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Abstract  

An attempt has been made to show the impact of non-linearity of the worms    through SIRS 
(susceptible – infectious – recovered - susceptible) and SEIRS (susceptible – exposed – 
infectious – recovered - susceptible) e-epidemic models in computer network. A very general 
form of non-linear incidence rate has been considered satisfying the worm propagating behavior 
in computer network. The concavity conditions with a non-linear incidence rate and under the 
constant population size assumption are shown to be stable. Such systems have either a unique 
and stable endemic equilibrium state or no endemic equilibrium state at all; in the latter case, the 
worm infection-free equilibrium is stable.  
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1.  Introduction 

The invention of computers, has drastically changed our society computer networking has 
revolutionized in the field of Education, Information, and Defense. But a few decades ago, cyber 
world is facing several challenges in the form of malicious agents like viruses, worms, Trojan 
horse etc. Initially in spite of a large number of viruses, an only minor damage to machinery was 
caused and their spread was very slow. In recent years, however, owing to the rapid development 
of technology malicious agents have become a major threat. They are capable of acquiring 
personal data of users, such as clients bank accounts, secret information of defense etc. With a 
view to protect our software and other valuable information, it is hence important to study about 
different malicious agents in the cyber space, their features , propagating methods and means and 
their limitation. To improve the safety and reliability in computer systems and networks, it is 
important to have the capacity to recognize and combat the several types of infections faster and 
more effectively. 
 
Epidemiological models with non-linear incidence rate have been studied by several authors 
[Hethcote (1989); Hethcote (2000); Hethcote, Van Den Driessche (1991); Derrick, Van Den 
Driessche (1993); Derrick, Van Den Driessche (2003)]. Briggs and Godfray (1995) considered 
different form of non-linear incidence rate for the study of infection of insects. Some work has 
been done by Korobeinikov [Korobeinikov et al. (2004); Korobeinikov, Maini (2004); 
Korobeinikov, Wake (2002)] for the Lyapunov function and global properties for SIRS and 
SEIRS epidemiological models with non-linear incidence. La Salle and Lefschetz (1961) used 
direct Lypunov method for stability. Liu et al. (1989) proposed dynamical behavior of 
epidemiological models with non-linear incidence rate. The action of malicious objects 
throughout a network can be studied by using epidemiological models for disease propagation 
[Mishra, Saini (2007); Mishra, Jha (2007); Mishra, Jha (2009); Keeling, Eames (2005); 
Williamson, Leill (2003); Madar, Kalisky et al(2004); Newman, Forrest et al(2002); Piqueira, 
Cesar (2008); Piquira, Monteiro (2005); Pastor-Satorra, Vespignani (2002); May, Lloyd (2001); 
Richard, Mark (2005); Datta, Wang (2005); Chen, Jamil (2006); Wang et al. (2003); Hua, 
Guoquing (2008)].   
 
Several authors have studied on bilinear standard incidence rate, but these may require 
modification, for example the underlying assumption of homogeneous mixing may not be true in 
cyber world. In this case, the necessary population structure and heterogeneous mixing may be 
incorporated into a model with a specific form of non-linear transmission. In this work, we 
assume a general form f(S, I, N) as a non-linear incidence rate constrained with a few e-epidemic 
feasible conditions. We show that for SIR and SEIR models (a) if basic reproduction numbers, 
that is, 

0
R   1 then the endemic equilibrium of the system asymptotically stable, and (b) if 

0
R  1, then there is no endemic equilibrium state, and the worm infection-free equilibrium state 

is asymptotically stable. 
 
In the next stage we again show that for the instability of the endemic equilibrium state, the 
incidence rate of f(S, I, N) must be convex with respect to infection I. For global stability, we 
take incidence rate as a product of two function, i.e., f(S, I) = h(S).g(I) and then construct a 
Lyapunov function. 



416                                                                                                               B.K.  Mishra and A.K. Singh 

 
We consider a horizontally transmitted infection of worms (transmission from an infective host 
to a susceptible node) in computer network .We postulate that the incidence rate depends on the 
variables S, I, and N only and is given by a function f(S, I, N). 
 
