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Abstract

In this paper, we introduce the notion of (semi)topological BCC-algebras and derive here con-
ditions that imply a BCC-algebra to be a (semi)topological BCC-algebra. We prove that for
each cardinal number α there is at least a (semi)topological BCC-algebra of order α. Also
we study separation axioms on (semi)topological BCC-algebras and show that for any infinite
cardinal number α there is a Hausdorff (semi)topological BCC-algebra of order α with nontrivial
topology.
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1. Introduction

Imai and Iséki (1966) introduced a class of algebras of type (2, 0) called BCK-algebras which
generalizes on one hand the notion of algebra of sets with the set subtraction as the only
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fundamental non-nullary operation and on the other hand the notion of impliction algebra. Iséki
posed an interesting problem whether the class of BCK-algebras form a variety. In connection
with this problem, Komori (1983) introduced a notion of BCC-algebras which is a generalization
of notion BCK-algebras and proved that the class of all BCC-algebras is not a variety. Dudek
(1990) redefined the notion of BCC-algebras by using a dual form of the ordinary definition.
Further study of BCC-algebras was continued by Dudek (1995, 1998, 1992, 1990). In recent
years some mathematicians have endowed algebraic structures associated with logical systems
with a topology and have studied some their propertises. For example, Borzooei et al. (2011,
2012) introduced (semi)topological BL-algebras and studied metrizability and separation axioms
on them. Kouhestani and Borzooei (2014) introduced (semi)topological residuated lattices and
studied separation axioms T0, T1, and T2 on them. In Section 3 of this paper, we will define
(left, right, semi)topological BCC-algebras and show that for each cardinal number α there is
at least a topological BCC-algebra of order α. In Section 4, we study some topological results
on BCC-algebras endowed with a topology. In Section 5, we will study the connection between
(semi)topological BCC-algebras and Ti spaces, when i = 0, 1, 2. We prove that for any infinite
cardinal number α there is a Hausdorff topological BCC-algebra of order α in which its topology
is nontrivial.

2. Preliminary

In this section we present some of the basic information and notations that will be used in the
text. Topological concepts used in this paper are from Bourbaki (1966) and BCC-algebras theory
can be found in Dudek (1990, 1992, 1995, 1998, 1999, 2000).

Topological Space

Recall that a set A with a family U of its subsets is called a topological space, denoted by
(A,U), if A, ∅ ∈ U , the intersection of any finite numbers of members of U is in U and the
arbitrary union of members of U is in U . The members of U are called open sets of A and the
complement of U ∈ U , that is A\U , is said to be a closed set. If B is a subset of A, the smallest
closed set containing B is called the closure of B and denoted by B (or cluB). A subfamily
{Uα : α ∈ I} of U is said to be a base of U if for each x ∈ U ∈ U , there exists an α ∈ I such
that x ∈ Uα ⊆ U , or equivalently, each U in U is the union of members of {Uα}. A subset P
of A is said to be a neighborhood of x ∈ A if there exists an open set U such that x ∈ U ⊆ P .
Let Ux denote the totality of all neighborhoods of x in A. Then a subfamily Vx of Ux is said to
form a fundamental system of neighborhoods of x if for each Ux in Ux there exists a Vx in Vx
such that Vx ⊆ Ux. A directed set I is a partially ordered set such that, for any i and j of I,
there is a k ∈ I with k ≥ i and k ≥ j. If I is a directed set, then the subset {xi : i ∈ I} of A
is called a net. A net {xi : i ∈ I} converges to x ∈ A if, for each neighborhood U of x, there
exists a j ∈ I such that for all i ≥ j, xi ∈ U. If B ⊆ A and x ∈ B, then there is a net in B that
converges to x.

A topological space (A,U) is said to be a:
(1) T0-space if for each x 6= y ∈ A, there is at least one in an open neighborhood excluding the
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other.
(2) T1-space if for each x 6= y ∈ A, each has an open neighborhood not containing the other.
(3) Hausdorff space if for each x 6= y ∈ A, there two disjoint open neighborhoods U, V of x and
y, respectively.
(4) Uryshon space if for each x 6= y ∈ A, there are two open neighborhoods U, V of x and y,

respectively, such that U ∩ V = φ.

BCC-Algebra

A BCC-algebra is a nonempty set X with a constant 0 and a binary operation ∗ satisfying the
following axioms, for all x, y, z ∈ X:
(B1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0.

(B2) 0 ∗ x = 0.

(B3) x ∗ 0 = x.

(B4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

On any BCC-algebra X one define x ≤ y ⇔ x ∗ y = 0. It is not difficult to verify that this order
is partial and 0 is its smallest element.

In BCC-algebra X, the following hold: for any x, y, z ∈ X,

(B5) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z.
(B6) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.
(B7) (x ∗ y) ∗ z ≤ x ∗ z.
(B8) x ∗ y ≤ x.

(B9) (x ∗ y) ∗ z ≤ x ∗ (y ∗ z).

