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Abstract

In graph theory, different types of product of two graphs have been studied, e.g. Cartesian product,
Tensor product, Strong product, etc. Later on, Cartesian product and Tensor product have been
generalized by 2—Cartesian product and 2—Tensor product. In this paper, we give one more gen-
eralize form, distance product of two graphs. Mainly we discuss the connectedness, bipartiteness
and Eulerian property in this product.
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1. Introduction

The Cartesian product and Tensor product of graphs are well-studied by Hammack et al. (2011)
and Sampathkumar (1975). Later on 2—Cartesian product and 2—Tensor product are defined and
discussed by Acharya et al. (2014, 2015, 2017). These product are defined using the concept of
vertices at distance two. The graph with this concept, e.g. the square graph G? and the derived
graph G’, are also studied in detail. In fact this concept is useful in studying energy of the derived
graph which has wide application in chemical graph theory by Ayyaswamy et al. (2010), Hande et
al. (2013) and Jog et al. (2012). But the unfortunately 2—Cartesian product and 2—Tensor product
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does not preserve connectedness. So, using two and usual cartesian product and tensor product we
define the distance product of graphs in this paper. Mainly, we prove that the new product will give
connected.

Let G = (V(G), E(Q)) be a finite and simple graph with the vertex set VV(G) and the edge set E(G).
A graph G is connected, if there is a path between every pair of vertices. If G is a connected graph,
then dg(u,u’) is the length of the shortest path between u and ' in G. The diameter of G, denoted
by D(G), is defined as max {dg(u,u’) : u,u" € V(G)}. The null graph is a graph with empty edge
set.

Throughout this paper, we fix G and H to be finite, connected and simple graphs. For the basic
terminology, concepts and results of graph theory, we refer to Balakrishnan et al. (2012) and Godsil
et al. (2011).

2. Distance Product G ®1> H

In this section we define distance product of two graphs and discuss the connectedness of this new
product.

Definition 2.1.

Let G = (U, Ey) and H = (V, E3) be two connected graphs. The distance product or 12—product
of G and H, denoted by G ®12 H, 1s the graph with the vertex set U x V and two vertices (u, v) and
(u/,v") in U x V are adjacent in G ®192 H if

(1) dg(u,v') =1and dg(v,v") =2, or
(i1) dg(u,v') =2 and dy(v,v') = 1.

Note that G ®12 H is isomorphic to H ®12 G. Also the graph G ®12 H is a null graph if D(G) < 2
and D(H) < 2.

Example 2.2.

(1) Let G = P3 with Uy — U2 — U3 and H = P4 with V1 — V2 — V3 — U4. Then P3 X192 P4 is as
follows:

(ug,vl) (U3,1)2) (u3av3) (U37'U4)

(ur,v1) (u1,v2) (ur,v3)  (u1,v4)
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(i) Let G = P; = H with uy — uy — u3 and v — v9 — v3 in G and H respectively. Then the graph
P53 ®12 P5 is not connected and it is as follows:

(us,v1)

To obtain the connectedness of G ®12 H, we fix G and H both are connected graphs with N?(w) # ¢
for every w € V(G) UV (H), where N%(u) = {v € V(G) : dg(u,v) = 2}.

Theorem 2.3.

Let G and H be two graphs with N?(w) # ¢, for every w € V(G) U V(H). Then G ®12 H is
connected if and only if G and H are connected.

Proof:

Let G and H be two graphs with vertex sets U and V respectively. Then V(G ®12 H) = U x V.
First, assume that G and H are connected.

Let (u,v) and (v/,v") be in U x V. Also, v = ug — u1 — ... = u, = ' is a path in G and
v=v9—=>v ... > v, =0 isapathin H.

As N2(u) # ¢ in G, 3 2’ € N?(u) such that dg(u,z’) = 2. Let u — = — 2’ be a path between « and
2’ in G. Similarly 3 ¢/ € N? (v1) such that dg(v1,y’) = 2. Then Py : (u,v) — (2/,v1) = (z,y) —
(u,v1) is a path between (u,v) and (u,v1) in G ®12 H. By continuing the same process, there is a
path between (u,v) and (u,v’) in G ®12 H. Similarly, there is a path between (u,v’) and (u/, ") in
G ®12 H. Using these paths, we get a path between (u,v) and (uv/,v’) in G ®12 H. Hence, G ®12 H
is a connected graph.

