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Abstract 

 
A joint model for multivariate mixed ordinal and continuous outcomes with potentially non-random 
missing values in both types of responses is proposed. A full likelihood-based approach is used to obtain 
maximum likelihood estimates of the model parameters. Some modified Pearson residuals are also 
introduced where the correlation between responses are taken into account. The joint modelling of 
responses with the possibility of missing values requires caution since the interpretation of the fitted 
model highly depends on the missing mechanism assumptions that are unexaminable in a fundamental 
sense.  A common way to investigate the influence of  perturbations of model components on the key 
results of the analysis is to compare the results derived from the original and perturbed models using an 
influence maximal normal curvatures. For This, influence of a small perturbation of elements of the 
covariance structure of the model on maximal normal curvature is also studied. To illustrate the utility of 
the proposed model, a large data set excerpted from the British Household Panel Survey (BHPS) is 
analyzed. For these data, the simultaneous effects of some covariates on life satisfaction, income and the 
amount of money spent on leisure activities per month as three mixed correlated responses are explored. 
 
Keywords: Joint Modelling; Latent Variable; Maximum Likelihood; Missing Responses; 

Mixed Ordinal and Continuous Responses  
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1.   Introduction 
 
Outcomes related to mixed correlated ordinal and continuous data, are pervasive and research on 
analyzing them needs to be promoted. The data used in this paper is extracted from wave 15 of 
the British Household Panel Survey (BHPS); a survey of adult Britons, being carried out 
annually since 1991 by the ESRC UK Studies Center with the Institute for Social and 
Economical Research at the University of Essex. In these data, life satisfaction status (ordinal 
response), Income (continuous response) and the amount of money spent on leisure activities per 
month including money spent on entertainment and hobbies (ordinal response) are the mixed 
correlated responses and the effect of explanatory variables on these responses should be 
investigated simultaneously. Consequently, we need to consider a method in which these 
variables can be modelled jointly. 
 
For joint modelling of responses, one method is to use the general location model of Olkin and 
Tate (1961), where the joint distribution of the continuous and categorical variables is 
decomposed into a marginal multinomial distribution for the categorical variables and a 
conditional multivariate normal distribution for the continuous variables, given the categorical 
variables [for a mixed poisson and continuous responses where Olkin and Tate's method is used 
see Yang et al. (2007) and for joint modelling of mixed outcomes using latent variables see 
McCulloch (2007)]. 

 
A second method for joint modelling is to decompose the joint distribution as a multivariate 
marginal distribution for the continuous responses and a conditional distribution for categorical 
variables given the continuous variables. Cox and Wermuth (1992) empirically examined the 
choice between these two methods. The third method uses simultaneous modelling of categorical 
and continuous variables to take into account the association between the responses by the 
correlation between errors in the model for responses. For more details of this approach see, for 
example, Heckman (1978) in which a general model for simultaneously analyzing two mixed 
correlated responses is introduced and Catalano and Ryan (1992) who extended and used the 
model for a cluster of discrete and continuous outcomes 
 
Rubin (1976), Little and Rubin (2002) and Diggle and Kenward (1994) made important 
distinctions between the various types of missing mechanisms for each of the above mentioned 
patterns. They define the missing mechanism as missing completely at random (MCAR) if 
missingness is dependent neither on the observed responses nor on the missing responses, and 
missing at random (MAR) if, given the observed responses, it is not dependent on the missing 
responses. Missingness is defined as non-random if it depends on the unobserved responses. 
From a likelihood point of view MCAR and MAR are ignorable but not missing at random 
(NMAR) is non-ignorable. 
 
 For mixed data with missing outcomes, Little and Schuchter (1987) and Fitzmaurice and Laird 
(1997) used the general location model of Olkin and Tate (1961) with the assumption of 
missingness at random (MAR) to justify ignoring the missing data mechanism. This means that 
they used all available responses, without a model for missing mechanism, to obtain parameter 
estimates using the EM (Expectation Maximization) algorithm. A model for mixed continuous 
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and discrete binary responses with possibility of missing responses is introduced by Ganjali 
(2003). Ganjali and Shafie (2006) present a transition model for an ordered cluster of mixed 
continuous and discrete binary responses with non-monotone missingness. 
  