(B10) (x ∗ y) ∗ (x ∗ z) ≤ x ∗ (x ∗ z).

(B11) (x ∗ y) ∗ z ≤ (x ∗ y) ∗ (z ∗ y).

Definition 2.1.

Let (X, ∗, 0) be a BCC-algebra and I ⊆ X . I is called:

(1) ideal if 0 ∈ I , and for each x, y ∈ X, x ∗ y ∈ I and y ∈ I imply x ∈ I,
(2) BCC-ideal if 0 ∈ I , and y ∈ I, (x ∗ y) ∗ z ∈ I, imply x ∗ z ∈ I.

Let (X, ∗, 0) be a BCC-algebra and I a subset of X. Then:
(1) if I is an ideal, then I is a subalgebra and if x ∈ I and y ≤ x, then y ∈ I,
(2) if I is a BCC-ideal, then it is an ideal,
(3) I is a BCC-ideal if and only if for each x, y ∈ I, and z ∈ X, x ∗ z and z ∗ ((z ∗x) ∗ y), both,
are in I, and
(4) if I is a BCC-ideal, then the following relation

x ≡I y ⇔ x ∗ y ∈ I, y ∗ x ∈ I

is a congruence relation on X , i.e. ≡I is an equivalence relation and for each a, b, x, y ∈ X , if
x ≡I y and a ≡I b, then a ∗ x ≡I b ∗ y. For each x ∈ X , we consider x/I = {y : y ≡I x} and
X/I = {x/I : x ∈ X}.
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3. Topological BCC-algebras

Definition 3.1.

Let T be a topology on a BCC-algebra (X, ∗, 0). Then:

(1) (X, ∗, T ) is a (right) left topological BCC-algebra if x ∗ y ∈ U ∈ T , then there is a (V )
W ∈ T such that (x ∈ V ) y ∈ W and (V ∗ y ⊆ U) x ∗W ⊆ U . In this case, we also say that ∗
is continous in (first) second variable,

(2) (X, ∗, T ) is a semitopological BCC-algebra if it is a left and right topological BCC-algebra,
i.e. if x ∗ y ∈ U ∈ T , then there are V,W ∈ T such that x ∈ V, y ∈ W and x ∗W ⊆ U and
V ∗ y ⊆ U. In this case we also say that ∗ is continuous in each variable separately,

(3) (X, ∗, T ) is a topological BCC-algebra if ∗ is continuous , i.e. if x ∗ y ⊆ U ∈ T , then there
are two neighborhoods V,W of x, y, respectively, such that V ∗W ⊆ U .

Example 3.2.

(i) Let X = {0, 1, 2, 3} be a BCC-algebra with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 2 0.

Then, T = {{0, 1, 2}, {3}, X, φ} is a topology on X such that (X, ∗, T ) is a right topological
BCC-algebra that is not a topological BCC-algebra.

(ii) Let X = [0, 1]. Then X with the following operation is a BCC-algebra.

x ∗ y =

{
0, if x ≤ y

x, if x > y.

It is easy to prove that B = {{x} : 0 6= x} ∪ {X} is a subbase for a topology T and (X, ∗, T )

is a topological BCC-algebra.

Let (X, ∗, 0) be a BCC-algebra. Then:
(1) a family Ω of subsets X is prefilter if for each U, V ∈ Ω, there exists a W ∈ Ω such that
W ⊆ U ∩ V,
(2) for each V ⊆ X and x ∈ X, we denote

V [x] = {y ∈ X : y ∗ x ∈ V } V (x) = {y ∈ X : y ∗ x, x ∗ y ∈ V }.

Theorem 3.3.

Let I be a prefilter of BCC-ideals in a BCC-algebra (X, ∗, 0). Then there is a topology T on X
such that (X, ∗, T ) is a topological BCC-algebra.
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Proof:

Define T = {U ⊆ X : ∀x ∈ U ∃I ∈ I s.t x/I ⊆ U}. For each x ∈ A and I ∈ I, the set
x/I ∈ T because if y is an arbitrary element of x/I, then y/I ⊆ x/I. It is easy to see that T is
a topology on X. We prove that ∗ is continuous. For this, suppose x∗ y ∈ U ∈ T , then for some
I ∈ I, (x ∗ y)/I ⊆ U. Now x/I and y/I are two open neighborhoods of x and y, respectively,
such that x/I ∗ y/I ⊆ (x ∗ y)/I ⊆ U. �

Theorem 3.4.

Let I be an ideal in BCC-algebra (X, ∗, 0). Then there is a topology T on X such that (X, ∗, 0, T )

is a right topological BCC-algebra. Moreover, if for each x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ y,
then (X, ∗, 0, T ) is a topological BCC-algebra.