The function f(S, I, N) must satisfy the conditions f(S, 0, N) = f (0, I, N) = 0                      (1) 
 
and   
 

( , , )
0,

f S I N

I





( , , )

0
f S I N

S





, for  all   S,I >0.                                  (2)      

 
We also assume that the function f(S, I, N) is concave with respect to the variable I, that is,        
 

 
2

2

( , , )
0

f S I N

I





   for all S,I >0 .                         (3)    

 
In the cyber world it has been observed that, most e-epidemic non-linear incidence rates lead to a 
function concave with respect to the number of infective nodes I. Thus, the condition (3) may be 
a consequence of saturation effects: when the number of infective nodes is very high so that 
exposure to the worm agent is virtually certain, the incidence rate will respond more slowly than 
linearly to the increase in I. For a discrete-time model, a non-linear transmission function is 
concave with respect to the number of infective nodes. The same result, a concave incidence rate 
or a worm disease transmission function, can be obtained if a non-linear transmission function is 
introduced into a discrete-time model to capture non-homogeneity of the population structure. In 
this paper we show that autonomous compartmental e-epidemiological models with a non-linear 
incidence rate satisfying conditions (1) - (3) and under the constant population size assumption 
are stable. Such systems have either a unique and stable endemic equilibrium state or no endemic 
equilibrium state at all; in the latter case, the worm infection-free equilibrium is stable. In fact, 
the condition (3) is a sufficient condition for the system to be stable.     
 

2. The e- SIRS Worm Propagation Model and Its Stability 

Based on our assumptions, we have the following dynamical system: 
 

( , , )
dS

N f S I N S R
dt

      ,    

( , , ) ( )
dI

f S I N I I
dt

      , 

dR
I R R

dt
     ,  
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where  is birth and natural death rate of nodes,  is the death of the nodes due to attack of 
worms,  is the loss of immunity rate, and   is the rate of recovery of the nodes after the run of 
antivirus software.  
 
Further, we assume 
  

N S I R   .   
 
Thus, the reduced system of equations takes the form  

 

     
.

, ,S N S I f S I N          ,   

   
.

, ,I f S I N I       .                  (A)   

  
At equilibrium state, we have 

 
   , ,f S I N I      ,                                              (4)         

( ) ( ) ( , , )N S I f S I N         . 
 
Thus, from equation (1), we have, 
 

( ) ( ) ( )N S I              ,                (5) 
 
at worm infection free equilibrium state, 0 0 0( , )Q S I , where 0S N  and 0 0I  . 

 
Apart from the worm infection free equilibrium, 0,Q the system can have positive endemic 

equilibrium states. If  andS I   are coordinates of an endemic equilibrium state ,Q  then we 
have the following lemma: 
 

Lemma 1.  If the condition f(S, 0, N) = 0 = f (0, I, N) and 
( , , ) ( , , )

0, 0
f S I N f S I N

I S

 
 

 
for all  

S, I > 0;   
2

2
( , , ) 0f S I N

I





for all S, I>0 

 
    2

2

, , , ,
0; 0, 0 , 0,

f S I N f S I N f
S I

I S f

  
    

  
 

then, at the endemic equilibrium state (0, )I I


  
( , , )f S I N

I
  

 
  


, where the strict 

equality hold only if 
2

2

( , , )
0

f S I N

I





,  for all (0, )I I  . 

 
Proof: 
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From equation (5) at endemic equilibrium state, 
 

( , , ) ( )f S I N I       . 
 

Let ( ) ( , , )f I f S I N . Also assume that 
 

 , , ( )S I N d f I

I dI
  

  
   


.                             (6) 

 
By the Mean Value Theorem (MVT), if 1 (0, )I I  . Then, 

 

1( ) ( ) (0)d f I f I f

dI I








( , , ) ( ,0, )f S I N f S N

I

  






( , , ) ( )f S I N I

I I

     
  

 

 
    . 