The aim of this paper is to use and extend an approach similar to that of Heckman (1978), which 
jointly models a nominal and a continuous variable, for joint modelling of multivariate ordinal 
and continuous outcomes. The model is described in terms of a correlated multivariate normal 
distribution for the underlying latent variables of ordinal and continuous responses with 
potentially non-random missing values in both types of responses. Some modified Pearson 
residuals are also presented to detect outliers where for accounting them the correlations between 
responses are taken into account. 
 
 The likelihood and the modified residuals are presented in section 2. A sensitivity analysis of the 
model is provided in Section 3. Application of the model on BHPS data is presented in section 4. 
Finally, some concluding remarks are given in Section 5. 

 
 
2.    Model, Likelihood and Residuals 
  
 
2.1.  Model and Likelihood 
 
We use ijY  to denote j th ordinal response with jc  levels for the i th individual defined as,  
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where ni 1,...,= , 11,...,= Mj . jjcj 1,1 ,...,   are the cut-point parameters and *

ijY  denotes the 

underlying latent variable for ijY . The ordinal response vector and the continuous response vector 

for the i th individual are denoted by ),...,(=
11 iMii YYY  and ),...,(= 1)1(  iMMii ZZZ , respectively. 

Typically, when missing data occur in an outcome, assume ),...,(=
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ijyR as  
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where *

ijyR  and *

ijzR  denote the underlying latent variables of the non-response mechanisms for 

the ordinal and continuous variables, respectively. 
 
 
The joint model takes the form:  
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where iX  is the design matrix for the i th individual. In the model presented above, the vector of 

parameters ),(=   where ),...,,,...,(= 11 MM   and ),...,(=
11,

1
1,1  MMc  should be 

estimated. The vector, j  for MMj 1,...,= 1  , includes an intercept parameter but j , for 

11,...,= Mj , due to having cutpoint parameters, are assumed not to include any intercept. 
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Note, if one of the matrixes 

24231413 ,,,   is not zero, then the missing mechanism of response 

is not at random.  
 
For example when there is not any missing value for continuous response, let  
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For this model the covariance matrix takes the form, 
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The likelihood of the model for ),...,(=
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 Details of extracting the above likelihood is given in Appendix A. This likelihood can be 
maximized by  function “nlminb” in software R .  This function may  be used for minimization of a 
function of parameters .  For  maximization of a likelihood function one may minimize minus log  
likelihood function .  The function “nlminb” uses  optimization method of port routine which is 
given in “http ://netlib.bell-labs.com/cm/cs/cstr/153.pdf.”.  The function  “nlminb” uses a 
sequential quadratic programming (SQP) method to  minimize the requested function .  The details 
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of this method can  be found in Fletcher (2000).  The observed Hessian matrix may be  obtained by 
“nlminb” function or may be provided by function  “fdHess”. 

 
 
2.2.   Residuals 
 
 The missing values of responses create problems for the usual residual diagnostics, [see Hirano 
et al. (1998)]. The Pearson residuals for continuous response, assuming MCAR, can take the 
form 
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These unconditional residuals will be misleading if missingness is MAR or NMAR as in these 
cases the values of the continuous variable come from a conditional or truncated conditional 
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where (.) , (.)  and (.)12  are, respectively, the density function, cumulative univariate and 

cumulative bivariate normal distributions and 
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To define some appropriate modified residuals, let  
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The Pearson residuals for the vector of continuous responses, assuming MAR and NMAR, can 
take the form 
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The estimated Pearson residuals can be found by using the maximum likelihood estimates of the 
parameters, obtained by system (1), in (2a) and (2b). However, the residuals in equations (2a) 
and (2b) do not take into account the correlation between responses. These unconditional 
residuals will be misleading if missingness is MAR or NMAR as in these cases the values of the 
continuous variable come from a conditional or truncated conditional distribution. We can 
examine the residuals of the responses conditional on being observed. The estimated Pearson 
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residuals ( yz rr ˆ,ˆ ) can be found by using the maximum likelihood estimates of the parameters, 

obtained by system (1), in appendix B .  
 
As residuals in appendix B are defined by conditioning on observing the responses, they differ 
from those of Ten Have et al. (1998), who found the expectation and variance of responses, and 
consequently the residuals, unconditional on the fact that responses should be observed. Then, to 
calculate the residuals they assumed no link between response and nonresponse mechanisms. 
This gives biased estimates of the means and variances of responses if missingness is not at 
random. However, the residuals in appendix B do not take into account the correlation between 
responses. Some modified Pearson residuals, defined in appendix B, are conditioned on the 
indicator of responses, and can take into account the correlation between responses. 

