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Abstract

We study an iterative process to accelerate the successive approximations method in a monotonous
convergence framework. It consists in interrupting the sequence of the successive approximations
method produced at the kth iteration and substituting it by a combination of the element of the
sequence produced at the iterate k + 1 and an extrapolation vector. The latter uses a parameter
which can be calculated mathematically. We illustrate numerically this process by studying a free-
boundary problems class.

Keywords: Accelerate process; Monotonous convergence; Method of successive
approximations; Method of super/sub-solution

MSC 2010 No.: 49M25, 65B05, 65N22, 65N55

1. Introduction

This paper deals with the study of an iterative process for speeding up the successive approxima-
tions method:

uk+1 = Tuk + b, k = 0, 1, . . . ,
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where T is a real m×m matrix and b, ukεRm, in the case of monotonous convergence. This process
has initially been proposed by Falcone (1984) & Miellou (1979) for solving a linear system and
has been extended afterward by El-Tarazi (1986) for a nonlinear system. It consists in interrupting
the iterations of the sequence ( uk), k = 1,2,..., produced by the iterative method at the kth step and
substituting uk by ũk, where ũk is obtained by combining

the vector uk+1 and the extrapolation vector uk + ηk(uk − uk−1),

with ηk a real parameter to be calculated. We restart the iterative process with ũk as an initial
guess; this sequence ũk is a better approximation to the solution that the iterations uk+1and uk, and
moreover, it preserves the monotony properties. In Laouar (1988) and Laouar and Abdelli (2005),
it has been applied to solve a discrete quasi-variational inequality system. A hybrid acceleration
procedure for nonlinear problems, similar to that described above, was developed by Brezinski
and Cheheb (1998). Our primary goal, here, is to improve this process for a large system. For this,
we illustrate this process by applying it to a class of free boundary problems (see Bensoussan and
Lions (1978), Boulbrachene (1998), Chau, et al. (2017), Zhou (2007)). We look for a function u
satisfying

(P )

{
a(u, u− v) ≥ (f, v − u)L2(Ω),

u ≤M(u), v ≤M(u),
(1)

where a(., .) is a bilinear form, (., .) being the inner product in L2(Ω), f a regular given function in
L2(Ω). M(u) represents the obstacles which are very important in the study of the quasi-variational
inequality system (the impulsion control problems).

The outline of this paper is as follows. Section 2 describes the accelerative process and gives
the algorithms. Section 3 presents a free boundary problem and analogous discrete problem. Last
section gives the illustration of the accelerate process by considering two examples.

2. An Accelerate Process

2.1. Preliminaries and theory

In this section we introduce some useful materiel which we used in the sequel.

On Rm, the real m−dimensional linear space of column vector u = (u
1
, ..., um)T .

We consider the natural partial ordering defined by

for u, v ∈ Rm, u < v ⇐⇒ ui < vi, i = 1,...,m,

for u, v ∈ Rm, u ≤ v ⇐⇒ ui≤ vi, i = 1,...,m.

On L(Rn) the linear space of real m ×m matrices, we may consider a partial ordering analogous
as follows

for A,C ∈ L(Rm), A < C⇐⇒ ai,j < ci,j , i, j= 1, ...,m,

for A,C ∈ L(Rm), A ≤ C⇐⇒ ai,j ≤ ci,j , i, j= 1, ...,m.
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Let T ∈ L(Rm) and b ∈ Rm, and consider the linear system

u = Tu+ b, (2)

and the method of successive approximations{
For any initial vector u0 ∈ Rm/

uk+1= Tuk+b, k = 0,1,2, . . . ,
(3)

denoting by u∗ the fixed point of Equation (2).

It is known that if ρ(T ) < 1 (ρ(T ) is the spectral radius of T ) then, the iterative method (3) converges
to the solution u∗ for any u0 ∈ Rm; of course, the convergence is not necessarily monotone (see
Laouar and Abdelli (2005)).

Definition 2.1.

