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Abstract 
 
We study an age-structured SEIR epidemic model with infectivity in the latent period. By using 
the theory and methods of Differential and Integral Equations, the explicit expression for the 
basic reproductive number 0R  is first derived. It is shown that the disease-free equilibrium is 

locally and globally asymptotically stable if 0 1R  . It is then proved that only one endemic 

equilibrium exists if 0 1R   and its stability conditions are also given. 
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1.   Introduction 
 
Many diseases, such as measles, mumps, tuberculosis, HIV/AIDS, SARS, etc., have a latent 
period. A latent period is the lag time between exposure to a disease-causing agent and the onset 
of the disease the agent causes. From the point of view of mathematical modeling, this leads to 
SEIR or SEIRS epidemic models. These kinds of models have attracted the attention of many 
authors and a number of papers have been published in this area. For example, Greenhalgh 
(1992) considered an SEIR model that incorporates density dependence in the death rate. Cooke 
and Driessche (1990) introduced and analyzed the SEIRS model with two delays. Greenhalgh 
(1997) studied Hopf bifurcations in the SEIRS type models with density dependent contact rate 
and death rate. Li and Muldowney (1995) and Li et al. (2001) studied the global dynamics of the 
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SEIR models with a non-linear incidence rate as well as standard incidence rate. Li et al. (1999) 
analyzed the global dynamics of the SEIR model with vertical transmission and a bilinear 
incidence. Recently, Zhang and Ma (2003) analyzed the global dynamics of the SEIR model with 
saturating contact rate. All the models discussed above are of SEIR-type age-independent 
epidemic models, which are described by a system of ordinary differential equations. The 
importance of age structure in epidemic models has been stressed by many researchers. One may 
refer Busenberg (1991), Iannelli (1992, 1998), Inaba (1990), Castillo-Chavez (1989, 1998), Li 
(2004), etc., for the discussions concerning age-structured SIR or SIRS models, and Xue-Zhi Li 
(2001, 2003), etc. for discussion on age-structured SEIR or SEIRS model. We may note that all 
the SEIR or SEIRS models mentioned above assume that the latent individuals have no 
infectivity, so, a susceptible individual may become infectious only through contact with 
infective.  
 
In fact, many diseases, such as tuberculosis, HIV/AIDS and SARS, etc., have a contagious latent 
period, a latent individual can transmit the disease to the susceptible, i.e., the individual has force 
of infection in both the latent and infectious periods. This fact has been noticed by some 
researchers and the mathematical modeling (ODE cases) and discussions have also been given, 
for instance, Li and Jin (2004, 2005, 2006). Whereas in this paper, we establish and study an age-
structured SEIR epidemic model with infectivity in both the latent and infectious periods. By 
using the theory and methods of Differential and Integral Equations, we first obtain the explicit 
expression for the basic reproduction number 0R  under the assumption that the total population 

size is at stationary demographic state. Then, it is shown that the disease-free equilibrium is 
locally and globally asymptotically stable if 0 1R  . In this case, the disease always dies out. 

When 0 1R  , there exists unique endemic equilibrium which is asymptotically stable under 

certain conditions. 
 
This paper is organized as follows: in the following section, an age-structured SEIR epidemic 
model with infectivity in both the infected and latent periods is introduced. The expression of 
reproduction number 0R  is obtained in Section 3. The local and global stabilities of the disease-

free equilibrium are also studied in this section. Section 4 discusses the existence and the 
stability of the unique endemic equilibrium. 
 
2.   The Model 
 
In order to formulate an age-structured SEIR epidemic model with infectivity in latent period, we 
need to introduce some notations. The whole population under consideration is divided into 
susceptible, latent, infectious and immune (or recovered) classes, where ( ) ( )S a t E a t     

( ) ( )I a t R a t   denote the associated density functions with these respective epidemiological age-
structured classes. 
 