Conversely, suppose that G ®12 H is connected. Let v and «’ be in V(G) with u # '

Let P : (u,v) = (ug,vg) — (u1,v1) = ... = (un,v,) = (¢/,v') be a path between (u, v) and (v, v')
in G ®12 H for v,v" € V(H). Now, from path P, we have (ug,v9) — (u1,v1) which gives that
da(uop,u1) = 1 or 2 in G. Similarly, for any two adjacent vertices (u;, v;) — (%i+1,v;+1) on path P
gives that dg(u;, u;41) = 1 or 2 in G. So, there is a walk between u and «’ in G. Hence, there is a
path between u and u' in G. Therefore G is a connected graph. By similar arguments, H is also a
connected graph. n

Next, we consider the case in which only one of the graph has property N2(u) # ¢, for every w.
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Theorem 2.4.

Let G be a non-complete graph and H be a graph with N2(b) # ¢; ¥V b € V(H). Then G ®12 H is
connected if and only if G and H are connected.

Proof:

Assume that G and H are connected graphs. We continue the notations of Theorem 2.3. Let (u,v)
and (u/,v") bein U x V. If N?(u) # ¢ in G, then we get the path between (u,v) and (u’,v’) as in
Theorem 2.3.

Suppose N?(u) = ¢. Then dg(u,u’) = 1 for every u' € V(G). In particular dg(u,u1) = 1. As G is
non-complete, 3 x1, x2 € N(u) such that dg(z1,72) = 2. Also, as N?(v) # ¢, 3y’ € V(H) such
that dg(v,y’) = 2 with a path v — y — ¢/ in H. Now, we show that there is a path from (u,v) to
(u1,v) and from (u,v) to (u,v1) in G ®19 H.

If uy = x; in G, then (u,v) — (z1,y") — (z2,y) — (z1,v) = (u1,v) is a path between (u,v) and
(u1,v). Suppose =1 # uy; # x2 in G. If dg(uy,21) = 1, then (u,v) — (x1,y") — (u1,v) and if
dg(ui,z1) = 2, then (u,v) = (z2,y") = (z1,y) — (u1,v) are the paths between (u, v) and (u1,v) in
G ®12 H. Thus in all cases there is a path from (u, v) to (uq,v) in G ®12 H.

Next, we show that there exists a path between (u,v) and (u,v;) in G ®13 H. As vy € V(H),
3 y"” € V(H) such that d(v1,y”) = 2 with (say) v; — t' — ¢” in H. Then (u,v) — (z1,y) —
(x2,y) = (21,v) = (22,v1) = (21,t') = (22,y”) — (u,v1) is a path between (u,v) and (u,v;) in
G ®12 H.

Similarly there is a path between (u, v) and (v/,v") in G®12 H. Hence G ®12 H is a connected graph.

By similar arguments as given in Theorem 2.3, we can show that if G ®,, H is a connected graph,
then G and H are connected. -

The next result shows that if we drop the condition N2 (w) # ¢, for every w from both the graphs,
then G ®12 H may not be connected.

Proposition 2.5.

Let G = Ky, and H = K, ,, with m,n > 3. Then G ®2 H has two components.

Proof:

Let G = Ky, with V(G) = {uo} UU and H = K1, with V(H) = {vo} UV with | U |> 3 and
|V |>3.

It is clear that the vertex (ug, vg) in V(G ®12 H) cannot be adjacent with any other vertex say (u’,v')
in G®1o H as dg(ug,u') =1 = dy(vg,v') for u' # ug and v # vy.

Let (u,v) and (v/,v") be two distinct vertices other than (ug,vg) in V(G ®12 H).

Case (i): If u = ug and v # vy, then (u,v) adjacent to (u',v) as dg(u,v’) = 1 and dg(v,v") = 2,
v #£ vy, If v = vy or v/ = g, then for some v’ € V(G) and v" € V(H), (up,v) — (u",0") —



194 H. S. Mehta and U. P. Acharya

(u',vg) or (ug,v’) is a path between (u,v) and (v/,v") in G ®12 H.

Case (ii): If u # ug and v # vg, then for some u” # uy € V(G), we getapath P’ : (u,v) — (u”,v9) —
(u/,v") in G ®12 H. Also, for some v # vy € V(H), we get a path P : (u,v) — (ug,v”) — (v/,0)
in G ®9 H.