 
 
3.  Sensitivity Analysis 
 
 We used sensitivity analysis to study model output variation with changes in model inputs. Cook 
(1886) presented general methods for assessing the local influence of minor perturbations of a 
statistical model. Generally, one introduces perturbations into the model through the 1q  vector 

  which is restricted to some open subset   of qR . Let )|( L  denote the log- likelihood 
function corresponding to the perturbed model for a given   in  . For a given set of observed 
data, where   is a 1p  vector of unknown parameters, we assume that there is an 0  in   such 

that )|(=)( 0 LL  for all  . Finally, Let ̂  and ̂  denote the maximum likelihood estimators 

under )(L  and )|( L  , respectively. To assess the influence of varying   throughout  , we 

consider the Likelihood displacement defined as: )].ˆ()ˆ(2[=)(  LLLD    
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where the first and second derivations i  and i  are evaluated at .0  Since 1=1  and 
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applying (3.a) to the plan curve )))((,( aLDa  , where ala 0=)(  , Ra , and l  is a fixed 

nonzero vector of unit length in .qR  Cook (1986) proposed looking at local influences, i.e., at the 
normal curvatures lC  of )(  in 0 , in the direction of some q -dimensional vector l  of unit 
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length. Let i  be the p -dimensional vector defined by 0=,ˆ=

2 )|(
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order derivatives of )|( 0l  with respect to  , also evaluated at .ˆ=  Cook (1986) has then 

shown that lC  can be easily calculated by  
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According to our joint model, the vector of responses along with the missing indicators 

),,(=),( ***** RWWRW misobs  have a multivariate normal distribution with the following covariance 

structure,  
 

, , *,

, , *,

* * * *, , ,

= ,

o o o m o R

m o m m m R

R o R m R R

   
 
    
 
   
 

 

 
where  
 

* *
,

* *
,

* *
,

* *
*,

* *
* *,

= ( , ),c
= ( , ),c
= ( , ),c
= ( , ),c

= ( , ).c

o o obs obs

m m mis mis

o m obs mis

obso R

R R

W Wov
W Wov
W Wov
W Rov

R Rov







 

 
The joint density function can also be partitioned as  
 

),(),(=),( ******
obsobsmis WfWRWfRWf
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where ),( ***
obsmis WRWf  and )( *

obsWf  have, respectively, a conditional and a marginal normal 

distribution. According to the missing mechanism definitions, to have a MAR mechanism the 
covariance matrix of the above mentioned conditional normal distribution, 
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* *

* * *

* *

* * * * * *
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
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 
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           
   
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should satisfy the following constraint,  
 

1
* , , *, ,

= 0.      '
m o o om R R o

   
                                                                                               (3c) 

 
For our application (see section of application), we have missing values only for our ordinal 
variable and we may have ),(= 21

* YYWmis  and ZWobs =* , ( 1Y  and 2Y  are ordinal responses and Z  

is continuous response.). For missing mechanism we only need to define ),(= *

2

*

1

* yy RRR , as we 

do not have any missing value for our continuous response, and 
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*
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so that the above constraint will be reduced to,  
 

* *

1
, , 23 12 13, ,

0.m o o om R R o
        

 
 
The vector ),,,(= 4321  , where 3413141 =   , 3513242 =   , 3423153 =    

and 3523254 =   , of weights defining the perturbation of the MAR model. If   equal to 

)(0,0,0,0=0   , the log-likelihood function would be the log-likelihood function of a MAR 

model. This reflects the influence of the condition for MAR of the responses. The corresponding 
local influence measure, denoted by iC , then becomes i

T
ii LC  12=  . Another important 

direction is the direction maxl  of maximal normal curvature maxC . It shows how to perturb the 

condition for MAR of the responses to obtain the largest local changes in maxC  . maxC  is the 

largest eigenvalue of i
T
i L  1

 and lmax  is the corresponding eigenvector. 
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An assessment of the influence of minor perturbations of the model is important (vide, cook, 
1986). Likelihood displacement, global influence and maximal normal curvature Cmax  will be 
used for measuring the influence of a perturbation of the covariance structure of the model in 
system (1), on deviation from the assumption of MAR. For sensitivity analysis we calculate 
maximal normal curvature Cmax. This curvature does not indicate extreme local sensitivity. 
Hence, final results of the model are not highly sensitive to the elements of the covariance 
structure. 
 
