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Abstract 
 

In the present paper, we have determined the heat conduction and thermal stresses of a hollow 

cylinder with inhomogeneous material properties and internal heat generation. All the material 

properties except Poisson’s ratio and density are assumed to be given by a simple power law in 

axial direction. We have obtained the solution of the two dimensional heat conduction equation in 

the transient state in terms of Bessel’s and trigonometric functions. The influence of 

inhomogeneity on the thermal and mechanical behavior is examined. Numerical computations are 

carried out for both homogeneous and nonhomogeneous cylinders and are represented graphically. 
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1. Introduction  
 

The thermoelastic behaviour of homogeneous and isotropic plates has attracted the focus of the 

researchers over the past few decades. The rationale for this interest is because of their sensible 

application in an exceeding sort of component parts and structures. As a result, the structural 

behaviour of isotropic circular plates has now been well understood, although new information 

continues to accumulate significantly in regard to the plates made of composites, functionally 

graded materials or heterogeneous metal materials. In general, nonhomogeneous materials are 

microscopically heterogeneous composites, which are usually made from a mixture of various 
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metallic elements. Nonhomogenous materials have a completely different spatial distribution of 

material properties and might be designed according to different applied science needs. Owing to 

their functional gradation for optimized design, nonhomogeneous material plates currently have 

absorbed significant attention as one of the most capable nominees for future intelligent 

composites in many engineering fields. 

Thick cylinders are very important components which are extensively used in pressure vessels, 

accumulator shells, nuclear reactors, high-pressurized fluids. Aksoy et al. (2014) performed thermo 

elastic stress analysis on a cylinder made of laminated isotropic materials under thermomechanical 

loads. Al-Hajri and Kalla (2004) developed a new integral transform and its inversion involving 

combination of Bessel’s function as a kernel and used it to solve mixed boundary value problems. . 

Awaji and Sivakumar (2001) presented a numerical technique for analyzing one-dimensional 

transient temperature distributions in a circular hollow cylinder composed of functionally graded 

ceramic–metal-based materials, without considering the temperature-dependent material 

properties. Ehteram et al. (2011) obtained an analytical solution for the temperature change and 

thermal stresses for the circumferential transient loading using finite Hankel and Fourier transform. 

Fu et al. (2014) presented the transient thermoelastic analysis in a long solid cylinder with a 

circumferential crack using the C–V heat conduction theory in which the outer surface of the 

cylinder is subjected to a sudden temperature change.  

 

Hosseini and Akhlaghi (2009) obtained an analytical solution in transient thermoelasticity of 

functionally graded thick hollow cylinders. Hata (1982) studied thermal stresses in a 

nonhomogeneous plate and semi-infinite elastic solid under steady state temperature distribution. 

Jabbari et al. (2014) presented the buckling analysis of thermal loaded solid circular plate made of 

porous material by assuming the material properties of the porous plate vary across the thickness. 

Kassir (1972) investigated thermal stress problems in a thick plate and a semi-infinite body in 

nonhomogeneous solids. Kedar and Deshmukh (2015) studied inverse heat conduction problem to 

simultaneously determine unknown temperature and thermal deflection on the outer curved surface 

of a semi-infinite hollow circular cylinder from the knowledge of temperature distribution within 

the cylinder. Khobragade and Deshmukh (2005) developed an integral transform to determine 

temperature distribution in a thin circular plate, subjected to a partially distributed and 

axisymmetric heat supply on the curved surface. Kim and Noda (2002) adopted a Green's function 

approach based on the laminate theory for solving the two-dimensional unsteady temperature field 

(r, z) and the associated thermal stresses in an infinite hollow circular cylinder made of a FGM 

with radial-directionally dependent properties.  

 

Kulkarni and Deshmukh (2007) determined quasi-static thermal stresses in a thick circular plate 

subjected to arbitrary initial temperature on the upper face with lower face at zero temperature and 

the fixed circular edge thermally insulated. Kulkarni and Deshmukh (2007) determined transient 

thermal stresses in a thick annular disc having zero initial temperature and subjected to arbitrary 

heat flux on the upper and lower surfaces. Recently Manthena et al. (2017) determined temperature 

distribution, displacement, and thermal stresses of a nonhomogeneous rectangular plate by 

assuming the material properties to vary by simple power law in y coordinate. Ootao (1995) used 

piecewise power law nonhomogeneity to study transient thermoelastic analysis of a functionally 

graded hollow circular disk. Ootao et al. (2012) developed a theoretical analysis of a three-

dimensional transient thermal stress problem for a nonhomogeneous hollow circular cylinder. 