 
If ( , )I I I  , then again using the MVT, we have  
      

   
   12 2

0 0
2 2

1

, ,
d f I d f I

f S I N d f I dI dI
I dI I I








 

 
    =

   

1

d f I

dI
I I

  




  


.                  

 
We have already assumed that      
 

   
d f I

dI
  



      

 
and  

    f

S
     
  



_
*

2 *
* 0

1 * 2

( )
( ) ( , , )

0 0

d f I
f S I NdII I

I I I

     
    

 
, 

 
which contradicts the hypothesis of the Lemma and, hence,   
 

 * *, ,S I N

I
  


  


. 

 

Furthermore, the strict equality 
 * *, ,f S I N

I
  


  


 holds only if   

2

2

( , , )
0

f S I N

I





,   for 

all     *0,I I    

 



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1511 – 1528]                     419 
 

The expected number of secondary cases produced by one infective host in an entirely 
susceptible population is  
 

 0, 0

0

,1 f S I N
R

I  


 
  

.                                    (7)             

 
Theorem 1. (a)   If the incidence rate f(S, I, N) satisfies the conditions (1), (2) and (3) and if 0R  

> 1, then the endemic equilibrium state  *,Q Q I   of the system (5) is asymptotically stable. 

 (b) If 0 1R  , then there is no endemic equilibrium state, and the worm infection – free 

equilibrium state is asymptotically stable.   
 
Proof (a):  
 
Jacobian of the system (A) is 
 

( )( 1) ( )( 1)
f f

S IJ
f f

S I

  

  

          
       

 ,      

Det J   =      f f

I S
                    

. 

 
From equation (2) and Lemma 1 we have       

 
( , , ) ( , , )

0; 0; 0.
f S I N f S I N f f

I S I I
        

         
   

     

 
Therefore, we can write, 
  

Det J =         0
f f f

I S S
                               

. 

 
Now the sum of upper triangular and lower triangular matrix, i.e.,    
     

1 2    =    f f

I S
              

,  since 
f

I
  

  


. 
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Therefore,  1 2 0
f f f f

I S S S
                                               

. 

 
Hence, the real parts of the eigenvalues are negative and the fixed point  Q  is asymptotically 
stable. 
 
Proof (b):  
 
At the worm infection-free equilibrium state, 0Q , from equation (2) and equation (7) we have 

 

 0 0, 0
f

S I
S





, and 0 0

0

( , )
( )

f S I
R

I
  

  


 respectively. 

 
At this point the eigenvalues are     
 

 
1

2 0

0,

.
f

R
I

  

         

   


         


 

 
Thus,   2 0 1R       , when 0 1R     real parts of the eigen values are negative and the 

fixed point  0Q  will be asymptotically stable.  

 
 
3. The e- SEIRS Worm Propagation Model and Its Stability        
 
 
For this model we add a new Exposed group, E. Based on our assumptions we have the system 
of equations as:    

 

 , ,
dS

N f S I N S R
dt

      ,     

 , ,
dE

f S I N E E
dt

    , 

 dI
E I I

dt
        ,                         (B) 

dR
I R R

dt
     , 

 
where  is the rate of transfer of nodes from E to I – class. 
 
Since N S E I R    , R may be removed and, thus, we have the reduced system as 
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     , ,
dS

N S I E f S I N
dt

            ,   

   , ,
dE

f S I N E
dt

    ,                                                                                              (8) 

 dI
E I I

dt
       . 

 
We also assume that  
 

f(S, 0, N) = 0 = f (0, I, N) 
                                                                                       (9)  
and          
 

   , , , ,
0; 0

f S I N f S I N

I S

 
 

 
  for all S, I > 0.    

 

We also assume that the function f(S, I, N) is concave w.r.t. the variable I, i.e., 
 2

2

, ,
0

f S I N

I





, 

for all S, I >0. 
 
 
We define the basic reproduction number of the system as 
        

  
 0 0

0

, ,f S I N
R

I


    




   
.   

 

Equilibrium states of the system satisfy   0; 0; 0
dS dI dE

dt dt dt
   . 

 
We have,    , ,f S I N E    and  E I      . Thus, 

 

     
, ,

I
f S I N

    


  
 .   

