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Abstract 
 

In this present paper, damped vibrations of an orthotropic rectangular plate resting on elastic 

foundation with thermal gradient is modeled, considering variable thickness of plate. Following 

Le`vy approach, the governed equation of motion is solved numerically using quintic spline 

technique with clamped and simply supported edges. The effect of damping parameter and 

thermal gradient together with taper constant, density parameter and elastic foundation parameter 

on the natural frequencies of vibration for the first three modes of vibration are depicted through 

Tables and Figures, and mode shapes have been computed for fixed value of plate parameter. It 

has been observed that the rate of decrease of frequency parameter with damping parameter Dk 

for C-SS plate is higher than that for C-C plate keeping all other parameter fixed.  
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1. Introduction 

 

Structural damping is essential for design engineering as damping materials enhance the 

performance of system by increasing structural stiffness and thermal stability and the effect of 

temperature on mechanics of solid bodies has acquired great interest because of rapid 

development in space technology, high speed atmospheric flights and nuclear energy 

applications. Numerous studies on free vibration for isotropic/orthotropic plates of uniform/non-

uniform thickness with or without temperature effect have been reported. Among these, Laura 
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and Gutierrez (1980) discussed vibration analysis of a rectangular plate subjected to a thermal 

gradient. Tomar and Gupta (1983, 1985) analyzed the effect of thermal gradient on frequencies 

of an orthotropic rectangular plate with variable thickness. In this series, Gupta et al. (2007) 

observed the thermal effect on vibration of non-homogeneous orthotropic rectangular plate 

having bi-directional parabolically varying thickness. Effect of non-homogeneity on thermally 

induced vibration of orthotropic visco-elastic rectangular plate of linearly varying thickness 

studied by Gupta and Singhal (2010). Gupta et al. (2013) had evaluated the effect of thermal 

gradient on the vibration of parallelogram plate with linearly varying thickness in both directions 

and thermal effect in linear form only. Effect of thermal gradient on vibration of non-

homogeneous orthotropic trapezoidal plate of varying thickness has been studied by Gupta and 

Sharma (2013). Khanna and Singhal (2014) analyzed the thermal effect on vibration of tapered 

rectangular plate. Gupta and Jain (2014) analyzed exponential temperature effect on frequencies 

of a rectangular plate of non-linear varying thickness using quintic spline technique. 

 

Plates resting on elastic foundation have applications in pressure vessels technology such as 

petrochemical, marine and aerospace industry, building activities in cold regions and aircraft 

landing in arctic operations discussed by Mcfadden and Bennett (1991), and Civalek and Acar 

(2007). In a series of papers, Lal et al., (2001) have studied the transverse vibrations of a 

rectangular plate of exponentially varying thickness resting on an elastic foundation. Transverse 

vibration of non-homogeneous orthotropic rectangular plate with variable thickness was 

discussed by Lal and Dhanpati (2007). In many applications of vibration and wave theory the 

magnitudes of the damping forces are small in comparison with the elastic and inertia forces but 

these small forces may have very great influence under some special situations. Recently, Robin 

and Rana (2013) analyzed the damped vibrations of isotropic/orthotropic rectangular plate with 

varying thickness resting on elastic foundation. The study of damped vibration of infinite plate 

with variable thickness resting on elastic foundation was carried out by Rana and Robin (2015). 

 

In reality all the vibrations are damped vibration and foundations of underlying vibrational 

problems are elastic in nature, and  thermal effects on the damped vibrations of orthotropic 

rectangular plates of variable thickness with elastic foundations is not considered by researchers 

but it plays a key role in vibrational problems. Keeping this in view thermally induced damped 

vibrations of orthotropic rectangular plates with exponentially thickness variation resting on 

Winkler foundation is presented here using quintic spline method on the basis of classical plate 

theory. Effect of damping parameter and thermal gradient together with thickness variation and 

foundation parameter on the frequencies has been illustrated for the first three modes of vibration 

for two different combinations of clamped, and simply supported correct to four decimal places.  

