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Abstract

The purpose of this article is to discuss solutions of different initial value problems (IVPs) for
system of fractional differential equations. These equations appear in physical processes such as
transportation and anomalous diffusion. The iteration method is successfully developed and series
solution of IVPs at hand are obtained which converges to a function known as solution function of
the IVPs. Graphical representation of solution of some IVPs are given using Mathematical software
“MATLAB”.
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1. Introduction

Many problems in mathematical, physical, chemical, biological sciences and technologies are gov-
erned by differential equations. In recent years, fractional differential equations have attracted
many researchers due to their applications in the field of visco elasticity, feed back amplifiers, elec-
trical circuits, electroanalytical chemistry, fractional multipoles, etc. (see Debnath (2003), Metzler
and Klafter (2000), Daftardar-Gejji and Bhalekar (2006)).

Various methods such as Green’s function method (Seneider and Wyss (1989)), Finite sine trans-
form method by Agrawal (2002), method of images and Fourier transform (Metzler and Klafter
(2000)), separation of variables (Daftardar-Gejji and Bhalekar (2006)), Adomian decomposition
method (Adomian (1994), Adomian (1998), Babolian, Vahidi and Shoja (2014), Dhaigude, Jadhav-
Kanade and Mahmood (2014), Jawad (2015), Khodabakhshi, Vaezpour and Baleanu (2014), Kucuk,
Yidiger and Celik (2014), Pratiban and Balachandran (2012), Saha and Ray (2014)), and an iter-
ative method (Bhalekar, Daftardar-Gejji (2008), Daftardar-Gejji and Bhalekar (2008), Daftardar-
Gejji and Jafari (2006), Dhaigude and Dhaigude (2012), Dhaigude and Nikam (2012), Dhaigude,
Kanade and Dhaigude (2016), Kanade and Dhaigude (2016), Kokak and Yeildirim (2011), ur Rah-
man, Yaseen and Kamran (2016)) are successfully applied to obtain solution of varies problems.

We organize the paper as follows: In Section 2 useful definitions of fractional calculus are given. In
Section 3, we develop the iterative method for system of equations. Section 4 consists of solutions
of initial value problems for system of fractional partial differential equations. In Section 5 the
solutions of initial value problems for system of fractional transport equations as well as fractional
Burger’s equations are obtained as an application of above iterative method. Concluding remarks
are in the last section.

2. Preliminaries

We define the Caputo partial fractional derivative. It follows the Riemann-Liouville fractional in-
tegral (see Podlubny (1999), Khilbas, Shivastava and Trujillo (2006)).

Definition 2.1.

The (left sided) Riemann-Liouville fractional integral of order µ, µ > 0 of a function u(x, t) ∈
Cα, α ≥ −1 is denoted by Iµt u(x, t) and is defined as

Iµt u(x, t) =
1

Γ(µ)

∫ t

0
(t− τ)µ−1u(x, τ)dτ, t > 0.

Definition 2.2.

The (left sided) Caputo partial fractional derivative of a function u(x, t) ∈ Cml , with respect to “t”
is denoted by Dµ

t u(x, t) and is defined as

Dµ
t u(x, t) =


∂m

∂tmu(x, t), µ = m, m ∈ N,

Im−µt
∂m

∂tmu(x, t), m− 1 < µ < m,
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where Iµt u(x, t) is Riemann-Liouville fractional integral of order µ, µ > 0.

Note that,

Iµt D
µ
t u(x, t) = u(x, t)−

m−1∑
k=0

∂ku

∂tk
u(x, 0)

tk

k!
, m− 1 < µ ≤ m, m ∈ N,

and

Iµt t
ν =

Γ(ν + 1)

Γ(µ+ ν + 1)
tν+µ.

Mittag-Leffler Function (Podlubny (1999)).

In 1902, Mittag-Leffler introduced the one parameter function commonly known as Mittag-Leffler
function which is denoted by Eα(z) and defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, (α > 0). (1)

�

Example 2.4.

If we put α = 1 then equation (1) becomes,

E1(z) =

∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez.

Example 2.5.

If we put α = 2 then equation (1) becomes,

E2(z
2) =

∞∑
k=0

z2k

Γ(2k + 1)
=

∞∑
k=0

z2k

(2k!)
= cosh z.

