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Abstract

In this paper, we introduce generalized difference sequence spaces via ideal convergence, lacu-
nary of x? sequence spaces over p—metric spaces defined by Musielak function, and examine
the Musielak-Orlicz function which satisfies uniform As condition, and we also discuss some
topological properties of the resulting spaces of x? with respect to ideal structures which is solid
and monotone. Hence, given an example of the space 2, this is not solid and not monotone.
This theory is very useful for statistical convergence and also is applicable to rough convergence.
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1. Introduction

Throughout w, Y and A denote the classes of all gai and analytic scalar valued single sequences,
respectively. We write w? for the set of all complex sequences (z,,,), where m,n € N, the
set of positive integers. Then, w? is a linear space under coordinatewise addition and scalar
multiplication. Some initial work on double sequence spaces is found in Bromwich (1965). Later
on, they were investigated by Hardy (1917), Moricz (1991), Moricz and Rhoades (1988), Basarir
and Solankan (1999), Tripathy (2003), Turkmenoglu (1999), Mishra et al. (2007, 2012) and many
others.

We procure the following sets of double sequences:
Mo () = {(@mn) € W* 2 suppnen [Tma| ™ < 00},
Cp (t) = {(zmn) € W?: p — liMyy oo |Timn — 1| =1 for some [ € C},
Cop (t) := {(a:mn) € w?:p—limy, 0 |xmn\t’”” = 1} ,
Lo () = {@nn) €022 T2 T2 [l < 00},
Cup (t) := Cp () (Y M.y (t) and Copy, (1) = Cop (1) (N M (2),

where t = (t,,,) is the sequence of strictly positive reals ¢,,, for all m,n € N and p —
lim,, ,,—,oc denotes the limit in the Pringsheim’s sense. In the case {¢,,, = 1 for all m,n €
N; M, (t),Cp (t),Cop (t) , L4, (t) ,Chp (t) and Copy (t) reduce to the sets M, Cp, Cop, Ly, Cp and
Covp, respectively. Now, we may summarize the knowledge given in some documents related
to the double sequence spaces. Gokhan and Colak (2004, 2005) have proved that M, (¢) and
C, (t),Cyp, (t) are complete paranormed spaces of double sequences and gave the a—, f—,v—
duals of the spaces M,, (t) and Cy, (¢) . Quite recently, in her PhD thesis, Zelter (2001) has essen-
tially studied both the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely (2003) and Tripathy (2003) have independently intro-
duced the statistical convergence and Cauchy for double sequences and given the relation between
statistical convergent and strongly Cesaro summable double sequences. Altay and Basar (2005)
have defined the spaces BS,BS (t),CS,,CS,,CS, and BY of double sequences consisting of
all double series whose sequence of partial sums are in the spaces M,, M, (t),C,,Cyp,C, and
L,, respectively, and also examined some properties of those sequence spaces and determined
the a— duals of the spaces BS, BV, CS;, and the 3 (¢) — duals of the spaces CS;, and CS, of
double series. Basar and Sever (2009) have introduced the Banach space £, of double sequences
corresponding to the well-known space ¢, of single sequences and examined some properties of
the space £,. Quite recently Subramanian and Mishra (2010) have studied the space x3, (p, ¢, u)
of double sequences and gave some inclusion relations.
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The class of sequences which are strongly Cesaro summable with respect to a modulus was
introduced by Maddox (1986) as an extension of the definition of strongly Cesaro summable se-
quences. Connor (1989) further extended this definition to a definition of strong A— summability
with respect to a modulus where A = (a,x) is a nonnegative regular matrix and established
some connections between strong A— summability, strong A— summability with respect to a
modulus, and A— statistical convergence. In Pringsheim (1900) the notion of convergence of
double sequences was presented by A. Pringsheim. Also, in Hamilton (1936, 1938), the four
dimensional matrix transformation (Az), , = Y o Y a) Ty, was studied extensively by
Robison (1926) and Hamilton (1939).

o0

The double series Z Tmn 1s called convergent if and only if the double sequence (S,,,) is

m,n=1
m,n

convergent, where s,,, = g z;j(m,n € N).
5,j=1

A sequence = = (x,,,) is said to be double analytic if sup,,, \xmnll/ ™+ < 0. The vector space

of all double analytic sequences will be denoted by A% A sequence x = (Z,,,) is called a double
gai sequence if ((m +n)!|Zm])/™™ — 0 as m,n — oo. The double gai sequences will be
denoted by x?. Let ¢ = {all finite sequences} .