 

2. Mathematical Formulation 
 

Consider a non- homogeneous orthotropic rectangular plate of length ‘a’, breath ‘b’, thickness 

‘h(x,y)’ and density ‘ ρ’, with resting on a winkler- type  elastic foundation ‘kf‘ occupying the 

domain 0 ,0x a y b     in the xy plane. The x-and y axes are taken along the principal 

directions and z –axes is perpendicular to the xy plane. The middle surface being z = 0 and the 

origin is at one of the corners of the plate. The differential equation which governs the damped 

transverse vibration of such plates is given by  

 



AAM: Intern. J., Vol 12, Issue 1 (June 2017)                                                                                                             203   
 

4 4 4 3 3 3 3

4 4 2 2 2 2 3 3

22 2 22 2 2 2

1 1

2 2 2 2 2 2 2 2

2 2 2

2

2 2 2 2 2

4 0,

yx
x y

yx

xy

f

DDw w w H w H w w w
D D H

x y x y x x y y y x x x y y

DD D Dw w w w

x x y y y x x y

D w w w
h K K w

x y y x t t


        
     

             

     
   
       

   
    

     
          (1)

 

where 
 

3 3 3

1 1/ (1 ), / (1 ), /12(1 ), 2 ,x x x y y y x y y x x y xyD E h D E h D E h H D D             

3 /12,xy xy y x x yD G h E E   ,  

 

( , , )w x y t  is the transverse deflection, t is the time, and , , ,x y x yE E  
 

and 
xyG are material 

constants in proper directions defined by an orthotropic stress-strain law. 

 
Let the two opposite edges y = 0 and  y= b of the plate be simply supported and thickness 

( , )h h x y varies exponentially along the length i.e., in the direction of x-axis. Thus, ‘h’ is 

independent of y i.e., ( )h h x . 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.     Boundary conditions and vertical cross-section of the plate 

 

For a harmonic solution, the deflection function w  satisfying the condition at y = 0 and y = b, is 

assumed 

 

( , , ) ( )sin cos ,tm y
w x y t W x e pt

b

 
 
                (2) 

 

where ‘p’ is the circular frequency of vibration and ‘m’ is a positive integer. Furthermore, for 

elastically non-homogeneous material, it is assumed that Young’s moduli ,x yE E and density   

are functions of space variable x  only, and shear modulus is  

 

/ 2(1 )xy x y x yG E E    . 
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Thus, Equation (1) becomes 
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Introducing the non-dimensional variables 
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and equating the coefficient of sin(pt) and cos(pt)  independently to zero, Equation (3) reduces to  
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The exponential temperature variation for the plate is assumed in the following form 

 



AAM: Intern. J., Vol 12, Issue 1 (June 2017)                                                                                                             205   
 

0
1

xe e
T T

e

 
  

 
 ,                 (5) 

 

where T is the temperature excess above the reference temperature at any point x  and 0T  is the 

temperature excess above the reference temperature at the end x = 0. Furthermore, most of the 

engineering materials are found to have a linear relationship between the modulus of elasticity 

and temperature as discussed by Nowacki (1962). 

Therefore, we get  

 

0(1 ),E E T                   (6) 

 

where 0E  is the modulus of elasticity of the material at the reference temperature and   is a 

constant. If the temperature at x = 1 is assumed as the reference temperature, the modulus 

variable becomes 

 

0( ) 1
1

xe e
E x E

e


   
   

   
 ,               (7) 

 

where 

 

0 , (0 1)T     , is thermal gradient. 

 

Substituting 

 

0 1 2 0; 1 ; 1 ; ,
1 1

x x
X X

x y

e e e e
H H e E E E E e

e e

    
          

           
            

where  

 

       1 2 00 0 0 0 0
, , , ,x y

X X y X
H H E E E E  

   
   

 
 

and ‘ ’ is the taper constant due to exponentially varying thickness of plate, and equating the 

coefficients, the following equation is formed 

 
4 3 2

0 1 2 3 44 3 2
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and  , KD , fE are frequency parameter, damping parameter and elastic foundation parameter, 

respectively. 0  is the density of the plate and 1 2,E E the Young’s moduli in proper directions at 

x = 0 .The solution of Equation (8) together with boundary conditions at the edge x = 0 and x = 

1 constitutes a two-point boundary value problem. As the PDE has several plate parameters, it 

becomes quite difficult to find its exact solution. Keeping this in mind which is complex for the 

purpose of computation, the quintic spline interpolation technique is used.  