3. Analysis of Iterative Method

Now we extend the iterative method for system of equations developed in Daftardar-Gejji and
Jafari (2006). Consider the system of functional equations,

u(x, t) = f(x, t) + L(u(x, t)) +N(u(x, t), v(x, t)), (2)
v(x, t) = g(x, t) +M(v(x, t)) + P (u(x, t), v(x, t)), (3)

where f(x, t) and g(x, t) are known continuous functions. Note that L,M are linear and N,P are
linear in lower order or nonlinear operators in lower order respectively. Consider series solutions
of the equations (2) and (3) as

u(x, t) =
∑

ui(x, t) = u0 + u1 + u2 + ..., (4)

v(x, t) =
∑

vi(x, t) = v0 + v1 + v2 + ... . (5)
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Since L and M are linear operators, we have,

L

( ∞∑
i=0

ui(x, t)

)
= L(u0(x, t)) + L(u1(x, t)) + ..., (6)

M

( ∞∑
i=0

vi(x, t)

)
= M(v0(x, t)) +M(v1(x, t)) + ... . (7)

Decompose nonlinear operators N and P as in Gejji and Jafari (2006),

N

( ∞∑
i=0

ui,

∞∑
i=0

vi

)
= N(u0, v0) +

∞∑
i=1

N
 i∑
j=0

uj ,

i∑
j=0

vj

−N
 i−1∑
j=0

uj ,

i−1∑
j=0

vj

 , (8)

P

( ∞∑
i=0

vi,

∞∑
i=0

ui

)
= P (v0, u0) +

∞∑
i=1

P
 i∑
j=0

vj ,

i∑
j=0

uj

− P
 i−1∑
j=0

vj ,

i−1∑
j=0

uj

 . (9)

From Equations (4), (6) and (8), then Equation (2) is equivalent to

∞∑
i=0

ui = f(x, t) +

∞∑
i=0

L(ui) +N(u0, v0)+

∞∑
i=1

N
 i∑
j=0

uj ,

i∑
j=0

vj

−N
 i−1∑
j=0

uj ,

i−1∑
j=0

vj

 , (10)

and from Equations (5), (7) and (9), then Equation (3) is equivalent to

∞∑
i=0

vi = g(x, t) +

∞∑
i=0

M(vi) + P (v0, u0)+

∞∑
i=1

P
 i∑
j=0

vj ,

i∑
j=0

uj

− P
 i−1∑
j=0

vj ,

i−1∑
j=0

uj

 , (11)

u0 + u1 + .. = f + L(u0) + L(u1) + L(u2) + ...+N(u0, v0) + [N(u0 + u1, v0 + v1)

−N(u0, v0)] + [N(u0 + u1 + u2, v0 + v1 + v2)−N(u0 + u1, v0 + v1)]

+ [N(u0 + u1 + u2 + u3, v0 + v1 + v2 + v3)−
N(u0 + u1 + u2, v0 + v1 + v2)] + ...,

and

v0 + v1 + .. = g +M(v0) +M(v1) +M(v2) + ...+ P (v0, u0) + [P (v0 + v1, u0 + u1)

− P (v0 + u0)] + [P (v0 + v1 + v2, u0 + u1 + u2)− P (v0 + v1, u0 + u1)]

+ [P (v0 + v1 + v2 + v3, u0 + u1 + u2 + u3)−
P (v0 + v1 + v2, u0 + u1 + u2)] + ... .
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Now we define the iterations as follows:

u0 = f,

v0 = g,

u1 = L(u0) +N(u0, v0),

v1 = M(v0) + P (v0, u0),

u2 = L(u1) + [N(u0 + u1, v0 + v1)−N(u0, v0)],

v2 = M(v1) + [P (v0 + v1, u0 + u1)− P (v0, u0)],

um+1 = L(um) + [N(u0 + ...+ um, v0 + ...+, vm)−N(u0 + ...+ um−1,

v0 + ...+, vm−1)],m = 0, 1, 2, ...,

vm+1 = M(vm) + [P (v0 + ...+ vm, u0 + ...+ um)− P (v0 + ...+ vm−1,

u0 + ...+ um−1)],m = 0, 1, 2, ... .