Consider a double sequence = = (z;;). The (m,n)™ section z[™" of the sequence is defined by

m,n
plmn) — Z x;;S; for all m,n € N, where 3;; denotes the double sequence whose only non

1,j=0
. . . ~th ..
zero term is ﬁ in the (7,7)"" place for each 7,7 € N.

An FK-space (or a metric space) X is said to have AK property if (S3,,) is a Schauder basis
for X, or equivalently z[™" — . An FDK-space is a double sequence space endowed with a
complete metrizable locally convex topology under which the coordinate mappings = = () —
(Zmn)(m,n € N) are also continuous.

Let M and ® be mutually complementary modulus functions. Then, we have:
(1) For all u,y > 0,

uy < M (u) + ® (y), (Young’s inequality) (see Kampthan et al. (1981)), (1

(@i1) for all u > 0,
un (u) = M (u) + @ (n (u)), 2)

and
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(i) forall u > 0and 0 < A < 1,
M (Au) < AM (u). 3)

Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to construct the Orlicz sequence
space

EM:{wa:ZZilM<%)<oo, forsomep>0}.

The space ¢;; with the norm

ol = int {p>0: 332, w(t) <1},
becomes a Banach space which is called an Orlicz sequence space. For M (t) =t (1 < p < c0),

the spaces /), coincide with the classical sequence space £,

A sequence f = (f,,,) of modulus function is called a Musielak-modulus function. A sequence
9 = (gmn) defined by

Gmn (V) = sup{|v|u — (frmn) (u) :u >0}, mn=1,2,...

is called the complementary function of a Musielak-modulus function f. For a given Musielak
modulus function f, the Musielak-modulus sequence space t; and its subspace hy are defined as
follows:

tp= {x e w?: Iy (|am])/™" = 0as m,n — oo},

hy = {x ew?: Iy (|2 )™ ™ = 0 as m, n — oo} :
where I is a convex modular defined by

Iy (z) = Z:j:l fo:l Smn (’xmn’)l/ern , T = (Tmn) € Ly

We consider ¢ equipped with the Luxemburg metric

d(l’,y) = Supmn {lnf <Z$nozl Zzozl fmn (W)) S 1} .
If X is a sequence space, we give the following definitions:

(1) X'= the continuous dual of X,
2) X*= {a = (amn) * 2.0 1 |@mnTmn| < oo, for each = € X} ,

m,n=1
3) X? ={a= (amn) : 35 pne1@mnTmn is convegent, for each z € X},
4) X7 = {a = (Qmn) : SUPmp > 1 ‘ZM’N ArnTmn| < 00, for each z € X},

m,n=1

(5) let X be an FK-space D ¢; then X/ = {f(%mn)  fe X’},
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1/m+n

6) X%= {a = (Gmn) © SUD,, |G T | < o0, for each z € X} ,

where X¢, X# and X" are called or—(or Kothe-Toeplitz) dual of X, 3— (or generalized-Kothe-
Toeplitz) dual of X, y— dual of X, and d— dual of X, respectively. X“ is defined by Gupta and
Kamptan (1981). It is clear that X® C X” and X® C X, but X? C X7 does not hold, since
the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as
follows

Z(A)={x=(z) ew: (Axy) € Z},
for Z = ¢, ¢y and {,, where Axy = x — x4, for all k£ € N.
Here, ¢,co and ¢, denote the classes of convergent, null,and bounded scalar valued single
sequences, respectively. The difference sequence space bv,, of the classical space ¢, is introduced

and studied in the case 1 < p < oo by Basar and Altay and in the case 0 < p < 1 by Altay and
Basar (2005). The spaces ¢ (A), ¢ (A), ¢ (A) and bv, are Banach spaces normed by

0o 1
|zl = o] + supysy [Azg| and |z, = (52, [ex")”, (1 < p < 00).

Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z(A) ={x = (xyn) € W : (Azyy) € Z},

where Z = A% 2, and
Axmn - (xmn - xmn—i—l) - (xm—&—ln - xm—l—ln-l—l) = Tmn — Tmn+l — Tm+1n + Tm+1n+1; ‘v’m, n € N.
The generalized difference double notion has the following representation: A™x,,,, = A™ 1z, —

A" g — A™ 0+ A e 0, and also this generalized difference double notion
has the following binomial representation:

s =S (1)

i=0 =0
2. Definition and Preliminaries

Let n € N and X be a real vector space of dimension w, where n < w. A real valued function
dy(z1, ... 2) = ||(di(x1), ..., dn(z,))|, on X satisfes the following four conditions:

(1) [[(di(z1),...,dn(xn))|l, = 0 if and and only if dy(z1),...,d,(x,) are linearly dependent,
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(2) |[(di(z1),...,dn(xy))||, is invariant under permutation,
3) N(ady(@1), .. dn(@n))llp = lal [(di(21), ., du(@n))llp, @ € R,

(4) dp ((xla y1)7 <x27 y2) (xn7 yn)) - (dX(xb To, - xny) + dY(Z/la Yo, yn)p)l/p ) for
1 <p<oo,or

(5) d ((Ilv 3/1)7 ($27y2)7 e (xna yn)) i= sup {dX(I'l,Q?Q, e xn)u dY(yh Yo, yrz)} ; for
T1,To, Ty € X, Y1,Y2, - Yn € Y is called the p product metric.

A trivial example of the p product metric of n metric space is the p norm space X = R equipped
with the following Euclidean metric in the product space with the p norm:

[(dr (1), -, dn(zn)) || 2 = sup (| det(dmn (£mn))])

dn(l’n) dlz(l’lz) dln(l’ln)
d21(9321) d22($22) d2n($1n)

= sup ‘ :

dnl (xnl) dn2 (an) dnn('xnn)

where z; = (21, T4,) € R" foreach i = 1,2,---n

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with
respect to the p— metric. Any complete p— metric space is said to be a p— Banach metric space.

Let X be a linear metric space. A function w : X — R is called paranorm, if

(1) w(z)>0,forall x € X,
(2) w(— ):w() for all z € X,
3) w(x+y) <w(zr)+w(y), for all z,y € X, and

(4) If (0,,,) is a sequence of scalars with 0,,,,, — 0 as m,n — oo and (z,,,) is a sequence of
vectors with w (Z,,, — ) — 0 as m,n — oo, then w (6, Tmn — ox) — 0 as m,n — 0.

A paranorm w for which w (z) = 0 implies = 0 is called total paranorm and the pair (X, w)
is called a total paranormed space. It is well known that the metric of any linear metric space is
given by some total paranorm (see Wilansky (1984), Theorem 10.4.2, p. 183).