In (2), for any z ∈ Rm, we say that

• a sub-solution if z ≤ Tz + b,

• a super-solution if Tz + b ≤ z.

Remark.

Note that if the spectral radius ρ(T ) is less than unity, then the iteration (3) converges to the solution
u∗ of (2) for any u0 ∈ Rn. Furthermore, it is classically known (see Ortega and Rheinboldt (1970)
for more general cases) that if

T ≥ 0, ρ(T ) < 1 and Tu0 + b ≤ u0 (resp. u0 ≤ Tu0 + b),

then the sequence (3) is decreasing (resp. increasing) in partially ordered space Rm and converges
to u∗. Whereas when ρ(T ) is close to unity, the convergence of (3) may be very slow.

Consider the following hypothesis

(H)

{
T ∈ L(Rm) with T ≥ 0,

and ρ(T ) is strictly lower than 1.

Lemma 2.3.

Under the hypothesis (H) and for any u, v ∈ Rm, Tu+b ≤ u and Tv+b ≤ v. Let z ∈ Rm be defined
by z = min(u, v) [i.e. zi = min(ui, vi), i = 1,...,m]. Then, we have

Tz + b ≤ z.

Proof:

By definition of z, zi = ui (or zi = vi) for i = 1, ...,m. Since, z ≤ u (resp. z ≤ v) and ti,j > 0 ( ti,j
the coefficients of the matrix T ) then, for j = 1, ...,m, we have
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m∑
i=1

ti,j(zj − uj) ≤ 0 (resp.
m∑
i=1

ti,j(zj − vj) ≤ 0)

Then, for i = 1, ...,m, we have

(Tz + b− z)i ≤ (Tu+ b− u)i ≤ 0 (resp. (Tz + b− z)i ≤ (Tv + b− v)i ≤ 0) .

Hence, we deduce that

Tz + b ≤ z. �

Proposition 2.4.

We suppose that the hypothesis (H) is verified. Let Tu0 + b ≤ u0 (resp. v0 ≤ Tv0 + b), then the
sequence uk(resp. vk) defined by

uk+1 = Tuk + b ( resp. vk+1 = Tvk + b),

satisfies

u∗ ≤ ... ≤ uk+1 ≤ uk ≤ ... ≤ u0 and lim
k→∞

uk = u∗

( resp. v0 ≤ ... ≤ vk ≤ vk+1 ≤ ... ≤ u∗ and lim
k→∞

vk = u∗).

Proof:

We have ρ(T ) < 1 and T ≥ 0, then (I − T )−1 ≥ 0. So, (I − T ) is M-matrix with Tu0 + b ≤ u0

(resp. v0 ≤ Tv0 + b), we can prove easily this proposition. �

Theorem 2.5.

Let the hypothesis (H) be verified. Let Tu0 + b ≤ u0 and a parameter ηk (ηk > 0) defined by

ηk=min
i∈m

{
[T (uk−1−uk)]i

[(I − T )(uk−1−uk)]i

}
= min

i∈m

{
[(I − T )uk−b]i

[(I − T )(uk−1−uk)]i

}
, (4)

where the minimum is taken over all i for which[
(I − T )(uk−1 − uk)

]
i
> 0 and uk+1 = Tuk + b, for k = 1,2,...

Then

ũk = uk + ηk(uk − uk−1),

satisfies

u∗ ≤ ũk ≤ uk+1 ≤ uk and T ũk + b ≤ ũk.
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Proof:

Under the hypothesis (H), uk satisfies Proposition 2.4 and uk−1 ≤ uk for all k. If uk−1 = uk, then
uk = u∗ and the proof is obvious.

Now, we suppose that uk−1 6= uk. As (I − T )−1 > 0, it follows that (I − T )(uk−1 − uk) has at least
one positive component. Thus, the parameter ηk is well defined and positive.

From (4), we have

ηk
[
(I − T )(uk − uk−1)

]
i
≤
[
(I − T )uk − b

]
i
, for i = 1,...,n,

which is true even if [
(I − T )(uk−1 − uk)

]
i
≤ 0, since (I − T )uk − b > 0.

