show that direct algebraic method is accurate and effective. These solutions 

may be useful for describing certain nonlinear physical phenomena. Maple has been used for 

computations and programming in this paper. 
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