4.   Application 
  
4.1.  Data 
 
The data used in this paper is excerpted from the 15th wave (2005) of the British Household 
Panel Survey (BHPS); a longitudinal survey of adult Britons, being carried out annually since 
1991 by the ESRC UK Longitudinal Studies Center with the Institute for Social and Economical 
Research at the University of Essex. These data are recorded for 11251 individuals. The selected 
variables which will be used in this application are explained in the following.  
 
One of the responses is the life Satisfaction (LS), [where the related question is QA: “How 
dissatisfied or satisfied are you with your life overall?”], which is measured by directly asking 
the level of an individual's satisfaction with life overall, resulting in a three categories of ordinal 
variable [1: Not satisfied at all (10.300%). 2: Not satis/dissat (45.400%) and 3: Completely 
satisfied (44.300 %)].  
 
The amount of money spent on leisure activities per month including money spent on 
entertainment and hobbies (AM) is also measured [where the related question is QB: “Please 
look at this Response categories/range and tell me about how much you personally spend in an 
average month on leisure activities, and entertainment and hobbies, other than eating out?”] as 
an ordinal response with three categories, [0: Nothing (17.515 %). 1: Under 50 Pound (53.449%) 
and 2: 50 Pound or over (29.036%.)].  
 
In our application, the percentage of missing values of LS and AM are 5.000 %  and 4.000 % , 

respectively. Moreover, the exact amount of an individuals annual income (INC) in the past year 

in thousand pounds, considered here in the logarithmic scale, is also excerpted as a continuous 
response variable (mean: 4.068). As some values of annual income in thousand pounds are 
between 0 and 1, some of the logarithms of incomes are less than 0.  
 
These three responses, LS, AM and logarithm of income are endogenous correlated variables and 
should be modelled as a multivariate vector of responses. 
 
Socio-demographic characteristics, namely: Gender (male: 44.200% and female: 55.800%), 
Marital Status (MS) [married or living as couple: 68.500%, widowed: 8.300%, divorced or 
separated: 8.400% and never married: 14.800%], Age (mean: 49.180) and Highest Educational 
Qualification (HEQ) [higher or first degree: 15.100%, other higher QF: 64.600%, other QF: 
2.000% and no qualification: 18.300%] are also included in the model as covaiates.  
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The vector of explanatory variables is ),,,,,,,(= 321321 HEQHEQHEQMSMSMSAgeGenderX  

where 1MS , 2MS  and 3MS  are dummy variables for married or living as couple, widowed and 

divorced or separated, respectively, and 1HEQ , 2HEQ , 3HEQ  are dummy variables for higher or 

first degree, other higher QF and other QF, respectively. A  Kolmogorov - Smirnov test does not 
lead to rejection of the assumption of normality of log (INC) (P-value=0.777). A direct acyclic 
graph of modeling three correlated responses, given the vector of exogenous covariates, is given 
in figure 1. The main approach of analysing these data is a multivariate multiple regression with 
some missing response values. 

 
 

 
 

 

 

 

 

 

 

 
Figure 1:  Direct acyclic graph of modeling LS= Life satisfaction, AM= The amount of money spent on leisure and  

INC= Income as three correlated responses, X =(Gender, AGE, HEQ (HEQ1, HEQ2, HEQ3) , MS(MS1, 
MS2, MS3)) is the vector of covariates. 

 
 
4.2.   Models for BHPS Data 
 
We apply the model described in section 2 to evaluate the effect of Age, Gender, HEQ and MS 
simultaneously on LS , AM  and Income. We shall also try to find answers for some questions, 
including (1) do male's LS , AM  and income differ from female's? (2) How does HEQ affect the 
three responses? (3) do significant correlations exist between three responses? (4) what would be 
the consequence of not considering these correlations? (5) Is the missing data mechanism for LS  
and AM  at random (MAR)? 
 