Hence,

T
[
uk + ηk(uk − uk−1)

]
+ b ≤ uk + ηk(uk − uk−1), with Tuk+1 + b ≤ uk+1.

By using Lemma 2.3, we have

T ũk + b ≤ ũk, ũk+1 ≤ uk+1 ≤ uk

and

(I − T )u∗ − b ≤ (I − T )ũk − b, with (I − T ) ≥ 0.

Hence, u∗ ≤ ũk. So, the proof of Theorem 2.5 is completed. �

Theorem 2.6.

Let the hypothesis (H) be verified. Let v0 ≤ Tv0 + b and a parameter θk (θk > 0) defined by

θk=min
i∈m

{
[T (vk−1−vk)]i

[(I − T )(vk−1−vk)]i

}
= min

i∈m

{
[(I − T )vk−b]i

[(I − T )(vk−1−vk)]i

}
, (5)

where the minimum is taken over all i for which[
(I − T )(vk−1 − vk)

]
i
< 0 and vk+1 = Tvk + b, k = 1,2,...

Then

ṽk = vk + θk(vk − vk−1),

satisfies

vk ≤ vk+1 ≤ ṽk ≤ u∗ and ṽk ≤ T ṽk + b.

Proof:

In a similar way of Theorem 2.5, we can easily show Theorem 2.6. �
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Of course under the assumption (H) of the above Theorems 2.5 and 2.6, we can guarantee two
sided error estimate

vk ≤ ṽk ≤ u∗ ≤ ũk ≤ uk,

which allows us to obtain an approximation to the exact solution u∗ to any desired tolerance.

2.2. Original and accelerated algorithms

Denoting by Alg1 the original algorithm and Alg2 the accelerated algorithm, we now give a de-
scription of the Alg1 and Alg2, respectively.

Algorithm Alg1 :

Step 0: Consider the initial guess u0, v0 ∈ Rm such that

u0 ≤ Tu0 + b and Tv0 + b ≤ v0.

Step 1: For k = 0, 1, ... {
uk+1= Tuk+b,

vk+1= Tvk+b.
(6)

Algorithm Alg2 :

Step 0 : Consider the initial guess u0, v0 ∈ Rm such that

u0 ≤ Tu0 + b and Tv0 + b ≤ v0.

Step 1: For k = 1,2,... {
uk+1= max [Tuk+b, uk+ηk(u

k−uk−1)],

vk+1= min [Tvk+b, vk+θk(v
k−vk−1)],

(7)

where the parameter ηk(resp. θk) is calculated by the expression (4) (resp. by (5)).

To solve the iterative systems (6) and (7), we use the Jacobi method [(I − T ) = A, where A = ai,j ,
1 ≤ i, j ≤ m]; we denote by D = (di,j)1≤i,j≤m a diagonal matrix, where di,j = ai,j , if i = j and
di,j = 0 if i 6= j, −E (−F ) is strictly lower (resp. upper) triangular matrix of the A.

Thus, the algorithm is written as{
For any u0∈ Rm arbitrary data,
uk+1= (In−D

−1(E + F ))uk+D−1b, k = 0, 1, ...
(8)

For the convergence test of the algorithm, we use the norm ‖ uk−vk ‖∞< ε , where ε is a tolerance.
The initialization process of vectors u0 and v0 is defined by

(I − T )u0 < b (resp. b < (I − T )v0).
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Step 0: We can choose the initial vectors u0and v0 as follows.

u0 = −v0 = −(δ, ..., δ)t, where δ > max

(
b

λ
,
−b
λ

)
> 0,

with

λ = min
i

∑
j

ai,j

 > 0, b = min
i

(bi) and b = max
i

(bi).

3. Class of free boundary problems

In order to present the study at least for a large class of the problems, we take an economic problem
from the general examples (we refer to the book of Bensoussan and Lions(1978)). Our objective,
here, is limited to give numerical examples for illustrating the accelerative process, so we do not
intend to present the complete study of this problem (for more details, see Bensoussan and Lions
(1978) and Boulbrachene (1998)).