 

According to the spline technique, suppose W(x) be a function with continuous derivatives in [0, 

1] and interval [0, 1] be divided into ‘n’ subintervals by means of points iX  such that 

 

0 1 20 ... 1nX X X X      ,  

 

where 

 

1 , ( 0,1,2,..., )iX X i X i n
n

     .  

 

Let the approximating function ( )W X  for the W(x) be a quintic spline with the following 

properties: 

 

(i) ( )W X  is a quintic polynomial in each interval 1( , )k kX X  . 

(ii) ( ) ( ), 0,1,2,..., .kW X W X k n   
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In view of the above axioms, the quintic spline takes the form 
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Thus, for the satisfaction at the n
th

 knot, Equation (8) reduces to 
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For  the system (10) contains (n + 1) homogeneous equation with (n + 5) 

unknowns, ai,  and bj, j = 0, 1, 2, … , (n - 1), can be represented in matrix form as 

 

[A][B]= [0],                          (11) 

 

where [A] is a matrix of order (n+1)  (n+5), while [B] and [0] are column matrices of order 

(n5). 

 

3. Boundary Conditions and Frequency Equation 

 

The following two cases of boundary conditions have been considered: 

 

(i)  (C-C): clamped at both the edge X = 0 and X = 1. 

(ii)  (C-SS): clamped at X = 0 and simply supported at X = 1. 

 

The relations that should be satisfied at clamped and simply supported, respectively, are 
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Applying the boundary conditions C-C to the displacement function by Equation (9) one obtains 

a set of four homogeneous equations in terms of (n+5) unknown constants which can be written 

as 

 

[B
cc

][B]= [0],                (13) 

 

where B
cc

 is a matrix of order 4(n+5).  

 

Therefore, Equation (11) together with the Equation (13) gives a complete set of (n+5) 

homogeneous equations having (n+5) unknowns which can be written as 

 

[ ] [0]
cc
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B
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.

              (14) 

 

For a non-trivial solution of Equation (11), the characteristic determinant must vanish, i.e., 

 

0
cc

A

B
 .               (15) 

 

Similarly, for (C-SS) plate the frequency determinant can be written as   

 

0
ss

A

B
 ,               (16) 

 

where  B
ss

 is a matrix of order 4(n+5). 

 

4. Numerical Results and Discussions 

 

The frequency Equations (15) and (16) have been solved to get the values of the frequency 

parameter Ω for various values of plate parameters. By putting m = 1 in frequency equations, the 

numerical results have been computed for first three modes of vibrations. The elastic constants 

for the plate material (‘ORTHOI’) are taken as 

 
10 10

1 21 10 ,  5 10E Mpa E Mpa    , 0.2, 0.1x y   . 

 

 At the edge X = 0, the thickness 0h  have been considered as 0.1. To choose the appropriate 

interval X , a computer program was developed for the evaluation of frequency parameter Ω, 

and run for  and for different sets of the values of parameters for both 

the boundary conditions. Figure 2 represents the percentage error in the numerical values of 

frequency parameter Ω up to fourth decimal places with the increase in the number of nodes. In 

all the computation n = 140 has been fixed to achieve the decimal accuracy. 
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Figure 2. Percentage error in frequency parameter Ω: (a) for c-c plate (b) c-ss plate for a/b = 

0.25, α = 0.04, β = 0.4, Ef = 0.02, Dk = 0.01; ◊, First mode; ○, Second mode; □,Third 

mode ; Percentage error = [(Ωn- Ω140)/ Ω140]x100;   

 

The results are presented in Tables 1-3 and Figures 3-5, for different values of damping 

parameter kD = 0.0, 0.001, 0.002, 0.003, 0.004, and 0.005, thermal gradient ɳ = 0.0, 0.2, 0.4, 0.6, 

foundation parameter 
fE = 0.0, 0.2, density parameter  =  0.5 and taper paremeter  = 0.5 

for both the boundary conditions C-C and C-SS, by taking the fixed values of aspect ratio 

/a b =1.0. It is found that the values of frequency parameter Ω for a C-C plate are greater than 

that for C-SS plate for the same set of values of plate parameters. 