4. Fractional Initial Value Problem

Consider the IVP for general system of fractional partial differential equations

Dα
t u(x, t) =

n∑
j=1

ajD
δj
xj
u(x, t) +

n∑
j=1

bjD
βj
xj
u(x, t)+

n∑
j=1

cjD
γj
xj
u(x, t) +N(u(x, t), v(x, t)); (12)

Dα
t v(x, t) =

n∑
j=1

a∗jD
δj
xj
v(x, t) +

n∑
j=1

b∗jD
βj
xj
v(x, t)+

n∑
j=1

c∗jD
γj
xj
v(x, t) + P (u(x, t), v(x, t)); (13)

m− 1 < α ≤ m, 3 < δj ≤ 4, 1 < βj ≤ 2, 0 < γj ≤ 1,m ∈ N ,
where x = (x1, x2, ...xn) ∈ Rn, aj , bj , cj and a∗j , b

∗
j , c
∗
j are real constants, 0 ≤ t ≤ T, with initial

conditions

∂ku(x, 0)

∂tk
= hk(x), 0 ≤ k ≤ m− 1, (14)

∂kv(x, 0)

∂tk
= h∗k(x), 0 ≤ k ≤ m− 1. (15)

Applying inverse operator Iαt to both Equations (12) and (13) on both sides we obtain,

Iαt D
α
t u(x, t) = Iαt

( n∑
j=1

ajD
δj
xj
u(x, t) +

n∑
j=1

bjD
βj
xj
u(x, t)

+

n∑
j=1

cjD
γj
xj
u(x, t) +N(u(x, t), v(x, t))

)
,
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and

Iαt D
α
t v(x, t) = Iαt

( n∑
j=1

a∗jD
δj
xj
v(x, t) +

n∑
j=1

b∗jD
βj
xj
v(x, t)

+

n∑
j=1

c∗jD
γj
xj
v(x, t) + P (u(x, t), v(x, t))

)
.

Using initial conditions (14) and (15), we get,

u(x, t) =

m−1∑
k=0

hk(x)
tk

k!
+Iαt

( n∑
j=1

ajD
δj
xj
u(x, t) +

n∑
j=1

bjD
βj
xj
u(x, t)+

n∑
j=1

cjD
γj
xj
u(x, t) +N(u(x, t), v(x, t))

)
, (16)

v(x, t) =

m−1∑
k=0

h∗k(x)
tk

k!
+Iαt

( n∑
j=1

a∗jD
δj
xj
v(x, t) +

n∑
j=1

b∗jD
βj
xj
v(x, t)+

n∑
j=1

c∗jD
γj
xj
v(x, t) + P (u(x, t), v(x, t))

)
. (17)

Equations (16) and (17) have the forms of Equations (2) and (3) with

f(x, t) =

m−1∑
k=0

hk(x)
tk

k!
, g(x, t) =

m−1∑
k=0

h∗k(x)
tk

k!
,

L(u(x, t)) = Iαt

( n∑
j=1

ajD
δj
xj
u(x, t) +

n∑
j=1

bjD
βj
xj
u(x, t) +

n∑
j=1

cjD
γj
xj
u(x, t)

)
,

M(v(x, t)) = Iαt

( n∑
j=1

a∗jD
δj
xj
v(x, t) +

n∑
j=1

b∗jD
βj
xj
v(x, t) +

n∑
j=1

c∗jD
γj
xj
v(x, t)

)
,

N(u(x, t), v(x, t)) = Iαt

(
N(u(x, t), v(x, t))

)
,

P (u(x, t), v(x, t)) = Iαt

(
P (u(x, t), v(x, t))

)
,

and can be solved by the iteration method developed in Section 2.

5. Applications

In this section, we discuss some illustrative examples for linear and nonlinear system of fractional
transport equations and fractional Burger’s equations, respectively.
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5.1. System of Time Fractional Transport Equation

These equations appear in the mathematical description of many phenomena in classical and sta-
tistical mechanics. Now we consider an example of special system of time fractional transport
equations with suitable initial conditions.

Example 5.1.