Let X be a non-empty set. Then a family of sets I C 2% (the class of all subsets of X) is called
an ideal if and only if for each A, B € I, we have A|JB € I and for each A € I and each
B C A, we have B € I. A non-empty family of sets F' C 2% is a filter on X if and only if ¢ ¢ F,
for each A, B € F, we have A(|B € F and each A € F and A C B, we have B € F. An ideal
I is called non-trivial ideal if I # ¢ and X # I. Clearly I C 2% is a non-trivial ideal if and only
F=F()={X/A: A€} is afilter on X. A non-trivial ideal  C 2% is called admissible
if and only if {{z} -z € X} C I. A sequence (Zyn),, oy in X is said to be /— convergent to
0 € X, if for each € > 0 the set A(e) = {m,n € N: |[(dy(x1),...,dn(z,)) — 0|, > €} belongs
to /. Further details on ideals of 2% can be found in Kopstyrko et al. (2001). The notion was
further investigated by Salat et al. (2004) and others.
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By the convergence of a double sequence we mean the convergence on the Pringsheim sense,
that is, a double sequence x = (,,,) has Prinsheim limit L (denoted by P —lim xz = L) provided
that given € > 0 there exists n € N such that |x,,, — L| < € whenever m,n > n . We shall write
this more briefly as P— convergent.

The double sequence 6., = {(m,,n,)} is called a double lacunary sequence if there exist two
increasing integers such that

mo = 0,9, =m, —m,_1 — 00 as r — oo and
ng = 0,ps =nNs —Ns_1 — 00 as s — 00.
Notations: m,; = m,ng, hys = @, s, 0,5 are determined by

ITS = {<m7 n) : m’r—l <m S m?" and ns—l <n S nS}’

ar = kk_raq_s = 2 and ¢,5 = ¢,Gs.

r—1 Ns—1

oo

The notion of A— double gai and double analytic sequences are as follows. Let A = <)‘mn)m,n:0

be a strictly increasing sequence of positive real numbers tending to infinity, that is,
0< Ao <A1 < -+~ and)\mn—>ooasm,n—>oo

and said that a sequence = = (7,,,,) € w? is A— convergent to 0 is called A— limit of z, if

fm n () = 0 as m,n — oo,
where
1

© Z Z (Am_l)\m,n_Am_l/\m,n+l_Am_l/\m+1,n+Am_1/\m+1,n+l ) |xmn|1/m+n .

s mel,s n€lyg

o n (T) =

The sequence = = (,,,) € w? is A— double analytic if sup,, |ftmn ()| < co. If limy,, Ty, = 0
in the ordinary sense of convergence, then

1
lim— " Y (A N = A N — A" N

mn
SOTS melrs n€lrs

+ A" N tng1) (04 ) | — O™ = 0.

This implies that
%Igmwm (z) =0

. 1
= lim
mn (prs

Z Z (Am_l)\mm _ Am'_l/\m,n+1 — Am_l)\m-',-lm

mel,s n€lrs

+ Am_l)‘erl,nJrl) ((m +n)! ‘xmn - O|)1/m+n
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which yields that lim,, i, (x) = 0 and hence = = (Z,,,) € w? is A— convergent to 0.

Let />~ be an admissible ideal of 2Y*N §,.. be a double lacunary sequence, f = (f,..) be
a Musielak-modulus function, and <X, [(d(z1) ,d(x2),- -+ d(zn))l],
q = (¢mn) be double analytic sequence of strictly positive real numbers. By w? (p — X') we denote
the space of all sequences defined over <X, |(d(z1),d(x3),--- ,d (:En_l))Hp> . The following
inequality will be used throughout the paper.

be a p—metric space,

If 0 < gne < sUP @y = H, K = max (1,2H*1) , then
L Y O [ et I R )
for all m,n and a,,,, by, € C.
Also |a|™" < max (1, |a|H) for all a € C.
In the present paper we define the following sequence spaces:

I2

Gl @) d () d o) 7]
= {rs € Lt [fn (It (@), (@ @1) A (@2) - d @), )| 2 e} € 22

and

[ ) d ), d o lE]L

={rs €L [fon (lon (@), (d (@) d (), d@a)l,)] 7 = K} e 2

If we take f,,, (z) = x, we get

12

G (@) d (@) d @)
= {rse b [(Im @) @@) d @) - d@o))l,)| =) e 12

and

712

A2 ) ) d )]

={rse b [ (I (@), (@d(21) d (@) - ,d(;cn_l))np)]q’"" >K}er

If we take ¢ = (gmn) = 1, we get

e I(d (1) d () , - - ad<fvn—1>>”f];m

= {res € Lot [Fom (l1tmn (@), (@(21) d (22) - d @un), ) | 2 ef € %
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and
12

A @ (@) d (o) - d ()]

—{rs € Lo [ fom (it (2) (A (@1) d (22) -+ d o)L, ) | 2 K} € 12

In the present paper we plan to study some topological properties and inclusion relations between
the above defined sequence spaces,

I? I?