Let ( )b a  and ( )a  be the vital parameters (age-specific fertility and mortality) of the 

population, which we assume not to be affected by the disease, 1( ( ))a   and 1( ( ))a   be the 
average latent period and the average infectious period, respectively. We assume that ( )a  and 

( )a  are positive and continuous. For convenience in mathematical calculations in the following 
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sections, we assume that the infectivity of a latent individual is same as of infectivity of 
infectious individual. We adopt the following separable inter-cohort constitutive form for the 
force of infection [Castillo-Chavez and Feng (1998)]: 
 

0

ˆ( ) ( ) ( )

( ) ( )
( ) ( )

( )

a

a t k a t

E a t I a t
t a da

N a t



  
  

 


 

 
 

 
Here, a  is the maximum age that an individual of the population can attain. The age-specific 

infectiousness ( )a  and the age-specific contagion rate ( )k a  satisfy the following conditions: 
 

( ) ( ) [0 ) and ( ) ( ) 0 on [0 )k C a a k a a             
 
We assume that all newborns are susceptible and that an individual may become latent through 
contact with latent or infectious individuals, recovered individual has permanent immunity to the 
disease. Here we observe that the disease-induced death rate can be neglected. The dynamics of 
the age-structured epidemiological classes are governed by the following initial and boundary 
value problem: 
 

( ) ( ) ˆ( ( ) ( )) ( )
S a t S a t

a a t S a t
t a

    
      

 
                                                                   (2.1a) 

( ) ( ) ˆ( ( ) ( )) ( ) ( ) ( )
E a t E a t

a a E a t a t S a t
t a

   
        

 
                                                (2.1b) 

( ) ( )
( ( ) ( )) ( ) ( ) ( )

I a t I a t
a a I a t a E a t

t a
     

       
 

                                                  (2.1c) 

( ) ( )
( ) ( ) ( ) ( )

R a t R a t
a R a t a I a t

t a
    

      
 

                                                              (2.1d) 

ˆ( ) ( ) ( )a t k a t                                                                                                               (2.1e) 

0

( ) ( )
( ) ( )

( )

a E a t I a t
t a da

N a t
    

 
                                                                                    (2.1f) 

0
(0 ) ( )[ ( ) ( ) ( ) ( )]

(0 ) (0 ) (0 ) 0

a
S t b a S a t E a t I a t R a t da

E t I t R t

         

      
                                                     (2.1g) 

0 0

0 0

( 0) ( ) ( 0) ( )

( 0) ( ) ( 0) ( )

S a S a E a E a

I a I a R a R a

     
     

                                                                                       (2.1f) 

 
Summing the equations in (2.1), we obtain the following equation for the total population 
density ( ) ( ) ( ) ( ) ( )N a t S a t E a t I a t R a t         : 
 

( ) ( )
( ) ( )

N a t N a t
a N a t

t a
   

    
 

                                                                                 (2.2a) 
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0
(0 ) ( ) ( )

a
N t b a N a t da

                                                                                                  (2.2b) 

0( 0) ( )N a N a                                                                                                                  (2.2c) 

 
This is the standard Mckendrik-Von Forester equation. Here, we see that indeed the population 
dynamics is not affected by the disease. We make the following hypotheses for this problem 
 

( ) ([0 )) ( ) 0 in [0 )b a L a b a a
        

1( ) [0 ) ( ) 0 in [0 )loca L a a a         

0
( )

a
a da    

 
Furthermore, in order to deal with a steady state problem with age density given by (2.2), we 
assume that the net reproduction rate of the population is equal to unity and that the total 
population is at the steady state. This means that 
 

0
( )

0
( ) 1

a
a d

b a e da
                                                                                                            (2.3) 

0
( )

0( ) ( )
a

d
N a t N a b e

  


                                                                                               (2.4) 

 
The condition (2.4) is valid because of (2.3). This condition also implies that, in order to deal 
with a significant model, we need to take initial data as follows: 
 

0 0 0 0

0 0 0 0

( ) 0 ( ) 0 ( ) 0 ( ) 0

( ) ( ) ( ) ( ) ( )

S a E a I a R a

S a E a I a R a N a

       
    

                                                                          (2.5) 

 
which forces the relation 
 

0

0 0 0 00
0

( )

0

[ ( ) ( ) ( ) ( )]
a

a

a d

S a E a I a R a da
b

e da
  



 

  
 





                                                                        (2.6) 

 
Now, introducing the fractions 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S a t E a t I a t R a t
s a t e a t i a t r a t

N a N a N a N a   

   
             

 
we get the following simplified system of equation (2.1): 
 