Consider the linear system of fractional transport equations,

Dα
t u+Dxu+ u− v = 0, (18)

Dα
t v +Dxv − u+ v = 0, 0 < α ≤ 1, (19)

with initial conditions

u(x, 0) = sinhx, (20)
v(x, 0) = coshx. (21)

Solution:

The system of equations can be written in operator form

Dα
t u = L(u) +N(u, v),

Dα
t u = M(v) + P (v, u),

where L = − ∂
∂x , N(u, v) = −u+ v, M = − ∂

∂x and P (u, v) = −v + u. Here the operators and L,M
are linear operators as well as the operators N,P are linear in lower order. We look for the series
solution

u(x, t) =

∞∑
i=0

ui(x, t), (22)

v(x, t) =

∞∑
i=0

vi(x, t). (23)

Applying iterative method developed in Section 3, we get,

u(x, t) =u(x, 0) +

∞∑
i=0

L(ui) +N(u0, v0)+

∞∑
i=1

N
 i∑
j=0

uj ,

i∑
j=0

vj

−N
 i−1∑
j=0

uj ,

i−1∑
j=0

vj

 ,

v(x, t) =v(x, 0) +

∞∑
i=0

M(vi) + P (v0, u0)+

∞∑
i=1

P
 i∑
j=0

vj ,

i∑
j=0

uj

− P
 i−1∑
j=0

vj ,

i−1∑
j=0

uj

 .
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Comparing both sides we get,

u0 =u(x, 0) = sinhx,

v0 =v(x, 0) = coshx,

u1 =Iαt

[
L(u0)

]
+ Iαt

[
N(u0, v0)

]
= (− sinhx)

tα

Γ(α+ 1)
,

v1 =Iαt

[
M(v0)

]
+ Iαt

[
P (v0, u0)

]
= (− coshx)

tα

Γ(α+ 1)
,

u2 =Iαt

[
L(u1)

]
+ Iαt

[
N(u0 + u1, v0 + v1)−N(u0, v0)

]
= (sinhx)

(tα)2

Γ(2α+ 1)
,

v2 =Iαt

[
M(v1)

]
+ Iαt

[
P (v0 + v1, u0 + u1)− P (v0, u0)

]
= (coshx)

(tα)2

Γ(2α+ 1)

and so on in general, we get,

ui =Iαt

[
L(ui−1)

]
+ Iαt

[
N(u0 + ...+ ui−1, v0 + ...+ vi−1)−

N(u0 + ...+ ui−2, v0 + ...+ vi−2)

]
=(−1)i(sinhx)i

(tα)i

Γ(iα+ 1)
,

vi =Iαt

[
M(vi−1)

]
+ Iαt

[
P (v0 + ...+ vi−1, u0 + ...+ ui−1)−

P (u0 + ...+ ui−2, u0 + ...+ ui−2)

]
=(−1)i(coshx)

(tα)i

Γ(iα+ 1)
.

Substituting u0, u1, u2, u3, ... and v0, v1, v2, ... in (22) and (23), we get the solution of the system
(18)- (21)

u(x, t) = sinhx

[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= sinhxEα(−tα),

v(x, t) = coshx

[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= coshxEα(−tα). �

5.2. System of Time Fractional Burger’s Equations

Fractional diffusion equations play an important role in describing anomalous diffusion. The mod-
eling of the dynamics of anomalous process by means of fractional differential equations has pro-
vided good results in the field of science and engineering Khilbas, Shivastava and Trujillo (2006),
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Figure 1. The graphical representation of the solution of Example 5.1 for u(x, t), α = 0.9 and α = 1.

Figure 2. The graphical representation of the solution of Example 5.1 for v(x, t), α = 0.9 and α = 1.

Zaslavsky (2002) and references therein. Some of them are motion of tracer particles in turbulent
flow Richardson (1926), chaotic dynamics Shlesinger (1993).

Fractional diffusion equations also account for typical anomalous features which may be observed
in many systems such as the case of dispersive transport in amorphous semiconductors Metzler
and Klafter (2000) as well as diffusion of free carriers in multiple trapping Bisquert (2003).

Now we study some special systems of anomalous diffusion in the next examples with suitable
initial conditions.

Example 5.2.