(@ (@) d (), d@aa))lF] and A (@) d (@) oo s d (@) E]

TS 97‘5

which we shall discuss in this paper.

3. Main Results

Theorem 1.

Let f = (fmn) be a Musielak-Orlicz function and ¢ = (¢,,,) be a double analytic sequence of
strictly positive real numbers. The sequence spaces

[ @ (@) d ), d )]

12
Ors

and
12

A3 o) (o) )]
are linear spaces.

Proof:

It is routine verification. Therefore the proof is omitted.

Theorem 2.

Let f = (fmn) be a Musielak-Orlicz function and ¢ = (¢,,,) be a double analytic sequence of
strictly positive real numbers. The sequence space

) ).l

is a paranormed space with respect to the paranorm defined by
. gdmn
g (@) =it { [ frn (tmn (@), (@ (1), d (22) -+ d (@), )| <1}

Proof:
12

Clearly g (x) > 0 for 2 = (z,,) € [Xff,ﬂ, [(d (21),d (z2), -+ 7d(37n71))”ﬂ

Since f,, (0) =0, we get g (0) = 0.

TS

Conversely, suppose that g (z) = 0.
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dmn
Then, inf { | frn (ttmn (2), (d (1), d (22) -+ d (za)],) | <1}

Suppose that fi,,, (x) # 0 for each m,n € N. Then,
|t (), (d (1), d (22) ;- -+, d (2n1)) |y — o0

It follows that
1/H

([Fmn (ttmn @), (@ @1) cd (a2) .-+ d @a),)]|7) T = 00,

which is a contradiction. Therefore, fi,,, (z) = 0.
1/H

Let ([fun (i (@) (@ (1) d (2) - s d @a-a),)]77) <1

and
1/H

([Fn (Ittmn ) (@ (@) (@2) -+ s d @), ] 7)< 1

Then, by using Minkowski’s inequality, we have

1/H

/N

:fmn (Han (z+y),(d(z1),d(z2),--- ,d (:Enfl))Hp)]qmn)
fmn (H,Umn (), (d(z1),d(z2),--- .d (xn—l))“pﬂ qmn>1/H
fmn (Han (y) ) (d (1'1) , d(;pQ) e d ('Tnfl))Hp>]qmn>

VAN
—

1/H

_l’_
/N

So we have
9@ +y) =t { [ Fon (Imn (2 +9) (@ (1), d (@), d @a))l,) | <1
<inf {[frn (ttmn (@), (@ (1) d (22) -+ d ), )| <1}
0 { [ frn (I () (d 1) A (22) -+ s (), ) | <1}
Therefore,

glx+y) <g(x)+g(y).

Finally, to prove that the scalar multiplication is continuous, let A be any complex number.

By definition, g (\z) = inf { [fmn (Humn (Az), (d(21),d (z2) - ,d(:cn,l))up)}qm" < 1}.

Then, g (Az) = inf {((A1 )%+ [fr (Il (A2)  (d (@) d (22) -+ d (i), )| < 1

where t = ﬁ Since [A|%™" < max (1, |A]"™*™), we have

g (\a) < masx (1, APPP)inf {00/ [ fn (Il ()4 (@ (1), 2) -+ d (en))],) |7 < 1)
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This completes the proof. []
Theorem 3.