 

Table 1 shows the values of frequency parameter Ω with the increasing value of damping 

parameter Dk for the fixed value of density parameter β = 0.5 and foundation parameter Ef = 0.02, 

for first three modes of vibration of C-C and C-SS plates. Figure 3a shows the behavior of 

frequency parameter Ω. It decreases with the increasing values of damping parameter Dk for two 

different values of taper parameter α = ±0.5, thermal gradient ɳ = 0.0, 0.5 and density parameter 

β = 0.5 for both the plates. The rate of decrease of Ω with damping parameter Dk for C-SS is 

higher than that for C-C plate keeping all other plate parameters fixed. This rate increases with 

the increase in the value of non taper parameter α and thermal gradient ɳ. A similar inference can 

be drawn from Figures 3b and 3c, when the plate is vibrating in the second mode as well as in 

the third mode of vibration except that the rate of decrease of Ω with Dk   is lesser as compared to 

the first mode.  

 

Tables 2 and 3, provide the inference of thermal gradient ɳ on frequency parameter Ω for two 

values of damping parameter Dk = 0.0, and 0.001, taper parameter α = ±0.5 density parameter β = 

±0.5 and foundation parameter Ef = 0.0, 0.02 for the fixed value of aspect ratio a/b = 1.0. It is 

noticed that the frequency parameter Ω decreases continuously with the increasing value of 

thermal gradient ɳ for C-C and C-SS plates, whatever be the value of other plate parameters. It is 
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found that the rate of decrease of frequency parameter Ω for C-C plate is higher than C-SS plate 

for three modes. Figure 4a gives the inference of thermal gradient ɳ on frequency parameter Ω 

for the first mode of vibration for fixed values of β = 0.5 and α = 0.5. This rate decreases with the 

increase in the value of foundation parameter Ef , and also increases with the increase in the value 

of damping parameter Dk and the  number of modes, as is clear from Tables 3b and 3c when the 

plate is vibrating in the second and third mode of vibration.  

 

Table 1.  Values of frequency parameter Ω for C-C and C-SS plate for  a/b= 1.0 Ef= 0.02, β= 0.5 
 

  
α=-0.5,ɳ=0.0 α=-0.5,ɳ=0.5 α=0.5,ɳ=0.0 α=0.5,ɳ=0.5 

 
MODE C-C C-SS C-C C-SS C-C C-SS C-C C-SS 

 

I 24.0249 21.2478 21.8226 19.6711 33.0882 26.1283 28.6233 22.9014 

Dk=0.0 II 48.2836 41.4958 41.3611 35.7113 77.3121 63.8223 64.8674 53.4586 

 
III 87.6634 77.2 74.064 65.2198 144.4087 124.9076 120.3263 103.814 

 

I 23.9408 21.1701 21.7216 19.5798 31.8089 24.2056 27.1969 20.7586 

Dk=0.001 II 48.23 41.4371 41.2941 35.6382 76.7399 63.0842 64.2083 52.6032 

 
III 87.6308 77.1639 74.0228 65.1743 144.0946 124.5323 119.9612 103.3756 

 
I 23.8562 21.0919 21.6199 19.4879 30.4718 22.1038 25.685 18.3465 

Dk=0.002 II 48.1764 41.3784 41.2271 35.565 76.1642 62.3401 63.5437 51.7382 

 
III 87.5981 77.1278 73.9817 65.1288 143.78 124.1563 119.5952 102.9361 

 
I 23.7712 21.0132 21.5174 19.3951 29.0688 19.7658 24.0713 15.54 

Dk=0.003 II 48.1228 41.3197 41.16 35.4918 75.585 61.5899 62.8734 50.8634 

 
III 87.5654 77.0917 73.9406 65.0833 143.465 123.7797 119.2285 102.4954 

 
I 23.6857 20.9341 21.4142 19.3016 27.59 17.0951 22.3337 12.0671 

Dk=0.004 II 48.0691 41.2609 41.0929 35.4185 75.0022 60.8333 62.1973 49.9781 

 
III 87.5327 77.0555 73.8995 65.0378 143.1495 123.4023 118.861 102.0537 

 
I 23.5998 20.8544 21.3103 19.2073 26.0224 13.9011 20.4405 6.9974 

Dk=0.005 II 48.0154 41.202 41.0257 35.3451 74.4157 60.0701 61.5151 49.0819 

 