Thus in all cases (u,v) is connected with (v/,v") in G ®12 H. So, except (ug, vo) other vertices will
give connected component. ]

Next, we prove that Theorem 2.4 is not true if G = K,,. In fact, we prove that the number of
components of K,, ®12 H depends on the bipartiteness of H.

Proposition 2.6.

Let H be a connected bipartite graph with N2(v) # ¢, Vv € V(H). Then the graph K, ®12 H has
two components.

Proof:

Let K, be a compete graph with vertex set U and H be a connected bipartite graph with partite sets
V1 and V5. Then,

V(K,®12 H) =[UxViJU[U x V3]

Let (u,v) € U x V; and (v/,v") € U x Va. Then (u,v) can not be adjacent with (v/,v") as d(u, u’) # 2
in K, and dg(v,v") # 2. So, U x V; and U x V, will give two disconnected subgraphs in K, ®12 H.

Let (u,v) and (u/,v") be in U x Vi. As H is a connected graph, there is a path P : v = vy — v; —
vy — --+ — vy, = v’ between v and v’ of even length. If m = 4k + 2, then P’ : (u,v) = (u,v9) —
(v v9) = (u,v4) = ... (u,v48) — (U, v4542) 1s @ path between (u, v) and (v/,v") in K, ®12 H.

Suppose m = 4k. Since n > 3, Ju” € U with u # v’ # u”.
P’ (u,v) = (u,v9) = (u”,v3) = (u/,v4) = ... (u,v4p_2) — (v, v4x) 1S a path between (u,v) and
(u’, 1}/) in K, ®19 H.

Since N2(v) # ¢, 3b € V(H) such that dy (v, b) = 2. So, in case of v = v/, (u,v) — (u",b) = (v, v)
is a path between (u,v) and (v/,v") in K, ®12 H.

Similarly U x V3 also gives a connected subgraph in K, ®12 H. Thus, the graph K,, ®12 H has two
components. =

To prove the result for non-bipartite graph, we shall use the following result.

Proposition 2.7.

Let G be a non-bipartite connected graph with N2(u) # ¢, for every u € V(G). Assume that G
contains Cy41, [ > 1. Then between every pair of vertices, there exists a walk of length 4% as well
as 4k + 2; (k e NU {0}) form in G.
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Proposition 2.8.

Let H be a non-bipartite connected graph containing Co 1 (I > 1) and N2(v) # ¢, for every
v € V(H). Then K,, ®;2 H is a connected graph.

Proof:

Let K,, and H be two graphs with vertex sets U and V respectively. Then V(K,, ®1o H) = U x V.
Let (u,v) and (v/,v") be in U x V. We continue the notation of Proposition 2.6. If I(P) is even, then
as in Proposition 2.6,we get the path in K,, ®12 H.

If I(P) is odd, then by Proposition 2.7, there is a walk W : v = wy — w1 — ... — w, = v/ of even
length between v and v’ in H with dy(w;, w;+2) = 2. Then using W, as earlier we get the path in
K, ®12 H. So, the graph K,, ®15 H is a connected graph. m

Finally, for G = K, the following examples show that the number of components of G ®12 H is
not related with bipartiteness, e.g.,
4 2

K2 @12 Oy = U(CQk)(i)a Ko ®19 Cupyo = U(C4k+2)(i) and
i=1 =1

K3 ®12 Ca1 = Coapt)

Remark.

(1) Suppose G and H are two connected graphs with D(G) > 2 and D(H) > 3 respectively.
Then the graph G ®,2 H is a connected graph. In particular K ,, ®12 H is connected with
D(H) > 3.

(1) It s known that the usual tensor product G ® H is disconnected if G and H both are bipartite
graphs. But as we have proved in Theorem 2.3 and Theorem 2.4, in general the connected-
ness of G ®12 H is independent of bipartiteness of G and H.

3. Bipartiteness and Eulerian Property of G Q12 H

In this section, we discuss bipartiteness and Eulerian property of distance product graph G ®12 H.
We fix G and H to be connected graphs with N2(w) # ¢ for every w € V(G) UV (H).