(i) If the sequence (f,,) satisfies uniform A,— condition, then

1204

i (2, (@ 0) )+ ()]

= [t (2 (@ (1) s a2) -+ s 1)

12
Ors

(ii) If the sequence (g,,,) satisfies uniform A,— condition, then

]2(1

i (2), (A 1) a2) o d )]

= [\ ttn (2) (A (@1) d (22) .-+ d )

1'2

Proof:
Let the sequence (f,,,) satisfy uniform A,— condition. We get
12
X it (@), (d 1) (22) -+ o d (a)IIE]
IQa
C [t Mt (@) (A (@1) A (@) -+ s ()

Ors

To prove the inclusion

12a

G N (@), (@ (1) d (2) -+ )

< [ o (), @ 02) ) )]

TS

2

)
Ors

]2(1
let a € [Xfci, i (), (d (1) ,d (22) , -+~ ,d(xn,l))ug]e . Then for all {z,,} with
7’[82
() € [ ltnn () (d (21)  d (22) - d (21))|[7] | we have
Z Z | L Qi | < 00. 5)

m=1 n=1

Since the sequence (f,,,) satisfies uniform A,— condition, then
12

(nn) € [N lttmn (2) (A 1) d (@) - A )E

and we get ) ©°_ > >,

PrsYmndmn

A™ N (MmAn)!

< oo by (5). Thus

12

(Prstmn) € [Xhs lomn (2 (d 1) d (@2) -+ d (@) E]

= [l (2), @ ), 2) - D],
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and hence
12
(@mn) € X", | mn (), (d (21) , d (23) , - - 7d(fvn71))|!§]

97‘8

This gives that

2

Gl (00, (d 20) d a2) -+ o d (o))

S Y ONCICA N IC R )[4

12

Ors

From above we have,
1204

Xt (@), (@ (1) (22) -+ d () 2]

Ors

= [ Mt (2)  (d (1), d ) -+ o (o)

12

07‘8

(i1) Similarly, one can prove that
2c

G i (@) (d (@2) d () -+ d ()]

C [ it (@), (1) 02), G D]

if the sequence (g,,,) satisfies uniform A,— condition. [J
Proposition 1.
If 0 < ¢y < P < o0 for each m and m, then,

12

A?,{u ”H’mn (ZU) s (d (931) ,d ($2) e >d(93n—1))||ﬂ .

C [Aff;, [ ftmn (), (d (1), d (23) - ,d(xn_l))lli]

12

Proof:

The proof is standard, so we omit it.
Proposition 2.

(1) If 0 < inf ¢np < Grn < 1, then,

12

NGt b (@) (d 1) d (2) -+ d e 7]

C (A2t (2) (A (1) (22) -+ (w0))¢]

12

Ors
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(i) If 1 < gy < SUDP @ < 00, then,

12

A?‘W ”an (CE) ) (d (‘rl) 7d (x2) y " 7d(xn—1>>||;i| Ors

[A?;Iu ||an (1:) ) (d (m1> ,d (xQ) o ’d(I”_l))Hg

2
Ors
Proof:

The proof is standard, so we omit it.

Proposition 3.

Let f = (f,,,) and f* = (f,,) are sequences of Musielak functions, we have

(A2t (@) (d (1) (w2) -+ d (0 1>”|:
M [A%, it (2) (@ (21) ) - v‘iﬂtn—1>>”5};i
[A;q-i-f” Nt (), (d (1), d (2) , - - 7d<95n—1>>||ﬂ ;2 '

Proof:
The proof is easy so we omit it.
Proposition 4.

For any sequence of Musielak functions f = (f,,,) and ¢ = (¢,) be double analytic sequence
of strictly positive real numbers. Then,

12

X?L’ Han (ZE) ) (d (Il) 7d (I2> y " ad (xn—l))Hi] Ors

C [AFL o (2) (A (1) (22) -+ ()G

12
brs
Proof:

The proof is easy so we omit it.

Proposition 5.