 
Now, 

   
 

I
N S E

  
  

  
  

       
. 

 

Thus,     
, ,

I
f S I N

    


  
   and  ( )E I      . We have f(S, 0, N) = 0, the 

worm infection – free equilibrium state, 0Q , is (N, 0, 0).  
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Lemma 2:   If f(S, 0, N) = f (0, I, N) = 0 and 
   , , , ,

0; 0
S I N f S I N

I S

 
 

 
, for all S, I >0 

 2

2

, ,
0,

f S I N

I





  for all S, I > 0  and if   *, ,Q S E I    is the endemic equilibrium state,  

 

then 
     

, ,f S I N

I

 
  



  
  


  .  

 

The strict equality holds only if  
   

2

2

, ,
0, 0,

f S I N
I I

I


  


 , S S   

 
Theorem 2. (a) If the incidence rate f(S, I, N) satisfies the conditions f(S, 0, N) = 0 = f(0, I, N);  
 

   , , , ,
0, 0

f S I N f S I N

I S

 
 

 
,  

 2

2

, ,
0,

f S I N

I





  for all S, I > 0 and 0 0,R   then the 

endemic equilibrium state, Q , of the system (B) is asymptotically stable. (b) If 0 1,R  then there 

is no endemic equilibrium state, and the worm infection free equilibrium is asymptotically stable.                        
 
Proof:   
 
The Jacobian of the system (B) is  
 

J =   

 

1 1

1

0 1

f f

S I

f f

S I

   

 

   

                    
  

    
   

 
 

 .           

 
By the Routh-Hurwitz Criterion, the eigenvalues of the matrix have negative real parts if and 
only if the inequalities 1 2 3, , 0a a a  and 2 1 2 3 0a a a    hold for the coefficient of the 

characteristic equation  3 2
1 2 3 0a a a      .                                                                                                       

 
Characteristic equation of the above matrix     

 



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1511 – 1528]                     423 
 

J I =    

 

( )

1

0

f f

S I
f f

S I

    

  

    

 
   

 
 

  
 

   

    

 

 2 2f f

S I
                                       

     

 

 f f f f

S S I S
                       

. 

 
The above characteristic will be identical with 3 2

1 2 3 0a a a      .  

 

Coefficient of 2 , i.e., 1

f
a

S
                   

                                      

                                        =   3
f

S
    

    


 >0 .    

 
Coefficient of  

 =     2 2 2
f

a
S

          
         


                                                                              

   f

I
             

    2 2 0
f

S
          

          


    

 
and 
 

  3

f f f
a

S S I
                                   

   

 

 f f f

S I S
                    

>      0
f

S
          
          

.       

 
For 2 , we obtain  

 

2 1 2 3a a a   = 2 2
2 ( 2 ) ( ) ( ) ( 2 )

f f
a

S S
            

          
 

  

-    f

S
     
  


2

1( )( 2 ) ( 2 )( )
f

a
S

           
         


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 2( 2 )( ) ( ) ( )( )
f

S
               

            


0  .                         

 
Therefore, all three roots of the characteristic equation have negative real parts, and, hence, the 
endemic equilibrium state, Q , is asymptotically stable. 
 
Proof (b):  
 
At the worm infection-free equilibrium, 0Q ,   
 

1 3a           ,                                                                        

     2 02 (1 )a R                    , 

    3 01a R            ,                                        

      
2

2 2 2 2a                    .  
   
Therefore, 0R  < 1 ensures the infection-free equilibrium is asymptotically stable.                

                                
 
4.  Global Properties of SIR and SEIR System                         
 
The majority of the incidence rates can be represented as a product of two functions f(S, I) = 
h(S)g(I), where h depends only on S and g depends only on I. For the incidence rate of the form 

h(S)g(I) satisfying the condition h(0)g(I) = 0 = h(S)g(0) and      
2

2
0h S g I

I





, for all  S , I > 

0 , direct Lyapunov method enables us to prove global stability for some models. To construct 
the Lyapunov function, we require an auxiliary function with specific properties. To construct 
Lyapunov function for SIR and SEIR with incidence rate of the form h(S)g(I) ,we take N = 1, 
i.e., S, E, I and R are the fractions of the susceptibles, the exposed, the infectives and the 
recovered in the population and S+E+I+R = 1 hold.    
 