( ) ( )
( ) ( ) ( )

s a t s a t
k a t s a t

t a
   

    
 

                                                                               (2.7a) 
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( ) ( )
( ) ( ) ( ) ( ) ( )

e a t e a t
a e a t k a a s a t

t a
    

      
 

                                                         (2.7b) 

( ) ( )
( ) ( ) ( ) ( )

i a t i a t
a i a t a e a t

t a
    

      
 

                                                                   (2.7c) 

( ) ( )
( ) ( )

r a t r a t
a i a t

t a
   

   
 

                                                                                        (2.7d) 

0
( ) ( )[ ( ) ( )]

a
t a e a t i a t da                                                                                          (2.7e) 

(0 ) 1 (0 ) (0 ) (0 ) 0s t e t i t r t                                                                                          (2.7f) 

0 0 0 0( 0) ( ) ( 0) ( ) ( 0) ( ) ( 0) ( )s a s a e a e a i a i a r a r a                                                         (2.7g) 

( ) ( ) ( ) ( ) 1s a t e a t i a t r a t                                                                                           (2.7h) 
 
In the next section, we derive the explicit expression for 0R , a quantity that must exceed one for 

the disease to remain endemic (persist). In general, 0R  is called the net reproductive number, 

which measures the expected number of secondary infection produced by a ‘typical’ infected 
individual during its entire-death adjusted-period of infectious in a wholly susceptible 
population. 
 
 
3.   Calculation of 0R  and Stability of the Disease-Free Equilibrium 
 
An equilibrium solution is a solution of the system (2.7) when the population state remains 
unchanged with time, i.e., a time-independent solution. The disease-free state is the population 
state when there are no infectious or latent individuals. A steady state solution 
( ( ) ( ) ( ) ( ))s a e a i a r a    of the system (2.7) must satisfy 
 

( )
( ) ( )

ds a
k a s a

da
                                                                                                           (3.1a) 

( )
( ) ( ) ( ) ( )

de a
a e a k a s a

da
                                                                                          (3.1b) 

( )
( ) ( ) ( ) ( )

di a
a i a a e a

da
                                                                                              (3.1c) 

( )
( ) ( )

dr a
a i a

da
                                                                                                               (3.1d) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                                 (3.1e) 

(0) 1 (0) (0) (0) 0s e i r                                                                                                (3.1f) 
(0) (0) (0) (0) 1s e i r                                                                                                   (3.1g) 

 
It is easy to see that the system (3.1) always has the disease-free equilibrium, which is given by  
 

0 0 0 0( ) 1 ( ) ( ) ( ) 0s a e a i a r a                                                                                       (3.2) 
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To study the local stability of the disease-free equilibrium, we linearize the system (2.7) about 
(3.2). Let ( ) ( ) ( ) ( )s a t e a t i a t r a t        be the perturbation in 0 0 0 0( ) ( ) ( ) ( )s a e a i a r a   , respectively, 
i.e., 
 

0 0( ) ( ) ( ) ( ) ( ) ( )s a t s a t s a e a t e a t e a           
0 0( ) ( ) ( ) ( ) ( ) ( )i a t i a t i a r a t r a t r a           

 
These perturbations satisfy the following system of equations: 
 

0( ) ( )
( ) ( ) ( )

s a t s a t
k a t s a

t a

   
    

 
                                                                               (3.3a) 

0( ) ( )
( ) ( ) ( ) ( ) ( )

e a t e a t
a e a t k a t s a

t a
   

      
 

                                                         (3.3b) 

( ) ( )
( ) ( ) ( ) ( )

i a t i a t
a i a t a e a t

t a
    

      
 

                                                               (3.3c) 

( ) ( )
( ) ( )

r a t r a t
a i a t

t a
   

   
 

                                                                                      (3.3d) 

0
( ) ( )[ ( ) ( )]

a
t a e a t i a t da                                                                                       (3.3e) 

(0 ) (0 ) (0 ) (0 ) 0s t e t i t r t                                                                                        (3.3f) 
 

We now consider exponential solutions of the system (3.3) of the form 
 

( ) ( ) ( ) ( )t ts a t s a e e a t e a e        
( ) ( ) ( ) ( )t ti a t i a e r a t r a e        