Indeed, we want to solve a class of the following general problem. Let Ω be a bounded domain of
Rm, with regular boundary ∂Ω.

(P )


Find u such that
a(u, u− v) ≥ (f, v − u)L2(Ω),

u ≤M(u), v ≤M(u),

(9)

where

a(u, v) =

n∑
i,j=1

∫
Ω
σi,j(x)

∂u

∂xi

∂v

∂xj
dx+

n∑
j=1

∫
Ω
µj(x)

∂u

∂xj
vdx+

∫
Ω
α0(x)uvdx, (10)

the coefficients σi,j , µj and α0 ∈ L∞(Ω), for i, j = 1, ..., n, with α0 > 0, (., .) being the inner
product in L2(Ω) and f a regular given function in L2(Ω). M(u) represents the obstacles which are
very important in the study of the quasi-variational inequalities which invert as impulsion control
problems.

The general problem (P ) is theoretically well understood from mathematical and analytic point of
view (see Bensoussan and Lions (1978)) and can be written explicitly under other form of three
sub-problems as follows.

For i = 1, 3, find ui ∈ Rm such that 
Aiui ≤ fi,
ui ≤M(ui),

(Aiui − fi)t.M(ui) = 0,

(11)

where A1, A2 and A3 are three operators which will define in the sequel. M(u) is define by

M(ui) = inf
i,j
{Ψi,j + ui} ,
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where Ψi,j is the obstacles for i 6= j and i, j ∈ {1, 2, 3} .

The economic problem means to adjust the period-time in which a regime is used in order to satisfy
the demand at the lowest cost (see Bensoussan and Lions (1978)).

Other formulation of the problem (11) is given by:

For i = 1, 3, find ui ∈ Rm such that

max

[
(Aiui − fi)t.(ui − inf

i,j
(Ψi,j + ui))

]
= 0. (12)

The problems (11) are presented more explicitly as follows. Find the respective solutions u1, u2,

u3 of the three sub-problems such that

(Ps)



(P1)


A1u1 ≤ f1,

u1 ≤ inf(Ψ1,2 + u2, Ψ1,3 + u3),

(A1u1 − f1)t(u1 − inf(Ψ1,2 + u2, Ψ1,3 + u3)) = 0,

(P2)


A2u2 ≤ f2,

u2 ≤ inf(Ψ2,1 + u1, Ψ2,3 + u3),

(A2u2 − f2)t(u2 − inf(Ψ2,1 + u1, Ψ2,3 + u3)) = 0,

(P3)


A3u3 ≤ f3,

u3 ≤ inf(Ψ3,1 + u1, Ψ3,2 + u2),

(A3u3 − f3)t(u3 − inf(Ψ3,1 + u1, Ψ3,2 + u2)) = 0,

(13)

with boundaries conditions u1 = u2 = u3 = 0 and f1, f2 and f3 given positive functions. For i 6= j

and i, j ∈ {1, 2, 3} , Ψi,j is the fixed cost and represents the obstacles (see Bensoussan and Lions
(1978)).

Remark.

The procedure of passing from one regime to the other is easily described from (Ps); for example,
one pays Ψ1,2 and Ψ1,3 when we pass from the regime (P1) to the regime (P2), but if

u1 ≤ inf(Ψ1,2 + u2, Ψ1,3 + u3),

is not verified, then one projects.

Similarly, one pays Ψ3,1 and Ψ3,2 when we pass from the regime (P2) to the regime (P3), but if

u2 ≤ inf(Ψ2,1 + u1, Ψ2,3 + u3),

is not verified, then we project (for more details, we refer to the book of Bensoussan and Lions
(1978)).