Sugano (1987) formulated a plane thermoelastic problem in a nonhomogeneous doubly connected 
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region and solved the system of fundamental equations using finite difference method. Sugano and 

Akashi (1989) studied transient plane thermal stress problem in a nonhomogeneous hollow circular 

plate by expressing Young’s modulus and thermal conductivity in different power laws of radial 

coordinate. Sun and Li (2014) studied axisymmetrical thermal post-buckling of functionally 

graded material (FGM) circular plates with immovably clamped boundary and a transversely 

central point-space constraint. Tanigawa et al. (1997) studied elastic behavior for a medium with 

Kassir’s nonhomogeneous material property.  

 

Most of the literature cited above focuses on nonhomogeneous cylinders under steady state 

temperature distribution and all of them have considered homogeneous material properties. In fact, 

the problems with nonhomogeneous material properties are more practical and realistic, but due to 

the complexity and tedious calculations very few researchers studied such problems. In ample of 

cases, it is observed that, the heat production in solids have lead to various technical problems 

during mechanical applications in which heat is generated and rapidly transferred from their 

surface. Hence the study of thermoelastic behavior in nonhomogeneous materials with internal 

heat generation is needed. This problem deals with the determination of temperature and thermal 

behavior of a thick hollow cylinder with internal heat generation. 
 

In the present article, we  have considered a two-dimensional transient thermoelastic problem of a 

thick circular disc occupying the space 21, hzhbra  , subjected to sectional heating on the 

curved surface. The material properties except Poisson’s ratio and density are assumed to be  

nonhomogeneous given by a simple power law in axial direction. For theoretical treatment all 

physical and mechanical quantities are taken as dimensional, whereas for numerical analysis we 

have considered non-dimensional parameters. Numerical computations are carried out by 

considering both homogeneous and nonhomogeneous hollow cylinders.   
 

2. Statement of the problem 

2.1. Heat conduction equation 

We consider the transient heat conduction equation with internal heat generation and initial and 

boundary conditions in a hollow cylinder given by 
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where )cosh()(),(,)()(),( 0120001 tzzQtzfzzrrQzrf   , )(zk  and )(zc  are 

respectively, the thermal conductivity and calorific capacity of the material in the inhomogeneous 

region,   is the constant density, ),,( tzr  is the internal heat generation, 2121 ,,, kkee  are 

radiation constants. 
 

2.2. Thermoelastic equations 

The strain displacement relations, stress-strain relations and equilibrium condition are given by 

Hata (1982) 
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where zzrr eee ,,  are the strain components )( zzrr eeee   , )(z  and )(z  are Lame 

constants, )(z
T

  is the coefficient of thermal expansion. 

 

Following Hata (1982), we assume that the shear modulus )(z and the coefficient of thermal 

expansion (CTE) )(z
T

  vary in the axial direction given by 

,)(,)( 00
p

T
p zzzz    

 

where 0 and 0 are reference values of shear modulus and CTE, and 0p  is related to 

Poisson’s ratio    by the relation  21 p , where   is constant.  

 

Using equations (3) and (4) in (5), the displacement equations of equilibrium are obtained as  
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The solution of equation (6) without body forces can be expressed by the Goodier's thermoelastic 

displacement potential  and the Boussinesq harmonic functions  and  as 
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in which the three functions must satisfy the conditions 
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in which Michell’s function M  must satisfy the condition 
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Now by using equation (11) in equations (4) and (6), the results for thermoelastic fields are 

obtained as 
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The corresponding stresses are given by 
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The boundary conditions on the traction free surface stress functions are 
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Equations (1) to (16) constitute the mathematical formulation of the problem. 

 

3 Solution of the problem 

 

3.1. Heat conduction equation 

From equation (1), we have 
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The initial and boundary conditions are  
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Here,  000 and, ck  are the reference values of thermal conductivity, calorific capacity and 

density, respectively.  Using equation (19) in (17), we obtain 
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To remove p  from the numerator of equation (20), we use the variable transformation 
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To solve the differential equation (22) using integral transform technique, we introduce the 

extended integral transform Al-Hajri and Kalla (2004) of order i  over the variable z  as given 

below (Refer Appendix A).  
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Hence, equations (22) and (23) become 
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where 
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We use the transform given in Al-Hajri and Kalla (2004)  to solve equation (29) and use the 

boundary conditions given by equation (30), and obtain  
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Here, )( rqM n is the kernel of the transformation given by 
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Here, 0J  and 0Y  are Bessel’s function of first kind and second kind, respectively and nq  are the 

positive roots of the transcendental equation  
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Applying Laplace transform and its inverse on equation (31) by using the initial condition given in 

equation (32), we obtain 
 

1 1 2 3 3 1 0 0( , ) exp( ) exp( ) exp( ) exp( ( )) *( ),n t E At E t E t A A t t t t                    (33) 