12

The sequence space [Aff;, | ttnn (), (d (21) ,d (29) -+ ,d (xn_l))Hﬂ , is solid.
Proof:
Let & = () € [A2, [ (2), (0 e0) d 22) -+ da)IZ].

w%dﬁwwmxu@maw%~ﬂwwmﬂi<”
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Let (ayy,) be double sequence of scalars such that |a,,,| < 1 for all m,n € N x N. Then we get

12
Sup [ AJL [l (@), (d (21)  d (22) -+ o (w2)E]
2
< sup (A2 o (), (02) 4 0) -+ d ()]
This completes the proof. []
Proposition 6.
12
The sequence space [Aff;, |t (), (d (21) ,d (22) -+ ,d (:z:n_l))||ﬂ is monotone.
GTS

Proof:
The proof follows from Proposition 5.
Proposition 7.

If f = (fmnn) be any Musielak function. Then,

AGt mn (@) 4 (d (21) ,d (2) -+, d (20-1)

2

(p**] I
b
P e,

C [AF it (2) (A (1) d (22) -+ (1)

if and only if, sup, ., 25 < oo.

<p7‘5
Proof:
Let 7 € [Af@, lttn (), (d (1) ,d (22) - ,d (201))]|* L and N = sup, -, £ < co. Then
we get ”
A% d d d err]”
ATl (@), (@ (1) (a2) - ()]
« 112
= N A7 o (@) (@ (@2) d (22) - d )] =0,
* 3k 12
Thus z € [A?‘L, [t () 5 (d (21) ,d (22) ;- -+ s d (z01)) |7 ]Gm . Conversely, suppose that
A% d d d ah
fu ”an (l’) ) ( (.1‘1) ) (xQ) » T (‘In—1>> P |y,
* % I2
C AT Mt (2) () () )]
2 ks
and € A%l (@) (d (22) d (22) - (x,n))[)7] - Then

* 12
[A?L, |t () 5 (d (21) ,d (22) -+, d (2p_1))||7 L < e, for every € > 0.

p
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Suppose that sup,. ;>4 gfi = 00, then there exists a sequence of members (7s;;) such that
lim; 400 u = 00. Hence, we have
2 <17
AT M (@) (d (@) a2) - ()] = oo
Therefore 2
2 k%
v & (AT it (@) (@ (1) d () o d )]

which is a contradiction. This completes the proof. [
Proposition 8.

If f = (fmnn) be any Musielak function. Then

72

A?ci’ ”an (:IZ‘) ’ (d (x1> 7d (:CQ) )" 7d(xn71)) g*]g —

TS

ATl (@) (@ @2) () - d )]
if and only if sup, .-, zfi < 00, SUP,. > Z’? > 00.
Proof:
It is easy to prove so we omit.
Proposition 9.
12

The sequence space [X?fu |t () 5 (d (21) ,d (z9) - ,d(xn,l))Hg] . is not solid.
Proof:
The result follows from the following example.
Example.
Consider

11 1

11 1

. 2 I2

T = (Tmn) = | < [Xf‘i, tmn () (d (1), d (22) ;- s d (zaa))Il |-

11 1

Let
—1mtn A A
_1m+n _1m+n _1m+n
Q. = ‘ , for all m,n € N.

_1m+n _1m+n _1m+n
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72

Then @unnnn & |5 [t (), (d (21),d (22) -+ d (2 1)) ] Hence
12 T8
[ngt, Ut (), (d (1) ,d (3) , - - - ,d(a:n_l))||§]9“ is not solid.
Proposition 10.
12
The sequence space [X?C‘L, |t (), (d (21) ,d (z2),- -+ ,d (wn_l))Hz] , is not monotone.

Proof:

The proof follows from Proposition 9.

4. Conclusion

We introduce generalized difference sequence spaces via ideal convergence, lacunary of x?
sequence spaces over p— metric spaces defined by Musielak-Orlicz function and also discuss
some topological properties of our proved results on these spaces. The growing interest in this
field is strongly stimulated by the treatment of recent problems in elasticity, fluid dynamics,
calculus of variations, and differential equations. One can extend our results for more general
spaces.
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