The operators A1, A2 and A3 are given by
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A1u1 = −
∑
i=1

σi,j(x)
∂2u1

∂x2
i

+
n∑

j=1
µi(x)

∂u1

∂xi
+ α0(x)u1, (I)

A2u2 = −
∑
i=1

σi,j(x)
∂2u2

∂x2
i

+ α0(x)u2, (II)

A3u3 = −
∑
i=1

σi,j(x)
∂2u3

∂x2
i

. (II)

(14)

Note that the coefficients σi,j(x), µi(x) and α0(x) are given regular functions which are taken as
constant in numerical experiment.

3.1. Analogous discrete problem

The discrete version of the problem (P ) can be written as

(Ph)


Find uh a discrete solution such that
ah(uh, uh−vh) ≥ (fh, vh−uh),

uh≤ rhMh, vh≤ rhMh,

(15)

where rh is an usual interpolation operator.

The fixed-point application associated to the problem (Ph) is defined by

(T h)

{
Th: (L∞(Ωh)+→ V h,

w → T hw = zh(w),
(16)

where Vh is a P1 finite element space approximating H1(Ωh) and zh(w) the discrete solution of the
following problem:

(P
′

h)

{
ah(zh(w), vh−zh(w)) ≥ (fh, vh−zh(w)),

zh(w) ≤ rhMh(w), vh≤ rhMh.
(17)

4. Numerical examples

For illustrating the considered accelerate process, we give two numerical examples and evaluate
the execution time of solution by using the following formula:

q =
execution time of the algorithm Alg2
execution time of the algorithm Alg1

.

Example 4.1.

The first example treats the particular case of the problem (14− I)) by taking M(u)=Ψ. For this
we discretize the problem (Ph) by taking Ω =]0, 1[×]0, 1[ and choosing a regular mesh of pace h
(h = 1/(m + 1), m > 0). We use a standard discretization by the five point-usual finite difference
scheme and obtain the following system:

Ahuh = Fh, (18)
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where Ah is the matrix of discretization, uh a solution vector and Fh = (h2f1, ..., h
2fm)T .

Taking

k1 = 4(
σ2

1

2
+
σ2

2

2
) + α0h

2, k2 = −σ
2
1

2
+
µ1h

2
, k3 = −σ

2
1

2
− µ1h

2
, (19)

k4 = −σ
2
2

2
+
µ2h

2
, k5 =

σ2
2

2
− µ2h

2
, (20)

where σ1 = σ2 ≈ σi,j(x) and µ1 = µ2 = µj , for i, j = 1, ...,m.

The coefficients of the matrix are given by

ai,i = k1 for i = 1,m,

ai,i+1 =

{
k2 if i = 1,m and i 6= n, 2n, ...,m− 1,

0 if i = n, 2n, ...,m− 1,

ai,i−1 =

{
k3 if i = 2,m and i 6= n, 2n, ...,m− 1,

0 if i = n, 2n, ...,m− 1,

ai,i+n = k4 and ai+n,i = k5 for i = 1, ...,m− 1.

We note that the matrix Ah has a multi-diagonal structure and does not symmetric. To solve the
system (18), we use the Jacobi method and project on convex space (i.e., if the iteration uk ≤ rhΨh

and vk ≤ rhΨh, otherwise, we take the iteration uk and vk equal to the obstacle, respectively). Thus,
we calculate the sub-solution and super-solution. Therefore we are evaluated the cpu execution
time in one percent of a second of the original Algorithm Alg1 before the acceleration and the
execution time of the accelerated Algorithm Alg2.

To simulate, we take the following data σ1 = σ2 =
√

2, α0 = 100, µ1 = µ2 = 0.01, Ψ a positive
constant and tolerance ε = 10−14.

We present some results in the following tables.

Table 1. The execution time of the Algorithm Alg1.

m Iterations Time cpu (one percent of a second)
64 65 36.8000

169 141 414.960

225 180 896.440

289 202 1272.020

Table 2. The execution time of the Algorithm Alg2.

m Iterations Time cpu (one percent of a second)
64 30 26.5600

169 69 256.560

225 88 340.760

289 93 658.670
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Note that the iterations number cannot be considered here, as a criterion of comparison because
the Algorithm Alg2 is different of the Algorithm Alg1.