Consider the IVP for nonlinear system of fractional Burger’s equations,

Dα
t u−D2

xu+ uDxu− uv = 0, (24)
Dα
t v −D2

xv + vDxv + uv = 0, 0 < α ≤ 1, (25)

with initial condition

u(x, 0) = sinx, (26)
v(x, 0) = cosx. (27)

Solution:

The IVP (24)- (25) can be written in operator form

Dα
t u = L(u) +N(u, v),

Dα
t v = M(v) + P (v, u),

where L = ∂2

∂x2 , N(u, v) = −u∂u∂x + uv, M = ∂2

∂x2 and P (u, v) = −v ∂v∂x − uv.
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We look for the series solution

u(x, t) =

∞∑
i=0

ui(x, t), (28)

v(x, t) =

∞∑
i=0

vi(x, t). (29)

Applying the iterative method developed in Section 3, we get,

u0 = u(x, 0) = sinx,

v0 = v(x, 0) = cosx,

u1 = Iαt

[
L(u0)

]
+ Iαt

[
N(u0, v0)

]
= − sinx

tα

Γ(α+ 1)
,

v1 = Iαt

[
M(v0)

]
+ Iαt

[
P (v0, u0)

]
= − cosx

tα

Γ(α+ 1)
,

u2 = Iαt

[
L(u1)

]
+ Iαt

[
N(u0 + u1, v0 + v1)−N(u0, v0)

]
= sinx

(tα)2

Γ(2α+ 1)
,

v2 = Iαt

[
M(v1)

]
+ Iαt

[
P (v0 + v1, u0 + u1)− P (v0, u0)

]
= cosx

(tα)2

Γ(2α+ 1)
.

And so on in general, we get,

ui = Iαt

[
L(ui−1)

]
+ Iαt

[
N(u0 + ...+ ui−1, v0 + ...vi−1)−

N(u0 + ...+ ui−2, v0 + ...vi−2)

]
= (−1)i(sinx)i

(tα)i

Γ(iα+ 1)
,

vi = Iαt

[
M(vi−1)

]
+ Iαt

[
P (v0 + ...+ vi−1, u0 + ...vi−1)−

P (v0 + ...+ vi−2, u0 + ...ui−2)

]
= (−1)i(cosx)

(tα)i

Γ(iα+ 1)
.

Substituting u0, u1, u2, ... and v0, v1, v2, ... in (28) and (29), we get the solution of IVP (24) and (25)
with initial conditions (26) and (27) is

u(x, t) = sinx

[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= sinxEα(−tα),

v(x, t) = cosx

[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= cosxEα(−tα). �
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Figure 3. The graphical representation of the solution of Example 5.2 for u(x, t), α = 0.9 and α = 1.

Figure 4. The graphical representation of the solution of Example 5.2 for v(x, t), α = 0.9 and α = 1.

Figure 5. The graphical representation of the solution of Example 5.3 for u(x, t), α = 0.9 and α = 1.

Example 5.3.

Consider the IVP for nonlinear system of fractional Burger’s equations,

Dα
t u+D2

xu+ 2uDxu+Dx(uv) = 0, (30)
Dα
t v +D2

xv + 2vDxv +Dx(uv) = 0, 0 < α ≤ 1, (31)

with initial condition

u(x, 0) = ex, (32)
v(x, 0) = −ex. (33)

Solution:

The above system can be written in operator form

Dα
t u = L(u) +N(u, v),

Dα
t v = M(v) + P (u, v),

where L = − ∂2

∂x2 , N(u, v) = −2u∂u∂x −
∂(uv)
∂x , M = − ∂2

∂x2 and P (u, v) = −2v ∂v∂x −
∂(uv)
∂x . We look for
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Figure 6. The graphical representation of the solution of Example 5.3 for v(x, t), α = 0.9 and α = 1.

the series solution

u(x, t) =

∞∑
i=0

ui(x, t), (34)

v(x, t) =

∞∑
j=0

vj(x, t). (35)

Applying iterative method developed in Section 3, we get,

u0 = u(x, 0) = ex,

v0 = v(x, 0) = −ex,

u1 = Iαt

[
L(u0)

]
+ Iαt

[
N(u0, v0)

]
= −ex tα

Γ(α+ 1)
,

v1 = Iαt

[
M(v0)

]
+ Iαt

[
P (v0, u0)

]
= ex

tα

Γ(α+ 1)
,

u2 = Iαt

[
L(u1)

]
+ Iαt

[
N(u0 + u1, v0 + v1)−N(u0, v0)

]
= ex

(tα)2

Γ(2α+ 1)
,

v2 = Iαt

[
M(v1)

]
+ Iαt

[
P (v0 + v1, u0 + u1)− P (v0, u0)

]
= −ex (tα)2

Γ(2α+ 1)
.