 
The functions ( ) ( ) ( ) ( )s a e a i a r a    and the parameter   satisfy the following system of 
equations: 
 

( )
( ) ( )

ds a
s a k a

da
                                                                                                    (3.4a) 

( )
( ) ( ) ( ) ( )

de a
e a a e a k a

da
                                                                                    (3.4b) 

( )
( ) ( ) ( ) ( ) ( )

di a
i a a i a a e a

da
                                                                                (3.4c) 

( )
( ) ( ) ( )

dr a
r a a i a

da
                                                                                                (3.4d) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                               (3.4e) 

(0) (0) (0) (0) 0s e i r                                                                                               (3.4f) 
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Solving (3.4b) and (3.4c) we obtain 
 

( ) ( )

0
( ) ( )

a
a d ae a k e e d

     
                                                                                       (3.5) 

( ) ( )

0
( ) ( ) ( )

a
a d ai a e e e d

       
                                                                                  (3.6) 

 
Substituting (3.5) into (3.6) and changing the order of integration we get 
 

( ) ( )( )

0 0

( ) ( )( )

0

( )( )( )

0

( ) ( ) ( )

      ( ) ( )

      ( ) ( )

a

a

a

da da

da a da

da a da

i a k e e d e d

e k e e d d

e k e e d d

  

  

 

  

  

  

 

 

 



 



 





      

      



     



    

    

    

                                                    (3.7) 

 
Substituting (3.5) and (3.7) into (3.4e) it follows that 
 

( )( ) ( )( )

0 0
( ) ( )[ ( ) ]

aa
da a ad daa e k e e e d d da

           


 
        


         (3.8) 

 
  By dividing both sides by   (since 0  ) in (3.8) we get the following characteristic equation 
 

( )( ) ( )( )

0 0
1 ( ) ( )[ ( ) ]

aa
da a ad daa e k e e e d d da

         


 
        


                          (3.9) 

 
Let us denote the expression in the right hand side of (3.9) by ( )F   and define the basic 

reproductive number as 0 (0)R F , i.e., 

 
( )( ) ( )

0 0 0
( ) ( )[ ( ) ]

aa
da a ad d

R a k e e e d d da


 
       


                                          (3.10) 

 
Now, we establish the following result. 
 
Theorem 3.1.  
 
The disease-free equilibrium of the system (2.7) is locally asymptotically stable if 0 1R   and 

unstable if 0 1R  . 

 
Proof:  
 
We observe that 
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( ) 0 lim ( ) 0 lim ( )F F F
 

  
 

        

We know that equation (3.9) has a unique negative real solution , if and only if (0) 1F  , 

or 0 1R  . Also, equation (3.9) has a unique positive (zero) real solution if (0) 1F   ( (0) 1F  ), or 

0 1R   ( 0 1R  ). To show that   is the dominant real parts of roots of ( )F  , we let 

(x iy x y IR       , where i  is the imaginary unit and IR  is the set of real numbers) be an 
arbitrary complex solution of the equation (3.9). We note that 
 

1 ( ) ( ) ( )F F x yi F x    , 
 
which indicates that Re  , where Re  denotes the real part. It follows that the disease-free 
equilibrium is locally asymptotically stable if 0 1R  , and unstable if 0 1R  . This completes the 

proof.  
 
The basic reproduction number 0R  can be seen as a weighted value of the basic reproduction 

number due to latent class and the basic reproduction number due to infectious class. 
When 0 1R  , the number of infections decreases towards zero. The basic reproductive number 0R  

must exceed one for the disease to persist in the population.  
 
The global stability of the disease-free equilibrium is demonstrated in the following theorem. 
  
Theorem 3.2.  
 
The disease-free equilibrium of the system (2.7) is globally asymptotically stable if 0 1R  . 