THE SIR MODEL   
 

   dS
h S g I S

dt
     ,                                                                                          (10)              

( ) ( ) ( )
dI

h S g I I
dt

      .  

 
 
The SEIR Model is   

 

   dS
h S g I S

dt
    , 
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     dE
h S g I E

dt
    ,                                (11) 

 dI
E I

dt
       .                                                                                                       

 
We assume that the incidence rate satisfies the conditions  
 

h(0)g(I) = 0 = h(S)g(0),                  (12)        
 

       
0; 0

h S g I h S g I

S I

 
 

 
,                                                     (13)                         

 
and    
 

   2

2
0

h S g I

I





,   for all S, I > 0.                                                               (14)                           

 
The condition (14) ensures that each of these systems has two equilibrium states; an worm 
infection – free equilibrium,  0Q , i.e., 0 1S   as 0 0 0E I  , and from system (11) 

  

  ,E I                                                                                                

     E h S g I   , 

   I E
     

     

 
, 

           B h S g I     ,  

 

where B
 



 , for SEIR model and B =1 for the SIR model.  

 

For endemic equilibrium state ,  , ,Q S E I     , such that 

 

 B I S         ,    B I S          ,      B I h S g I        . 

 
For SIR and SEIR models, we construct a Lyapunov function of the form 
     

           
0

, , log
S I

a

d d
V S E I S h S B I g I c E E E

h g

 
 

   
       

 
  .   

 
Here, c = 1, for SEIR model and c = 0, for the SIR model. 
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The endemic equilibrium state, Q ,  is the only extremum and global minimum of the function.  
 
The function V(S, E, I) satisfies  
 

 
 

 
 

1 ; 1 ; 1
h S g IV V E V

c B
S h S E E I g I

                     
,     

 
and it is easy to see thatQ is a stationary point of the function. Since the function h(S) and g(I) 

grow monotonically, the partial derivatives 
V

S




 and  
V

I




 grow monotonically as well., Hence, 

Q  is the only extremum of the function. Therefore   
 

   '2

22
.

0
h S h SV

S
h S




 
   

    

,      
2

2 2
0

V E
c

E E


 


    and   

   
  

'2

22
0

g I g IV
B

I g I




 


,   

 
whereas,   
 

2 2 2

0
V V V

S E S I E I

  
  

     
. 

 
The point  Q  is the minimum. The point Q  is the only internal stationary point of the function 

it is minimum and V(S, E, I) tends to infinity at the boundary. Q  is the global minimum, the 
function is bounded below . Hence, the function V(S, E, I) is a Lyapanov function.      
 
The following theorem provides global properties of the system (10) and (11) .   
 
Theorem 3. (i)  If the incidence rate satisfies the condition h(0)g(I) = 0 = h(S)g(0) and  

   2

2
0

h S g I

I





 ,  for all S, I > 0 and if 0 1R  , then the endemic equilibrium state, Q , is 

globally asymptotically stable.  (ii) If 0 1R  , then there is no positive equilibrium  Q  and the 

worm infection –free equilibrium state, 0Q , is globally asymptotically stable. 

 
Proof:  
 
In the case of the SEIR system (11) using           
 

       ;h S g I B I S B I                  ;   

      E B I         .      
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For the equilibrium stateQ , the Lyapunov function V(S, E, I) satisfies        
 

  
 , ,dV S E I V dS V dE V dI

dt S dt E dt I dt

  
     
  

      

                      =    
 
             1 1

h S E
h S g I S h S g I E

h S E
   

    
            

 

                                  
 
    1

g I
B E I

g I
   

 
     
 
 

                                    

 

     
       

 
h S h S

h S g I S h S g I S
h S h S

   
 

       

                       +            E
h S g I E h S g I E

E
   


      

                       +    
 

 
   

g I g I
B E I E I

g I g I
       

          
  