It is known that if G and H both are bipartite graphs, then G ® H is bipartite, but the graphs G x H,
G x9 H and G ®2 H may not be bipartite graphs Acharya et al. (2015, 2017).

Proposition 3.1.

Let G and H be connected graphs. The graph G ®12 H 1is bipartite if and only if G and H both are
bipartite graphs.

Proof:

Let G and H be two bipartite graphs with partite sets Uy, Uz and V;, V; respectively. Then
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V(G®12H) = {[UlX%]U[UQXVQ]}U{[UlXVQ]U[UQXVl]} = Wi1UWs, where W, = [U1XV1]U[U2><V2]
and Wy = [Ul X VQ] U [UQ X Vl]

Let (u,v) and (v/,v’) be in Wj. If both (u,v) and (v, v") are in the same U; x V; (i = 1 or 2), then
(u,v) can not be adjacent to (v/,v") in G ®12 H, as dg(u,u’) and dg(v,v’) both are even integers.
Also if (u,v) € Uy x V1 and (u/,v") € Uy x Vo, then (u, v) can not be adjacent to (u’,v’), as dg(u, u’)
and dy(v,v’) are odd integers. So, W; is an independent set in G ®12 H. Similarly W5 is also an
independent set in G ®12 H.

Conversely, assume that G is a connected non-bipartite graph. So, G contains an odd cycle, say
C:u=wuy—uy — ... Uy = Uzp+1 = ug. Let v and v’ be in V(H) with dy(v,v") = 2 and path
v—=b—= .

Suppose n = 2m. Then (u,v) = (up,v) = (u2,b) = ... = (Uam, V") = (Uam+1,v) = (u,v) is an odd
cycle of length2m +1=n+1in G ®12 H.

Also, if n = 2m + 1, then (u,v) = (ug,v) = (u2,b) = (u4,v) = ... = (Ugm,v) = (Ugm-1,V") —
(Uam+1,b) = (Uam+3,v) = (u,v) 1s an odd cycle of length 2m +3 = n+2 in G ®,2 H. Thus, in each
case G ®12 H contains an odd cycle. So, G ®12 H is not a bipartite graph. -

Next, we discuss degree of the vertex (u,v) in G®12 H. We define degs(u) = |N?(u)|, foru € V(G).

Proposition 3.2.

For (u,v) € G ®12 H, deg(u,v) = deg(u) degz(v) + dega(u)deg(v).

Proof:

Assume that deg(u) = k with N(u) = {z1,...,z;} and degs(u) = m with N2(u) = {wy, ..., wy,} in
G. Also deg(v) = n with N(v) = {z1,...,2,} and degz(v) = t with N%(v) = {y1,...,y:} in H. The
vertex (u,v) in G ®12 H is adjacent to the following vertices: {(z;,y;);1 <i < kwith1 < j < t}
and {(w;,2;);1 <i<mwith1 < j <n}in G ®12 H. So, deg(u,v) = kt + mn. Thus

deg(u,v) = [N1(w)|[N?(v)| + [N?(u)||N1(v)| = deg(u) dega(v) + dega(u)deg(v). m

Proposition 3.3.

If G and H both are connected, Eulerian graphs, then G ®15 H is an Eulerian graph.

Proof:

Let G and H be connected Eulerian graphs. Let (u,v) € V(G ®12 H) withu € V(G) and v € V(H).
Then deg(u) = 2k in G and deg(v) = 2t in H. So, by Proposition 3.2, deg(u,v) = 2k dega(v) +
2t degs(u), an even number. Also, G ®12 H is connected and so G ®12 H is an Eulerian graph. g

Remark.

(1) The converse of Proposition 3.3 is not true. For example, if G = P,, and H = C,,, then it can
be checked that P, ®1 C,, is Eulerian.
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(i1) If G or H is not Eulerian graph, then Proposition 3.3 is not true, e.g., if G = Ky 4 and H is
as follows, then G ®;2 H is not Eulerian.

Ve Us
— 4 V4
4

U1 V9 U3

4. Conclusion

We have defined new product of graphs, distance product G ®12 H using the concept of distance
between two vertices. We have proved that in most of non-trivial graphs (except star graph) distance
product G ®12 H is connected if and only if G and H are connected. We have also obtained number
of components for K,, ®12 H. For bipartiteness we proved the strong result but in Eulerian property
we get one way result.
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