 
Proof:  
 
To prove the global stability of the disease-free equilibrium, we have to show that 

( ) 1 ( ) 0 ( ) 0 ( ) 0s a t e a t i a t r a t            as t  . Integrating equation (2.7b) and equation 
(2.7c) along the characteristic line we get the following: 
 

0 0

( )

0

( ) ( )

0 0

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

a

s

t

a d

ta d a d

k s t a s e s s t a s ds a t
e a t

e a t e k a t e s a t d a t



   

        
  

           






  

     



     
        (3.11) 

 

0 0

( )

0

( ) ( )

0 0

( ) ( )
( )

( ) ( ) ( )

a

t

a d

ta d a d

e t a e d a t
i a t

i a t e a e a t e d a t



   

      
  

          









  

     

    

    
                    (3.12) 

 
 For t a , by substituting (3.11) into (3.12) and changing the order of integration we obtain 
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( ) ( )

0 0

( ) ( )

0

( ) ( )[ ( ) ( ) ( ) ]

      ( ) ( ) ( ) ( )

a

s

a

s

a d d

a a d d

s

i a t k s t a s e s s t a s ds e d

k s t a s s s t a s e e d ds

 

 

       

       

 

 









      

     

   

   
                        (3.13) 

 
Putting the values of ( )e a t  and ( )i a t  from the equations (3.11) and (3.13) respectively in the 
expression for ( )t  in equation (3.4e), we obtain 
 

0
( ) ( )[ ( ) ( )] ( )[ ( ) ( )]

t a

t
t a e a t i a t da a e a t i a t da

                              (3.14) 

              
0 0

( ) ( ) ( )

( ){ ( ) ( ) ( )

[ ( ) ] } ( )[ ( ) ( )]
a a

s s

t a

a ad d d

s t

a k s t a s s s t a s

e e e d ds da a e a t i a t da
  

     

        

 

 



        

 

   
 

 
Since ( )e a t  and ( )i a t  do not exceed one, and same is true for their sum, the last integral can be 

estimated by ( )
a

t
a da

  which decreases to zero as t  . It is noted that ( ) 1s a t  , so 

 
( ) ( ) ( )

0 0
( ) ( ){ ( ) ( ) [ ( ) ] } ( )

a a

s s
t a a ad d d

s t
t a k s t a s e e e d ds da a da

             



        

      

 
 
Taking the limit supremum when t   on the both sides of the above equation and using 
Fatou’s Lemma we get 
 

0lim ( ) limsup ( )
t t

t R t 
 

                                                                                                   (3.15) 

 
As we assume that 0 1R  , the only way inequality (3.15) can hold is if 

 
limsup ( ) 0

t
t


   

 
Using this result in (3.11) and (3.12) we see that 
 

limsup ( ) 0 limsup ( ) 0
t t

e a t i a t
 

       

 
pointwise in a . Furthermore, from equation (2.7a), equation (2.7d) and the fact that 

( ) ( ) ( )s a t e a t i a t     , and ( )r a t  add up to one, it is clear that 
 

limsup ( ) 1 limsup ( ) 0
t t

s a t r a t
 

       
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Therefore, the disease-free equilibrium is globally asymptotically stable if 0 1R  . This completes 

the proof of Theorem 3.2. 
 
The global stability of the disease-free equilibrium implies that, given a set of parameters 
satisfying 0 1R  , for any initial positive number of infectious individuals, the number of latent 

infectious individuals and the normal infectious individuals decrease to zero. Such prediction can 
be of important use in planning and evaluation of disease control policy. 
 
In the next section, we consider the existence and stability of the unique endemic equilibrium 
when 0 1R  .  

 
 
4.   The Existence and Local Stability of the Endemic Equilibrium 
 
In Section 3, we showed that the disease-free equilibrium is unstable if 0 1R  . In fact, a 

nontrivial steady state appears at the same time, which is discussed in the following theorem. 
 
Theorem 4.1. 
 
There exists an endemic equilibrium of the system (2.7) if 0 1R  . 

 
Proof:  
 
The method commonly used to find an endemic steady state for age-structured models consists 
of obtaining expressions for a time independent solution ( ( ) ( ) ( ) ( ))s a e a i a r a       of the system 
(2.7) that satisfies 
 

( )
( ) ( )

ds a
k a s a

da



                                                                                                        (4.1a) 

( )
( ) ( ) ( ) ( )

de a
a e a k a s a

da
 


                                                                                     (4.1b) 

( )
( ) ( ) ( ) ( )

di a
a i a a e a

da
 


                                                                                         (4.1c) 

( )
( ) ( )

dr a
a i a

da



                                                                                                            (4.1d) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                               (4.1e) 