 

where  

).(,
22

,
22

, 00004
1

2
3

1

2
242

1
2

21
1 rqMrgQA

A

A
E

A

A
EA

A

AA
E n











 

 

Here, )(* 0tt   is the Heaviside Theta function given by 
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Applying inverse transform on equation (33), we obtain  

 

 

1 1 2 3 3 1 0 0

1

exp( ) exp( ) exp( ) exp( ( )) *( )
( , ) ( ).

( )
n

n n

E At E t E t A A t t t t
r t M q r

M q

  






       
 

   (34)   

Applying inverse transform defined in equation (27) on the above equation (34), we obtain 
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Using equation (35) in the equation  ),,()2/)1(( tzrzT p  , we obtain 
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3.2. Thermoelastic equations 

 

Referring to the heat conduction equation (17) and its solution given by equation (36), the solution 

for the Goodier’s thermoelastic displacement potential   governed by equation (9) is obtained as 
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Similarly, the solution for Michell’s function M  assumed so as to satisfy the governed condition 

of equation (12) is obtained as 
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where mC  and mD  are constants. 

 

Now, in order to obtain the displacement components, we substitute the values of   and M  in 

equation (11), and obtain 

 

)]},()()[exp()({ 112,
11

rqYDrqJCtzgqu nmnmnr
ni













           (39) 

 

2

, 2 0 0

1 1

2 0 0

{ (2 2) [ ( )exp( )[ ( ) ( )]]

(1 2 )[ ( )exp( )[ ( ) ( )]]},

z n m n m n

i n

m n m n

w q g z t C J q r D Y q r

g z t C J q r D Y q r

  

 

 

 

   

  

 
  (40) 

where  

)].sin(log)[cos(log)( )2/)1((
2 zzzzg  

 

 

Using the displacement components given by equations (39) and (40) in equation (15), the 

components of stresses can be obtained. 

 

Also by using the traction free conditions given by equation (16) the constants mC and mD can be 

determined.  

 

Since the equations of stresses and constants  mC  and mD  obtained so are very large, hence we 

have not mentioned them here. However numerical computations are carried out by using 

Mathematica software. 

 

4. Numerical results and discussion 

The numerical computations have been carried out for a mixture of Copper and Tin metals (Hata 

1982) in the ratio 70:30 respectively, with non-dimensional variables as given below.  
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with parameters  

 

sec,3sec,2,5.1,5,2,3,1 0021  ttcmrcmhcmhcmbcma  

 

reference temperature CT o
R 32 , thermal expansion coefficient Co/1017 6

0
 , 

sec/11.1 2cm . Here, 2.6, 4.7, 6.1, 8.2, 11.3, 14.5, 17.3, 21.1, 25.3, 29.9, 36.3, 42.7, 49.1, 56.6, 

64.2 are the real and positive roots of the transcendental equation  

 

0),,(),,(),,(),,( 22112211  kebqBkeaqAkebqAkeaqB iiii . 

 

The Young's modulus E is given by the following equation (JSME 1980) 

 

./108.9)495.8814.5347.12246.01174.0()( 27432 cmNxxxxxE   

 

Here.  100  tin  ofweight : x , 3.00  x . Let 3.0x , then ./1041.4 27 cmNE   

 

For different values of parameter p , the Poisson’s ratio   and Shear modulus 0  are calculated 

by using the formula  .
)1(2

,21 0






E

p  

 

(1) For Homogeneous Cylinder: 0p , Poisson’s ratio 5.0 , Shear modulus 

./1047.1 27
0 cmN  

 

(2) For Nonhomogeneous Cylinder:  5.1p , Poisson’s ratio 286.0 , Shear modulus 

./10715.1 27
0 cmN  

 

Figure 1 shows the variation of dimensionless temperature in radial direction for different values 

of dimensionless thickness 3,5.2,2,5.1,5.0 . From the graph it is seen that the nature is 

sinusoidal. The temperature has a finite value at the outer radius due to internal heat generation, 

which is gradually decreasing in the region 35.2   and increasing towards the inner radius for 

both homogeneous and nonhomogeneous cylinders. The magnitude of temperature is high at the 

lower surface due to sectional heating, and is gradually decreasing towards the upper surface. Also 

the magnitude of temperature is high for homogeneous cylinder as compared to nonhomogeneous 

cylinder.    
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Figure 2 shows the variation of dimensionless displacement w  in radial direction for different 

values of dimensionless thickness  . It is seen that the displacement is more at the outer radius 

and is gradually decreasing in the region 32   for both homogeneous and nonhomogeneous 

cylinders.  