And so on in general, we get,

ui = Iαt

[
L(ui−1)

]
+ Iαt

[
N(u0 + ...+ ui−1, v0 + ...+ vi−1)−

N(u0 + ...+ ui−2, v0 + ...+ vi−2)

]
= (−1)i(ex)i

(tα)i

Γ(iα+ 1)
,

vi = Iαt

[
M(vi−1)

]
+ Iαt

[
P (v0 + ...+ vi−1, u0 + ...+ ui−1)−

P (v0 + ...+ vi−2, u0 + ...+ ui−2)

]
= (−1)i(−ex)

(tα)i

Γ(jα+ 1)
.

Substituting u0, u1, u2, ... and v0, v1, v2, ... in (34) and (35) we get the solution of the IVP (30)− (31)
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with initial conditions (32), (33) is

u(x, t) =ex
[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= exEα(−tα),

v(x, t) =− ex
[ ∞∑
i=0

(−1)i
(tα)i

Γ(iα+ 1)

]
= (−ex)Eα(−tα). �

6. Conclusion

In this paper we have developed an iterative method for system of fractional partial differential
equations with suitable initial conditions. This method is applied to some IVPs and obtained ex-
act and approximate analytical solutions. Graphical representations of solutions of some IVPs are
given using MATLAB. We have shown that the method is capable of reducing volume of com-
putational work as compared to other classical methods, and maintain the high level of accuracy
of numerical results. Also it can be seen that Iterative method has a clear advantage over other
methods for solving nonlinear problems. We conclude that the iterative method can be considered
as a nice refinement in existing numerical techniques and have wide applications.

Acknowledgement:

The authors are thankful to both the referees and the Editor-in-Chief Professor Aliakbar Montazer
Haghighi for their valuable suggestions and comments towards the improvement of this paper.

REFERENCES

Adomain, G. (1994) . Solving frontier problems of physics, The Decomposition Method, Kluwer,
Boston.

Adomain, G. (1998) . Solution of nonlinear partial differential equations, Appl. Math. Lett., Vol.
11, No. 3, pp. 121–123.

Agrawal, O. P. (2002) . Solution for a fractional diffusion-wave equation defined in a bounded
domain, Nonlinear Dynamics, Vol. 29, pp. 145–155.

Babolian, E., Vahidi, A. R and Shoja, A. (2014). An efficient method for nonlinear fractional dif-
ferential equations: Combination of the adomian decomposition method and spectral method,
Indian J. Pure Appl. Math., Vol. 45, No. 6, pp. 1017–1028.

Bhalekar, S. and Daftardar-Gejji, V. (2008) . New iterative method: Applications to partial differ-
ential equations, Appl. Math. Comp., Vol. 203, pp. 778–783.

Bisquert, J. (2003) . Fractional Diffusion in the Multiple-Trapping Regime and Revision of the
Equivalence with the Continuous-Time Random Walk, Phys. Rev. Lett., Vol. 91, No. 1, pp.
0106021 – 0106024.



272 D.B. Dhaigude et al.

Daftardar-Gejji, V. and Bhalekar, S. (2008) . Solving fractional diffusion-wave equations using a
new iterative method, Fractional Calculus and Appl. Anal., Vol. 11, No. 2, pp. 193–202.

Daftardar-Gejji, V. and Jafari, H. (2006a) . An iterative method for solving nonlinear functional
equations, J. Math. Anal. Appl., Vol. 316, pp. 753–763.

Daftardar-Gejji, V. and Jafari, H. (2006b) . Boundary value problems for fractional diffusion-wave
equations, Australian J. of Math. Anal. Appl., Vol. 3, pp. 1–18.

Debnath, L. (2003) . Recent applications of fractional calculus to science and engineering, Int. J.
Math. Sci., pp. 1–30.