(0) 1 (0) (0) (0) 0s e i r                                                                                             (4.1f) 

( ) ( ) ( ) ( ) 1s a e a i a r a                                                                                               (4.1g) 
 
Solving (4.1a), (4.1b) and (4.1c) we get the following: 
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0
( )

( )
a

k d
s a e

                                                                                                                (4.2) 

( )

0
( ) ( ) ( )

a
a d

e a k s e d
  

   
                                                                                       (4.3) 

( )

0
( ) ( ) ( )

a
a d

i a e e d
  

   
                                                                                           (4.4) 

 
 Substituting the value of ( )s a  from (4.2) into (4.3) we get 
 

0
( ) ( )

0
( ) ( )

a
a k d d

e a k e e d



     

  
                                                                                (4.5) 

 
Again substituting the value of ( )e a  from (4.5) into (4.4) and changing the order of integration 
we get 
 

0
( ) ( ) ( )

0 0
( ) ( ) ( )

s a

s
a k d d d

i a k s e e dse d



         

   
          

0
( ) ( ) ( )

0
     ( ) ( )

s a

s
a ak d d d

s
k s e e e d ds




        

   
         

0
( ) ( ) ( )

0
     ( ) ( )

s a

s
a ak d d d

k e s e e dsd



        


   

                                                       (4.6) 

 
Finally, substituting the values of ( )e a  and ( )i a  from the equations (4.5) and (4.6), 
respectively, into (4.1e), we get 
 

0
( ) ( ) ( ) ( )

0 0
( ) ( ) [ ( ) ]

a s a

s
a a ak d d d d

a k e e s e e ds d da


             


 
           


       

 
By dividing both sides of the above equation by   (since 0  ), we obtain 
 

0
( ) ( ) ( ) ( )

0 0
1 ( ) ( ) [ ( ) ]

a s a

s
a a ak d d d d

a k e e s e e ds d da


           


 
           


      (4.7) 

 
Let us denote the expression in the right-hand side of (4.8) by ( )G  , then, ( )G   is a continuous 

and monotone decrease function of  . It is easy to see that the system (2.7) has an endemic 
equilibrium expressed by equation (4.2), (4.3) and (4.4) provided the equation (4.7) has a 
positive solution . From (3.10) it follows that 0(0)G R . Hence, if 0 1R  , then (0) 1G  . From 

(4.5), (4.6) and ( ) ( ) 1e a i a   , it follows that 
 

0
( ) ( ) ( ) ( )

0
( ) [ ( ) ] 1

a s a

s
a ak d d d d

k e e s e e ds d


 
           


   

                                       (4.8) 

 
Thus, for any 0  , from (4.7) and (4.8) we can write 
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0
( )

0 0

( ) ( ) ( )

0

( ) ( ) ( )

[ ( ) ] ( )
a s a

s

a a k d

a ad d d

G a k e

e s e e ds d da& a da






  

  



     

 

 



 

  

        



    

  
 

 

Let
0

( )
a

a da    . In particular, for   , we have ( ) 1G    , but (0) 1G  . Since ( )G   is 

a continuous and monotone decrease function of , we conclude that ( ) 1G    has a unique 

positive solution 
  in (0 )  . Noting the fact that 

  , the system (2.7) has a unique endemic 

equilibrium which is given by the unique solution of the system (4.1) corresponding to 
  

provided 0 1R  . This completes the proof. 
 
We note that the above theorem establishes the existence of the endemic equilibrium. In the 
following, we try to show the local stability of this endemic equilibrium. 
 

Let ˆ( , ),s a t ˆ( , ),e a t ˆ( , ),i a t ˆ( , )r a t  and ˆ( )t  be the perturbations in ( )s a t , ( )e a t , ( )i a t , ( )r a t  
and ( )t , respectively, i.e., 
 

ˆ ˆ( ) s( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( )

s a t a t s a e a t e a t e a

i a t i a t i a r a t r a t r a

t t

 

 



         

         

    

                                                                (4.9) 

 
These perturbations satisfy the following system of equations: 
 

ˆ( )s a t

t

 


ˆ( ) ˆˆ( ) ( ) ( ) ( ) ( )
s a t

k a s a t t k a s a
a

   
     


                                                      (4.10a) 

ˆ( )e a t

t

 