 

Figure 3 shows the variation of dimensionless radial stress in radial direction for different values of 

dimensionless thickness  . It is seen that the nature is dome shaped. The radial stress is 

compressive throughout the cylinder. It is gradually decreasing in the region 31.2   and 

increasing towards the inner radius. Due to the accumulation of thermal energy, the magnitude is 

more towards the inner radius. Also the radial stress is zero at both the radial ends (for both 

homogeneous and nonhomogeneous cylinders), which agrees with the prescribed traction free 

boundary conditions. 

 

Figure 4 shows the variation of dimensionless tangential stress in radial direction for different 

values of dimensionless thickness  . For homogeneous cylinder, the tangential stress is tensile 

from the outer to the inner radius till 1.1  and compressive at the end for all values of   except 

5.2 . For nonhomogeneous cylinder, the magnitude of crest and trough is high in the outer 

radius which gradually decreases towards the inner radius. 

 

Figure 5 shows the variation of dimensionless axial stress in radial direction for different values of 

dimensionless thickness  . The axial stress is converging to zero at the central region for both 

homogeneous cylinder and nonhomogeneous cylinders and is tensile in nature for 31.2  and 

5.11  , whereas compressive for 1.25.1  . Also the magnitude of crest and trough is high 

at the lower surface which gradually decreases towards the inner surface. 

 

Figure 6 shows the variation of dimensionless shear stress in radial direction for different values of 

dimensionless thickness .  The shear stress is tensile in nature for 6.28.1  and 2.11  , 

whereas compressive for 8.11   and 36.2  . Also the magnitude of shear stress is more 

for homogeneous cylinder as compared to nonhomogeneous cylinder. The figures (1 to 6) on the 

left are of homogeneous hollow cylinder and those on the right are of nonhomogeneous hollow 

cylinder. 

 

 

Homogeneous Hollow Cylinder     Nonhomogeneous Hollow Cylinder 

Figure 1. Variation of dimensionless temperature with   and   
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Figure 2. Variation of dimensionless displacement w  with   and   

 

 

Figure 3. Variation of dimensionless radial stress with   and   

 

 

Figure 4. Variation of dimensionless tangential stress with   and   
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Figure 5. Variation of dimensionless axial stress with   and   

 

 

Figure 6. Variation of dimensionless shear stress with   and   

 

Figure 7 shows the variation of dimensionless temperature in radial direction for different values 

of inhomogeneity parameter 4,3,2,1,0p . It is seen that the temperature has a finite value at the 

outer radius due to internal heat generation, which is gradually increasing in the region 35.2   

and then decreasing towards the inner radius. With increase in the inhomogeneity parameter p , the 

magnitude of temperature is decreasing.    

 

Figure 8 shows the variation of dimensionless displacement w  in radial direction for different 

values of p . It is seen that the displacement is more at the outer radius and is gradually decreasing 

till 2  and then increasing till 4.1 .  

 

Figure 9 shows the variation of dimensionless radial stress in radial direction for different values of 

p . It is seen that the nature is bell shaped. The radial stress is compressive throughout the 

cylinder. With increase in the inhomogeneity parameter p , the absolute value of radial stress is 

decreasing.     

 

Figures 10, 11 and 12 show the variation of dimensionless tangential stress, axial stress and shear 

stress respectively in radial direction for different values of p . With increase in the inhomogeneity 
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parameter p ,  it is seen that the magnitude of axial stress in less as compared to that of tangential 

stress and shear stress. The axial stress is compressive throughout, whereas crest and trough are 

observed in tangential stress and shear stress.  