For comparative purposes, two models are considered. The first model (model I) is a marginal 
model which does not consider the correlation between three responses and can be presented as, 

316215114313212111
* = HEQHEQHEQMSMSMSLS    

17 18 1Gender AGE      

326225124323222121
* = HEQHEQHEQMSMSMSAM  

22827                AGEGender  

LS 

AM INC 

),,,,,,,(= 321321 HEQHEQHEQMSMSMSAgeGenderX
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33623513433323213130=)(log HEQHEQHEQMSMSMSINC  

33837                AGEGender  

316215114313212111
* = HEQHEQHEQMSMSMSRLS    

.              41817   AGEGender  

326225124323222121
* = HEQHEQHEQMSMSMSRAM    

.              52827   AGEGender  

 
Above, in the third equation the logarithm is taken in the base e . The second model (model II) 
uses model I and takes into account the correlations between five errors. Here, a multivariate 
normal distribution with correlation parameters 25242315141312 ,,,,,,   , 3534 ,  and 45  

is assumed for the errors and these parameters should be also estimated.  
 
4.3.  Results  
 
Results of using two models are presented in Table 1. Deviance for testing model (I) against 
model (II) is equal to 1636.09 with 10 degrees of freedom (P-value < 0.0001) which indicates 
that model (II) has a better fit to these data. As it can be seen, two correlation parameters 12  and 

23  are strongly significant. They show a positive correlation between LS and AM ( 12  = 0.137, 

P-value < 0.0001) and a positive correlation between log(INC) and AM ( 23  = 0.134, P-value 

< 0.0001). Consideration of the responses associations yields more precise estimates as indicated 
by the smaller variance estimates and the smaller estimated variance of log(INC) in model (II). 
So, we restrict our interpretation to the results of model (II). 
 
 Model (II) shows a significant effect of age (the older the individual the more the life 
satisfaction), MS (married people are more satisfied than never married people and divorced or 
separated people are less satisfied than never married people), HEQ (the higher the qualification 
the higher the life satisfaction) and gender (males are more satisfied than females) on the life 
satisfaction status. All explanatory variables have significant effects on the ordinal response of 
amount of money spent on leisure activities. Never married people spend more on leisure time 
activities than other people.  
 
The higher the education the more the leisure time activities. Females spend more amount of 
money than males for leisure time and older people spend less money than younger ones. Also 
the effect of all explanatory variables are significant on the logarithm of income. Parameter 
estimates indicate that as the degree of educational qualification increases log(INC) increases. 
Never married people have less logarithm of income than married people and divorced or 
separated people. Females have more logarithm of income than males and the older people earn 
less money than younger ones.  
 
By these results we can conclude that the two responses are correlated and also the missing 
indicator for LS  and AM  are not related to three responses. This leads to have a missing 
completely at random mechanism. Using residuals defined in equation (Appendix B, B1) 
computed by parameter estimates of model II, we have not found any abnormal observation. To 
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perform the sensitivity analysis we find maxC  . This is confirmed by the curvature 1.02=maxC  

computed from (3.b). This curvature does not indicate extreme local sensivity. 
 

Table 1.  Results of using two models for BHPS data (LS: Life Satisfaction, AM: Amount of Money spent, MS: 
Marital Statue and HEQ: educational qualification, parameter estimates highlighted in bold are 
significant at 5 % level.) 

 

   MODEL I   MODEL II  
parameter   Est.  S.D.  Est.  S.D.  

LS          
 MS (baseline: Never married)         
Married or Living as Couple 0.333  0.053   0.201   0.030 

Widowed 0.071   0.096   0.033  0.038  
Divorced or Separated -0.622   0.080  -0.357  0.044 

HEQ (baseline: No QF)         
Higher or First Degree  - 0.090   0.378   -0.061  0.095 

Other higher QF -0.205   0.373   -0.132   0.095 
Other QF - 0.297   0.373   -0.211   0.100 

Gender (baseline: Female)          
Male 0.069  0.036   0.040 0.024 
AGE 0.007   0.001   0.008   0.001 

cutpoint 1  -1.661   0.378   -0.987   0.101 
cutpoint 2  0.785   0.379   0.450   0.118 

AM         
Married or Living as Couple -0.324   0.056    -0.186   0.032 

Widowed  -0.400   0.095    -0.233   0.054 
Divorced or Separated -0.440   0.082   -0.257   0.047 

HEQ (baseline: No QF)         
Higher or First Degree  0.921   0.387   0.579   0.093 