ˆ( )
ˆ( ) ( )

e a t
a e a t

a
 

   


ˆˆ( ) ( ) ( ) ( ) ( )k a s a t t k a s a                                       (4.10b) 

ˆ( )i a t

t

 


ˆ( ) ˆ ˆ( ) ( ) ( ) ( )
i a t

a i a t a e a t
a

  
      


                                                              (4.10c) 

ˆ( )r a t

t

 


ˆ( ) ˆ( ) ( )
r a t

a i a t
a

 
   


                                                                                     (4.10d) 

0

ˆ ˆˆ( ) ( )[ ( ) ( )]
a

t a e a t i a t da                                                                                        (4.10e) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                             (4.10f) 

 
We look for the following exponential solutions of the perturbed system (4.10) 
 

ˆ ( ) ( ) ts a t s a e   ˆ( ) ( ) te a t e a e   ˆ( ) ( ) ti a t i a e   ˆ( ) ( ) tr a t r a e    , and ˆ( ) .tt e    
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The functions ( ) ( ) ( ) ( )s a e a i a r a      and the parameter   satisfy the following system of 
equations: 
 

( )
( ) ( ) ( ) ( ) ( )

ds a
s a k a s a k a s a

da
       

                                                                      (4.11a) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

de a
e a a e a k a s a k a s a

da
         

                                                    (4.11b) 

( )
( ) ( ) ( ) ( ) ( )

di a
i a a i a a e a

da
      


                                                                             (4.11c) 

( )
( ) ( ) ( )

dr a
r a a i a

da
    

                                                                                                (5.3d) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                                (4.11e) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                              (4.11f) 

(0) (0) (0) (0) 0s e i r                                                                                                 (4.11g) 
 
We note that the functions ( ) ( ) ( ) ( )s a e a i a r a      can take both positive and negative values. 

Assuming 0   we set 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

s a e a i a r a
s a e a i a r a

   
       

  
   

 

 
and obtain the following system: 
 

( )
( ) ( ) ( ) ( ) ( )

ds a
s a k a s a k a s a

da
                                                                          (4.12a) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

de a
e a a e a k a s a k a s a

da
                                                          (4.12b) 

( )
( ) ( ) ( ) ( ) ( )

di a
i a a i a a e a

da
                                                                               (4.12c) 

( )
( ) ( ) ( )

dr a
r a a i a

da
                                                                                               (4.12d) 

0
( )[ ( ) ( )]

a
a e a i a da                                                                                             (4.12e) 

0
1 ( )[ ( ) ( )]

a
a e a i a da                                                                                              (4.12f) 

(0) (0) (0) (0) 0s e i r                                                                                             (4.12g) 
 
Solving (4.12a), (4.12b) and (4.12c) we get the following: 
 

( )( )

0
( ) ( ) ( )

a
a k das a k s e e d

     
                                                                             (4.13) 
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( )( )

0
( ) [ ( ) ( ) ( ) ( )]

a
a dae a k s k s e e d

        
       

( )( )

0
      ( ) ( )

a
a dak s e e d

      
    

( )( )

0
( ) ( )

a
a dak s e e d

     
        (4.14) 

 
( )( )

0
( ) ( ) ( )

a
a dai a e e e d

      
                                                                                (4.15) 

 
  Let us denote the expression in the right-hand side of (4.12f) by ( )Q  , i.e. 
 

0
( ) ( )[ ( ) ( )] 1

a
Q a e a i a da                                                                                      (4.16) 

 
We now consider Equation (4.16) in two different ways. Firstly, substituting (4.14) into (4.15) 
and changing the order of integration we obtain 
 

( ) ( )( ) ( )

0 0
( ) ( )[ ( ) ( ) )]

a
da dai a k s e e d e e d



 
               

          

                            
( ) ( )( ) ( )
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( ))[ ( ) ( ) )]

a
da dak s e e d e e d



 
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         

      
( ) ( )( )

0
 ( ) ( ) ( )

a
da a dak s e e e d d



 
      


      

         

                        
( ) ( )( )

0
 ( ) ( ) ( )

a
da a dak s e e e d d



 
      


     

         

      
( )( )( )

0
( ) ( ) ( )

a
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


     


      

       

                      
( )( )( )