III 87.5 77.0194 73.8583 64.9923 142.8335 123.0242 118.4927 101.6108 
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Table 2. Values of frequency parameter Ω for C-C and C-SS plate for a/b=1.0, α=0.5, β=0.5 

  
Dk=0.0 , Ef=0.0 Dk=0.001, Ef=0.0 Dk=0.0, Ef=0.02 Dk=0.001, Ef=0.02 

 

MODE C-C C-SS C-C C-SS C-C C-SS C-C C-SS 

 

I 30.7478 23.3055 29.3705 21.1373 33.0882 26.1283 31.8089 24.2056 

η=0.0 II 76.3268 62.6477 75.7463 61.8934 77.3121 63.8223 76.7399 63.0842 

 

III 143.8809 124.3019 143.5654 123.9244 144.4087 124.9076 144.0946 124.5323 

 

I 28.9646 21.9316 27.5188 19.6399 31.4543 24.9275 30.1241 22.9267 

η=0.2 II 71.7401 58.7801 71.1292 57.9834 72.7931 60.0369 72.192 59.2596 

 

III 135.1045 116.5815 134.772 116.1828 135.6692 117.2303 135.3383 116.8342 

 

I 26.9497 20.3998 25.4181 17.9528 29.6319 23.6147 28.2409 21.5233 

η=0.4 II 66.5659 54.4427 65.9166 53.5925 67.7073 55.8063 67.0702 54.9804 

 

III 125.2135 107.9092 124.8594 107.4836 125.8265 108.6142 125.4744 108.1919 

 

I 24.5758 18.6252 22.9292 15.9702 27.525 22.1365 26.0588 19.9373 

η=0.6 II 60.4844 49.3811 59.7835 48.4588 61.7507 50.8948 61.0658 50.0046 

 

III 113.6045 97.7699 113.2213 97.308 114.2859 98.5546 113.9053 98.097 
 

 

Table 3. Values of frequency parameter Ω for C-C and C-SS plate for a/b=1.0, Ef=0.02, 

Dk=0.001 

 

 

 

 
α=-0.5,β=-0.5 α=-0.5,β=0.5 α=0.5,β=-0.5 α=0.5,β=0.5 

 

MODE C-C C-SS C-C C-SS C-C C-SS C-C C-SS 

 

I 31.101 28.2429 23.9408 21.1701 39.0993 29.4179 31.8089 24.2056 

η=0.0 II 62.7187 54.5053 48.23 41.4371 96.5973 79.8367 76.7399 63.0842 

 

III 113.8324 100.8062 87.6308 77.1639 182.4646 158.3541 144.0946 124.5323 

 

I 29.917 27.3433 23.1179 20.5718 36.8136 27.5746 30.1241 22.9267 

η=0.2 II 59.2707 51.5817 45.7001 39.3095 90.5569 74.6896 72.192 59.2596 

 

III 107.1392 94.8687 82.6838 72.7941 170.9029 148.1364 135.3383 116.8342 

 

I 28.6047 26.3559 22.2145 19.9265 34.2566 25.5436 28.2409 21.5233 

η=0.4 II 55.4056 48.327 42.8678 36.9442 83.7495 68.9231 67.0702 54.9804 

 

III 99.612 88.2124 77.1238 67.8979 157.8728 136.6598 125.4744 108.1919 

 

I 27.0944 25.2306 21.1907 19.2109 31.2905 23.2392 26.0588 19.9373 

η=0.6 II 50.9022 44.5677 39.5743 34.2179 75.7616 62.2063 61.0658 50.0046 

 

III 90.803 80.452 70.6227 62.1942 142.5807 123.2446 113.9053 98.097 

 

 

 



212   Rana and Robin 

 

From Figure 4b, the effect of thermal gradient ɳ is found to decrease the frequency parameter Ω; 

however, the rate of decrease gets increased to more than twice of the first mode for both the 

boundary conditions. In case of third mode, this rate of decrease further increases and becomes 

nearly twice of the second mode as is evident from Figure 4c. 