Other higher QF  0.445  0.385   0.289   0.090 
Other QF  -0.195   0.389    -0.077   0.088 

Male -0.780   0.038   -0.449   0.021 
AGE -0.024   0.001   -0.013   0.001 

cutpoint 1  -4.052   0.394    -2.330   0.105 
cutpoint 2 -1.290   0.394    -0.690   0.122 
 logINC        

 Constant  4.245    0.078   4.245   0.039 
MS (baseline: Never married)         
Married or Living as Couple 0.114   0.011   0.113   0.011 

Widowed 0.217   0.019   0.216  0.019 
Divorced or Separated 0.215  0.077   0.216   0.016 

HEQ (baseline: No QF)         
Higher or First Degree 0.391   0.077   0.393  0.036 

Other higher QF 0.177   0.077   0.178  0.035 
Other QF  0.031  0.077   0.033 0.035  

Gender (baseline: Female)         
Male  -0.227  0.007  -0.225 0.007

AGE   -0.002  0.001   -0.003 0.001  
2   0.180   0.002   0.155   0.002  
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 Table 1 (continue): Results of using two models for BHPS data (LS: Life Satisfaction, AM: Amount of Money 

spent, MS: Marital Statue and HEQ: educational qualification, parameter estimates highlighted in bold 
are significant at 5 % level.) 

 
   MODEL I   MODEL II  

parameter   Est.  S.D.  Est.  S.D.  
*
LSR          

MS (baseline: Never 
married) 

        

Married or Living as 
Couple 

 0.017   0.004   0.016   0.003  

Widowed  -0.003   0.008   -0.004  0.007  
Divorced or Separated  0.020  0.007   0.002  0.016  
HEQ (baseline: No QF)         
Higher or First Degree   0.056   0.027   0.054  0.018  

Other higher QF  0.051   0.027   0.051  0.017  
Other QF  0.024  0.027   0.023 0.018  

Gender (baseline: Female)          
Male  -0.005  0.003  -0.004 0.018  

AGE   -0.008  0.001   0.016 0.002  

 
*
AMR         

MS (baseline: Never 
married) 

        

Married or Living as 
Couple 

 0.019   0.003   0.016   0.002  

Widowed  -0.005   0.009   -0.005  0.008  
Divorced or Separated  0.031  0.07   0.020  0.021 
HEQ (baseline: No QF)         
Higher or First Degree   0.065   0.021    0.043  0.013  

Other higher QF  0.050   0.041   0.051 0.050  
Other QF  0.025  0.030   0.021 0.019  

Gender (baseline: Female)          
Male  -0.007  0.001  -0.005 0.018  

AGE   -0.007  0.001   0.019 0.001  

 Corr(LS * ,AM * )  -  -   0.137    0.012  

Corr (LS * ,INC)  -  -    0.134   0.001  

Corr (LS * , *
LSR )  -  -   0.001   0.001  

Corr (LS * , 
*
AMR )  -  -   0.001   0.001  

Corr(AM * ,INC)  -   -   0.013   0.012 

Corr(AM * , *
LSR )  -   -   0.001  f0.012 

Corr(AM * ,
*
AMR )  -   -   0.004  0.010 

Corr(INC, *
LSR )  -   -   0.003  0.016 

Corr(INC,
*
AMR )  -   -   0.014  0.015 

Corr( *
LSR ,

*
AMR ,)  -   -   0.009  0.022 

 -Loglike   35924.076 35106.031  
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5.  Discussion 
 
 In this paper a multivariate latent variable model is presented for simultaneously modelling of 
ordinal and continuous correlated responses with potentially non-random missing values in both 
types of responses. Some modified residuals are also presented to detect outliers. We assume a 
multivariate normal distribution for errors in the model. However, any other multivariate 
distribution such as t or logistic can be also used. Binary responses are a special case of ordinal 
responses. So, our model can also be used for mixed binary and continuous responses. For 
correlated nominal, ordinal and continuous responses Deleon and Carriere (2007) have 
developed a model by extending general location model. Generalization of our model for 
nominal, ordinal and continuous responses is an ongoing research on our part.  
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Appendix A 
 
Details of the likelihood For Mixed-Data from Ordinal and continuous Data With Missing 
Responses: 
 
 We apply the following definition and theorem for multivariate distributions to obtain the form 
of the likelihood.  