 

 

Figure 7. Variation of dimensionless temperature with   for different values of p  

 

 

Figure 8. Variation of dimensionless displacement w  with   for different values of p  

 

 

Figure 9. Variation of dimensionless radial stress with   for different values of p  
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Figure 710 Variation of dimensionless tangential stress with   for different values of p  

 

 

Figure 11. Variation of dimensionless axial stress with   for different values of p  

 

 

Figure 12. Variation of dimensionless shear stress with   for different values of p  

 

5.  Conclusion 

In the present paper, we have determined temperature distribution with internal heat generation 

and thermal stresses in a thick hollow cylinder subjected to sectional heating on the curved surface. 
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The material properties except Poisson’s ratio and density are considered to vary by simple power 

law along axial direction. We have obtained the solution for transient two-dimensional 

conductivity equation with internal heat generation and its associated thermal stresses for a thick 

hollow cylinder with inhomogeneous material properties. The solutions are obtained in the form of 

Bessel’s and trigonometric functions. Numerical computations are carried out for a mixture of 

copper and tin metals in the ratio 70:30 respectively and the transient state temperature field and 

thermal stresses are examined. Furthermore the influence of inhomogeneity grading is investigated 

by changing parameter p .      

 

During our investigation, the following results are obtained.  

 

(i)  The nature of temperature, displacement and all stresses is observed to be sinusoidal when 

plotted along radial direction for different values of dimensionless thickness .  

(ii) The magnitude of temperature, displacement and all stresses is found to be high for 

homogeneous cylinder as compared to nonhomogeneous cylinder. 

(iii) By increasing the inhomogeneity parameter p , it is observed that the absolute values of 

temperature and displacement are high near the outer radius due to external sectional heating 

at the outer edge, and are gradually decreasing towards the inner radius. 

(iv)  By increasing the inhomogeneity parameter p , it is observed that  

(a)   The magnitude of radial and axial stress at 4p  attains minimum compared to 0p , 

due to compressive force at the central region along radial direction. 

(b)   The magnitude of tangential and shear stress for 0p  at ,3,5.1  attains minimum 

compared to 4p , due to compressive force at the central region along radial direction. 

 

Hence, we conclude that, fluctuations in the temperature distribution as well as thermoelastic 

quantities are observed in the neighborhood region of the internal heat generation, due to the 

presence of internal heat generation.  
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Appendix A 

 

Consider the differential equation  

2 2

1 2 1 20, [ , ], 0, 0,z z z h h h h                                              (A1) 

with boundary conditions 
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The general solution of (A1) is given by 

.0),logsin()logcos()( 21  zzCzCz                                               (A3) 

where 1C  and 2C  are arbitrary constants. 

To obtain the solution of (A1) that satisfies conditions (A2), we have 

 

,0)logsin()logcos( 1211  hChC                                                          (A4) 

.0)logsin()logcos( 2221  hChC                                                         (A5) 

 

From (A4) and (A5), we get 
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Then, the function given by (A3) is a solution of (A1) subject to conditions (A2), if    is a root of 

the transcendental equation  

 

.0)logcos()logsin()logcos()logsin( 1221  hhhh                             (A7)  

 

Hence, we take  ( 1,2,3,...)i i   to be the real and positive roots of equation (A7)  

 

From equation (A4) and (A5), we have 

 

 ,)logcos()logsin()logsin()logcos(
)logsin(

)( 11
1

1 hzhz
h

C
z iiii

i
i 


      (A8) 

 1
2 2

2

( ) cos( log )sin( log ) sin( log )cos( log ) ,
sin( log )

i i i i i

i

C
z z h z h

h
    


     (A9) 

 



966    V. R. Manthena et al. 

 

We define 
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Then,   

                                                ).logsin()logcos()( zWzZzS iiiii                                     (A10) 

 

is taken to be the solution of (A1) - (A2). 

 

By Sturm-Liouville theory (Birkoff and Rota 1989), the functions of the system (A10) are 

orthogonal on the interval ],[ 21 hh  with weight function z, that is 
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where ,)()(
2

2
zSzS ii    is the weighted 2L  norm. 

If a function f(z) and its first derivative are piecewise continuous on the interval ],[ 21 hh , then the 

relation 
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defines a linear integral transform. 

 

To derive the inversion formula for this transform, let 
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On multiplying equation (A13) by )( zSz i  and integrating both sides with respect to z, we obtain 

the coefficients as 
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Hence, the inversion formula becomes 
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Transform of the Differential Operator 



AAM: Intern. J., Vol. 12, Issue 2 (December 2017)   967 

 

 

 

We derive the transform of the following operator 
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Let I be the transform of first two terms of D, that is 
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On solving I, we get 
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Since S satisfies equation (A1), we have 
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Also from (A2), we get 
 

,0)()( 21  hShS ii   

Hence, 

).(]/[)()()()()( 222
111222 zfzTfhfhShhfhShI iiii    

 

Therefore, 
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