 

Figure 5a provides graphs of frequency parameter Ω verses thermal gradient ɳ for the first mode 

of vibration. There is a continuous decrease in the value of frequency parameter Ω for fixed 

values of Ef = 0.02 and damping parameter Dk = 0.001 for both the boundary conditions. This 

rate decreases with the increase in the value of density parameter β; it increases with the increase 

in the value of taper parameter α and in increases the number of modes, as is clear from Tables  

3b and 3c, when the plate is vibrating in the second and third mode of vibration. From Figure 5b, 

the effect of thermal gradient ɳ is found to decrease the frequency parameter Ω; however, the 

rate of decrease gets increased to more than twice of the first mode for both the boundary 

conditions. In case of third mode, this rate of decrease further increases and becomes nearly 

twice of the second mode as is evident from Figure 5c.The normalized displacements for the two 

boundary conditions C-C and C-SS are plotted in Figures 6 and 7, respectively. The plate 

thickness varies parabolically in X-direction and the plate is considered resting on elastic 

foundations Ef = 0.02 with damping parameter Dk = 0.01. Mode shapes for a rectangular plate i.e, 

a/b = 0.25 have been computed and observed that the nodal lines are seen to shift towards the 

edge, i.e., X = 1 as the edge X = 0 increases in thickness for both the plates. No special change 

was seen in the pattern of nodal lines by taking different values of β and Ef. The normalized 

displacements were differing only at the third or fourth place after decimal for both the boundary 

conditions. 
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Figure 3. Natural frequencies for c-c and c-s plates: (a) First mode (b) Second mode (c) Third 

mode ,for a/b=1.0,β=0.5, Ef=0.02 , ―,C-C; --,C-SS;  Δ, α=-0.5,ɳ=0.0, ●, α=-

0.5,ɳ=0.5; □, α=0.5,ɳ=0.0;  , α=0.5,ɳ=0.5 
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Figure 4. Natural frequencies for c-c and c-s plates: (a) First mode (b) Second mode (c) Third 

mode ,for a/b=1.0,β=0.5, α=0.5 , ―,C-C; --,C-SS;  Δ,Dk=0.0 , Ef=0.0, , ●,Dk =0.001 , 

Ef =0.0; □,Dk =0.0 , Ef =0.02;    ,Dk =0.001 , Ef =0.02 
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Figure 5. Natural frequencies for c-c and c-s plates: (a) First mode (b) Second mode (c) Third 

mode ,for a/b=1.0, Ef=0.02, Dk=0.001, ―,C-C; --,C-SS;  Δ, α=-0.5,β=-0.5; ●, α=-

0.5,β=0.5; □, α=0.5,β=-0.5;  , α=0.5,β=0.5 
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Figure 6. Normalized displacements  for c-ss-c-ss plate, for a/b=1; h=0.1, β=0.5,Dk=0.005, 

Ef=0.02; ―,First mode; ――, Second mode ;……Third mode , □, α=-0.5,ɳ=0.5;  

, α=0.5,ɳ=0.5; o, α=0.5,ɳ=0.0 
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Figure 7. Normalized displacements  for c-ss-ss-ss plate, for a/b=1; h=0.1, β=0.5,Dk=0.005, 

Ef=0.02; ―,First mode; ――, Second mode ;……Third mode , □, α=-0.5,ɳ=0.5;  

, α=0.5,ɳ=0.5; o, α=0.5,ɳ=0.0 
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5. Conclusion 

 

In the present study results are computed using MATLAB within the permissible range of 

parameters up to the desired accuracy (10
-8

), which validates the actual phenomenon of 

vibrational problem. The rate of decrease of frequency parameter Ω with thermal gradient ɳ , 

decreases with the increase in the value of foundation parameter and non-homogeneity parameter 

and this rate increases with the increase in the value of taper parameter and damping parameter. 

Temperature effect, variation in thickness, elastic foundation, damping parameter and non- 

homogeneity parameter are of great interest because engineers often try to know natural 

frequency and modes of vibration before finalizing the design of a structure or machine. Our 

endeavor is to provide a mathematical model for analyzing the vibrational behavior of 

orthotropic rectangular plate resting on elastic foundation for different values of thermal 

gradient, taperness and damping parameter. Thus, the present study may be helpful in the 

determination of natural frequencies and mode shapes by proper choice of plate parameters so 

that robustness of structure can be determined for improved structural design. 
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