 
Definition 2.2.1. If 
  

),...,(=),,(
1

*

11
*

111 MMM wWwWPwwF   is a distribution function, for  

)( jj ba   the operator ),,(
11 Mjajb wwF   is defined as   

).,...,,,,,(),...,,,,,(
11)(1)(111)(1)(1 MjjjMjjj wwawwFwwbwwF     

 
Theorem 2.2.2. If for 11,...,= Mj , jj ba  , then 
 

),,(=)<,...,<(
11

11111

*

111
*

11 MMaMbabMMM wwFbWabWaP  , 

where 

;1)(...=),,(
1

1
21011

1111 M

M

MMaMbab FFFFwwF    

and jF  is the sum of all 1M

j

 
 
 

 terms of the from ),...,(
11 MggF  with kk ag =  for exactly j  

integers in }{1,..., 1M , and kk bg =  for the remaining jM 1  integers. 

 
Proof:   
 
See Ash (2000, p. 28). 
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Suppose the 1g  elements of iY  and 2g  elements of iZ  are observed, so },...,{=
11 g

y
obs ooJ  

and },...,{=
21 g

z
obs ooJ . Using the Theorem 2.2.2, 
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where  
 

jioyjojob =  , 1)(= 
jioyjojoa   for 11,...,= gj  and (3)(2)(1) ,, ijijij FFF  and (4)

ijF  are the sum of all 

g

j

 
 
 

 terms of the from: 

 

 

* * *
1 ,1 11

* * * *
1 ,1 1 ,1

* * * *
1 ,1 1 ,1

* * * * *
1 ,1 1 , ,1

( ,..., , | , ),

( ,..., , , | , ),

( ,..., , , | , ),

( ,..., , , , |

ic ic g Mis i obs ig

ic ic g Mis z i obs ig i Mis

ic ic g Mis y i obs ig i Mis

ic ic g Mis y z ig i Mis i Mis

P Y c Y c C Z X

P Y c Y c C R Z X

P Y c Y c C R Z X

P Y c Y c C R R Z

 

 

 

  , ),obs iX

  

 
with kk ac =  for exactly j  integers in }{1,..., 1g , and kk bc =  for the remaining jg 1  integers. 

With these the likelihood is given in Section 2. 
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Appendix B   
Residuals 

 
Suppose 3=2,=1 cM  and 3=M . To obtain the correlated modified residuals when 2iy  and 

3iZ  responses are observed, let ),(= 21 iii YYY  and 3= ii ZZ   
1

2ˆ ˆ = ( ),P
i i ir K 


     (B1) 

where 
  

 ),(= iii ZYK ,  )1)=|(ˆ1),=|(ˆ(=ˆ 
11


iyiiyii RZERYE   

 
and 
  

1 1

1 1

ˆˆ ( | = 1) ( , | = 1)
ˆ = ,

ˆ ˆ( , | = 1) ( | = 1)

i y i i yi i

i i y i yi i

Var Y R Cov Y Z R

Cov Y Z R Var z R

 
 
 
 

 

where 
 

1 1 1 1

1 1 1

1 1 1 1

1

( , | = 1) = ( | = 1) ( | = 1) ( | = 1)

= ( ( | , = 1)) ( | = 1) ( | = 1)

= ( | , = 1) ( | = 1) ( | = 1) ( | = 1)

= [ ( ( = | , = 1))) (

i i y i i y i y i yi i i i

i i i y i y i yi i i

i i i y Z i y i i y i yi i i i i

i i i i i y Zi i
yi

Cov Y Z R E Y Z R E Z R E Y R

E Z E Y z R E Z R E Y R

z E Y z R f z R dz E Z R E Y R

z y P Y y z R f z







 1

1 1

| = 1) ]

                   [ ( | = 1) ][ ( = | = 1))].

i y ii

i z i y i i i i yi i i
yi

R dz

z f z R dz y P Y y R  (B2)

 

 
 The Pearson residuals for the ith  observation is based on the Pearson goodness-of-fit statistics 
  

)ˆ,(=   2

1=

2
iip

n

i

K    

 
with the following ith  component  
 

).ˆ(ˆ)ˆ(=)ˆ,(     12
iiiiiip KKK     
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A cholesky decomposition is used for finding the square root of ̂  in (B1) and the function 

integrate in R is used to numerically calculate the integral given in (B2).  