                                                          

 

 
 

 
     

 
   
   

 
 

1 2
h S h S h S g I Eh S g I ES S

S B I
S h S S h S h S g I Eh S g I E

   
   

 
   

   
            
   
   

                           
 

 
 

g Ig I I I
B I

I I g Ig I
  




 

 
     
 
 

      

 

 
     

 
   
   

 
 

1 1 3
h S h S g I Eh S g I ES

S B I
S h S h S g I Eh S g I E

   
  

 
  

                       
 

                      +    
 

 
 1

g I g I I
B I

g I Ig I
  






  
     
  
  

.             (15)           

 

The concavity of the g(I) ensures that 0
dV

dt
 , for all S, E, I > 0. Equality hold only at the point 

Q . Since the arithmetic mean is greater than or equal to geometric mean,  
    

 
 

   
   

 
 

3
h S g I Eh S g I E

h S g I Eh S g I E

 

 
   , for all S, E, I > 0.                  
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Since for a monotonically growing function h(S), h(S)   h S   , when S S   and 

   h S h S  ,  when S S  . 

 
Therefore, 

 

 
 

1 1 0; 0
h SS

S
S h S





           
,                                                                              

if    
 

 
 

;
g I I

Ig I 
    for all 0 < I I   ; and  

 
 

g I I

Ig I 
    for  I I   .    

 
Therefore,  
 

 
 

 
 1 0;

g I g I I

g I Ig I





  
    
  
  

       

 

From equation (15), 0
dV

dt
 . 

 
By the asymptotic stability theorem, the SEIR system is globally asymptotically stable. 
 
To prove global stability of the infection – free equilibrium states 0Q , we consider the Lyapunov 

function of the form 
          

     0, ,
S

a

d
U S E I S h S cE BI

h




     .       

 

Here, c = 1 and B 
 



  for the SEIR model and c = 0 and B = 1 for the SIR model. In the case 

of SEIR System, the Lyapunov satisfies      
 

 , ,dU S E I U dS U dE U dI

dt S dt E dt I dt

  
     
  

 .    

 
 Here,  
 

 
 

01 ; ;
h SU U U

c B
S h S E I

  
   

  
. 
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Therefore, 
 

 
 

01
h SdU dS dE dI

c B
dt h S dt dt dt

 
     
 

.        

 
Thus, 

 
                01

h SdU
h S g I S c h S g I E B E

dt h S
       

 
            
 

 

            
       

        0 0
0

h S h S
h S g I S h S g I S h S g I E

h S h S
                

                                   +   ;E I B
     


        
  

 where B
 



    and  c =1               

 

         
         

 
0 01 1 1

h S h S g I
S S B I

h S B I
    

  
 

           
            

        
       

 
0 01 1 1

h S h S g I
S B I

h S B I
   

  
                   

.       

 

Here,     
 

01 1 0
h S

S
h S

     
  

,    for all S >0 .                                                                                                            

  

From the conditions f(S, 0, N) = f (0, I, N) = 0 and 
 2

2

, ,
0; , 0

f S I N
S I

I


  


, we have   

 
 

 
   

 
 0 0

0

0h S g I h S g
R

B I B I     


   
    

.        

 

Therefore, 0 1R  , then 0
dV

dt
 , for all S, E, I > 0 and, hence, 0Q is globally asymptotically 

stable. 
 
5. Conclusion 
 
Compartmental e-epidemic SIRS and SEIRS models have been developed to show the impact of 
non-linearity of the worms in computer network. Keeping in mind the propagating behavior of 
worms and its self replication characteristics in computer networks, a very general form of non-
linear incidence rate has been considered. The concavity conditions with a non-linear incidence 
rate and under the constant population size assumption are shown to be stable. We had shown 
that, if 0 1R  , then there is no positive endemic equilibrium  Q  and the worm infection –free 
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equilibrium state  0Q  is globally asymptotically stable. Such systems have either a unique and 

stable endemic equilibrium state or no endemic equilibrium state at all; in the latter case, the 
worm infection-free equilibrium is stable.  
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