Dhaigude, C. D. and Nikam, V. R. (2012) . Solution of fractional partial differential equation using
iterative method, Fract. Calc. Appl. Anal., Vol. 15, pp. 684–699.

Dhaigude, D. B., Jadhav-Kanade, Swati G. and Mahmood, L. J. (2014) . Solution of space time
fractional partial differential equation by Adomiam decomposition method, Bull. Marathwada
Math. Soc., Vol. 15, No. 1, pp. 26–37

Dhaigude, D. B. and Dhaigude, C. D. (2012) . Linear initial value problem for fractional partial
differential equations, Bull. Marathwada Math. Soc., Vol. 13, No. 2, pp. 20–36.

Dhaigude, D. B., Kanade, Swati N. and Dhaigude, C. D. (2016) . Solution of initial value problem
for fractional differential equation: An iterative method, Mathematical Sciences International
Research Journal, Vol. 5, Spl issue, pp. 64–70, ISSN 2278-8697.

Jawad, Adham M. (2015) . Adomian decomposition method for solving fractional differential
equations, International Research Journal of Engineering and Technology, Vol. 2, No. 6, pp.
296–306.

Kanade, S. N. and Dhaigude, D. B. (2016) . Solutions of Cauchy problem for fractional diffusion-
wave equations: An Iterative method, Kulwadibhushan Shivchhatrapati: International Multi-
disciplinary Research Journal, Vol. 2, No. 1, pp. 54-62, ISSN 2456-3471.

Khodabakhshi, N., Vaezpouer, S. M. and Baleanu, D. (2014) . Numerical Solutions of the initial
value problem for fractional differential equation by modifications of the Adomian decompo-
sition method, Frac. Cal. and Appl. Analysis, Vol. 17, No. 2, pp. 382-400.

Kilbas, A. A., Srivastava H. M. and Trujillo, J. J. (2006) . Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam.

Kocak, H. and Yildirim, A. (2011) . An efficient new iterative method for finding exact solution
of nonlinear time-fractional partial differential equation, Nonlinear Analysis: Modeling and
Control, Vol. 16, No. 4, pp. 403–414.

Kucuk, G. D., Yidider, M. and Celik, E. (2014) . Numerical solutions of fractional partial
differential-algebric equation by Adomian decomposition method and Multivariate Pade ap-
proximation, British Journal of Applied Science and Technology, Vol. 4, No. 25, pp. 3653–
3664.

Metzler, R. and Klafter, J. (2000) . Boundary value problems for fractional diffusion equations,
Physica A, Vol. 278, pp. 107–125.

Metzler, R. and Klafter, J. (2000) . The Random Walk’s Guide to Anomalous Diffusion: A Frac-
tional Dynamics Approach, Phys. Rep., Vol. 339, No. 1, 1–77.

Parthiban, V. and Balachandran, K. (2014) . Solutions of system of fractional partial differential
equations, Applications and Applied Mathematics: An International Journal, Vol. 8, No. 1,
pp. 289–304.



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 273

Podlubny, I. (1999) . Fractional Differential Equations, Academic Press, San Diego.
Richardson, L. F. (1926) . Atmospheric Diffusion shown on a Distance-Neighbour Graph, Proc.

Roy. Soc. London Series A, Vol. 110, pp. 709–737.
Saha, S. and Ray (2014) . New approach for general convergence of the Adomian method, World

Applied Sciences Journal, Vol. 32, No. 11, pp. 2264–2268.
Scneider, W. R. and Wyss, W. (1989) . Fractional diffusion and wave equations, J. Math. Phys.,

Vol. 30, No. 1, pp. 134–144.
Shlesinger, M. F., Zaslavsky, G. M. and Klafter, J. (1993) . Strange Kinetics, Nature, Vol. 363, pp.

31–37.
Rehman, U., Shafeeq M., Yaseen, M. and Kamran, T. (2018) . New Iterative Method for Solution

of System of linear Differential Equations, International Journal of Science and Research, Vol.
5, No. 2, pp. 1287–1289.

Zaslavsky, G. M. (2002). Chaos, Fractional Kinetics and Anomalous Transport, Phys. Rep., Vol.
371, pp. 461–580.