0
  ( ) ( ) ( )

a
da a dak s e e e d d




     


     

           (4.17) 

 
Substituting (4.14) and (4.17) into (4.16) we get an expression for ( )Q   as follows 
 

( )( ) ( )( )

0 0
1 ( ) ( ) ( ) ( )

aa
da a ad daa k e e e e d s d da

    
       
   

  


 
        


         

      
( )( ) ( )( )

0 0
( ) ( ) ( ) ( )

aa
da a ad daa k e e e e d s d da

    
       
   

  


 
        


        

( )Q                                                                                                                               (4.18) 
 
Secondly, substituting (4.13) into (4.14) and changing the order of integration we have 
 

( ) ( )( ) ( )

0 0
( ) ( ) ( ) ( ) ( )

a a
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           
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( ) ( )( ) ( )

0 0
 ( )[ ( ) ( ) ]

a
k da dak k s e e d e e d



 
              
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( )( )
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 ( ) ( )

a
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0
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a
k da a dak s e k e e d d



 
      


     

           

 

                                                                
( )( )

0
 ( ) ( )

a
a dak s e e d

     
      

( )( )( )

0
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a
da a k dak s e k e e d d




     


     

          
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0
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a
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     
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( )( ) ( )( )

0
     ( ) ( ) [ ( ) ]

aa
da ad k dak s e e k e e d d



 
        


     

                                  (4.19) 

 
Substituting (4.19) into (4.15) and changing the order of integration it follows 
 

( ) ( )
( )

0 0
( ) ( ){ ( ) ( ) [ ( )

d k da
i a k s e e k e

 

 
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
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

 
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               (4.20) 

 
    Substituting (4.19) and (4.20) into (4.16) we get another expression for ( )Q   as follows 
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( ) ( )( )
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 ( )Q                                                                                                                             (4.21) 

 
Let 
 

( ) ( ) ( ) ( )
a

D a g a G a g d


                                                                                                       (4.22) 

 
where 
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a
d
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Then, (4.21) can be rewritten as 
 

( )

0 0
( ) ( ) ( ) ( ) ( )

a a aQ a k s e D a d da                                                                          (4.23) 

 
and the following result is established 
 
Theorem 4.2.  
 
Let us assume 
 

( ) 0 0g a a a                                                                                                 (4.24) 

 
  Then,  
 
(a) ( )Q  is a decreasing function of  , which tends to zero as    . 
 
(b) (0) 1Q  . 
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Proof:  
 
(a)  From equation (4.22) and assumption (4.24) it follows that the function ( )D a   defined for 

0 a a     is nonnegative and independent of . Equation (4.23) clearly show that 

( ) 0Q   , which is exponentially decreasing in   and ( ) 0Q    as    .  
 
(b)  To show this part we use a different representation of ( )Q  . From (4.18) we have 
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a

da d
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


    


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                           (4.25) 

 
The equations (4.2) and (4.7) imply that the second integral above is exactly equal to one. 
Furthermore, from equation (4.13) it follows that ( ) 0s a   under the assumption (4.24). Hence, 
the first integral is negative. Therefore, (0) 1Q  . This completes the proof. 
 
The Theorem 4.2 and formula (4.23) imply that the equation ( ) 1Q   , which is equivalent to 
(4.16), has a unique real solution which is negative and that all complex solutions have real parts 
smaller than the unique real solution. Consequently, assumption (4.24) guarantees the stability of 
the endemic equilibrium. So we have the following result: 
 
Theorem 4.3.  
 
If 0 1R   and assumption (4.24) is satisfied, then the endemic equilibrium is locally 

asymptotically stable. 
 
 
5.   Conclusion 
 
Here we proposed and analyzed an age-structured SEIR epidemic model with infectivity in both 
the latent and infectious periods. We note that, tuberculosis, HIV/AIDS and SARS, are examples 
of this kind of diseases. It is different from Gui-Hua Li and Zhen Jin (2004, 2005, 2006), where 
ODE models with infectivity in both the latent and infectious periods are considered. We 
determined the steady states of the model and proved globally stability results for the disease-
free equilibrium and locally stability results for the endemic equilibrium under certain 
conditions. The question of global stability of the endemic equilibrium is still an open problem. 
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