Now, we represent graphically the above result of the tables (see Figure 1).

Figure 1. The graph q = f(m).

We remark that the situation, here, is a more favorable that in El-Tarazi (1986) and Laouar and
Abdelli (2005), since the result obtained in Tables 1 and 2, shows that there is a better acceleration
of convergence (for example m = 64, we gain approximately 30% cpu time). We notice that when
m increases, the gain in time can reach up to 50%.

Example 4.2.

In the second example, we consider the general problem (13) in three dimensional (i.e., Ω =

]0, 1[×]0, 1[×]0, 1[). For the discretization of the problems (14, I), (14, II) and (14, III), we use
a standard discretization (the nine point-usual finite difference scheme). Thus, we obtain the cor-
responding systems, respectively.

A
(1)
h uh = F

(1)
h , (Ih)

A
(2)
h vh = F

(2)
h , (IIh)

A
(3)
h wh = F

(3)
h , (IIIh)

(21)

where A(1)
h , A

(2)
h and A

(3)
h are the discretization matrices of the operators A1, A2 and A3, respec-

tively; uh, vh and wh are the solutions vectors of (Ih), (IIh) and (IIIh); F (1)
h , F

(2)
h F

(3)
h are the

second members.

We solve the systems (19, Ih), (19, IIh) and (19, IIIh) by Gauss-Seidel method which is presented
as follows.

For i = 1,m, we have
ũ

(k+1)
i = −

∑
i<j

ai,ju
(k)
i −

∑
i>j

ai,ju
(k+1)
i + F

(i)
h ,

w
(k+1)
i = proj

V
ũ

(k+1)
i ,

k = 0,1,2,..., (22)
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where

V =
{
u

(k+1)
i /u

(k+1)
i ≤ inf(Ψi,j + v

(k)
i , Ψi,j + wk

i )
}
,

with vki , wk
i the calculated iterations for the systems (19, IIh) and (19, IIIh), respectively.

For simulation, we have taken the obstacles Ψ1,2 = Ψ2,1 = 3, Ψ1,3 = Ψ3,1 = 4 and Ψ2,3 = Ψ3,2 =

2.5; the coefficients σi,j = 2, µj = 1 and α0 = 4; the initial vectors u(0) = v(0) = w(0) = 1, 7; the
tolerance ε = 10−8.

We present some results in the following tables.:

Table 3. The execution time of the Algorithm Alg1.

h = 1/(m + 1) Iterations Time cpu (second)
1/8 13 3.06

1/11 12 4.44

1/16 15 12.72

1/32 45 30.11

Table 4. The execution time of the Algorithm Alg2.

h = 1/(m + 1) Iterations Time cpu (second)
1/8 12 2.55

1/11 8 3.77

1/16 9 11.73

1/32 30 25.09

As we said previously the iterations number cannot be considered, here, as a criterion of compari-
son because the Algorithm Alg2 is not identical to the Algorithm Alg1.

5. Remarks and Conclusion

We remark that our result is a more favorable that in Laouar and Abdelli (2005) & El-Tarazi (1986),
since the result obtained, in Tables 1 and 2, shows that there is a better acceleration of convergence
(for example m = 64, we gain approximately 30% cpu time). We notice that when m increases, the
gain in time can reach up to 50%. The results in Tables 3 and 4 show that there is an acceleration
of convergence. One gains approximately 20% of the time with respect to the time of the original
Algorithm Alg1. However the situation is a less favorable as in Example 1. The gain of time is
approximately similar to the obtained results in El-Tarazi (1986) & Laouar and Abdelli (2005).

This study introduces a process of convergence acceleration as a numerical algorithm for a class
of free boundary problems, where the problem of the obstacle is representative. We were only
concerned with setting this acceleration process to test whether it is robust. Indeed, important the-
oretical questions concerning the sensitivity of this process to the optimal choices of the relaxation
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parameter were not addressed in this study. This process can be extended to free parabolic bound-
ary problems (the Stefan problem) and optimal control problems of elliptic type with constraints
on state and / or control.
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