Proof:

Let T = {U ⊆ X : ∀x ∈ U I[x] ⊆ U}. First we show that for any x ∈ X, I[x] ∈ T . Suppose
x ∈ X and y ∈ I[x]. Then, y ∗x ∈ I. Take z ∈ I[y]. By (B1) ((z ∗x) ∗ (y ∗x)) ∗ (z ∗ y) = 0 ∈ I.
Since I is ideal and z ∗ y and y ∗ x both are in I, z ∗ x is in I so. Hence, I[y] ⊆ I[x]. This
implies that I[x] ∈ T . Now we prove that ∗ is continuous in first variable. Let x ∗ y ∈ U ∈ T . If
z ∈ I[x], then z ∗x ∈ I. By (B5), (z ∗ y)∗ (x∗ y) ≤ z ∗x, hence z ∗ y ∈ I[x∗ y]. This proves that
I[x] ∗ y ⊆ I[x ∗ y] ⊆ U. Finally, let for each x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ y. We prove that
I[x] ∗ I[y] ⊆ I[x ∗ y], for each x, y ∈ X. For this, suppose x, y ∈ X and a ∈ I[x] and b ∈ I[y].

Then,

[(b ∗ x) ∗ (x ∗ y)] ∗ (b ∗ y) = [(b ∗ x) ∗ (b ∗ y)] ∗ (x ∗ y) ≤ (x ∗ y) ∗ (x ∗ y) = 0.

Hence, (b ∗ x) ∗ (x ∗ y) ≤ b ∗ y. Since b ∗ y ∈ I, we conclude that (b ∗ x) ∗ (x ∗ y) ∈ I. On the
other hand, we have

[(a ∗ b) ∗ (x ∗ y)] ∗ (a ∗ x) = [(a ∗ b) ∗ (a ∗ x)] ∗ (x ∗ y) ≤ (b ∗ x) ∗ (x ∗ y).

This implies that [(a ∗ b) ∗ (x ∗ y)] ∗ (a ∗ x) ∈ I. Since a ∗ x ∈ I, (a ∗ b) ∗ (x ∗ y) ∈ I. Hence,
a ∗ b ∈ I[x ∗ y] and so I[x] ∗ I[y] ⊆ I[x ∗ y]. This proves that (X, ∗, 0, T ) is a topological
BCC-algebra. �

Theorem 3.5.

Let (X, ∗, 0, T ) be a topological BCC-algebra and a 6∈ X. Suppose Xa = X ∪ {a} and T ∗ =

T \{φ}. If 0 ∈ ∩T ∗, then there are an operation ⊗ and a topology Ta on Xa such that (Xa,⊗, Ta)
is a topological BCC-algebra and 0 ∈ ∩T ∗a .

Proof:

Define the operation ⊗ on Xa by

x⊗ y =


x ∗ y, if x, y ∈ X

a, if x = a, y ∈ X
0, if x ∈ X, y = a

0, if x = y = a.
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Assume that Ta = {U ∪{a} : U ∈ T }∪{φ}. It is easy to verify that (Xa,⊗, 0) is a BCC-algebra
and Ta is a topology on Xa. Let x ⊗ y ∈ U ∪ {a}. In the following cases we find two sets
V,W ∈ Ta such that x ∈ V, y ∈ W and V ⊗W ⊆ U ∪ {a}.

Case 1. If x, y ∈ X, then x ∗ y = x ⊗ y ∈ U. Since ∗ is continuous, there are V,W ∈ T such
that x ∈ V, y ∈ W and V ∗ W ⊆ U. If z1 ∈ V ∪ {a} and z2 ∈ W ∪ {a}, then z1 ⊗ z2 ∈
{z1 ∗ z2, a, 0} ⊆ U ∪ {a}. Hence, V ∪ {a} ⊗W ∪ {a} ⊆ U ∪ {a}.

Case 2. If x = a and y ∈ X, then x = a ∈ {a} ∈ Ta, y ∈ Xa ∈ Ta and {a} ⊗Xa = {0, a} ⊆
U ∪ {a}.

Case 3. If x ∈ X and y = a, then x ∈ Xa ∈ Ta, y = a ∈ {a} ∈ Ta and Xa⊗{a} = {0} ⊆ U∪{a}.

Case 4. If x = y = a, then x = y = a ∈ {a} ∈ Ta and {a} ⊗ {a} = {0} ⊆ U ∪ {a}.

Cases 1, 2, 3 and 4 prove that (Xa,⊗, Ta) is a topological BCC-algebra. But it is obvious that
0 ∈ ∩T ∗a . �

Theorem 3.6.

For any integer n ≥ 4 there exists a topological BCC-algebra of order n.

Proof:

We prove the theorem by using mathematical induction. If n = 4, then the set X = {0, 1, 2, 3}
is a BCC-algebra by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 1
3 3 3 3 0.

If T = {{0, 1, 2}, {0, 1, 3}, {0, 1}, X, φ}, then T is a topology on X such that (X, T ) is a
topological BCC-algebra and 0 ∈ ∩T ∗. Take (X, ∗, T ) a topological BCC-algebra of order n
such that 0 ∈ ∩T ∗. Let a 6∈ X and Xa = X∪{a}. Then, by Theorem 3.5, there are the operation
⊗ and topology Ta on Xa such that (Xa,⊗, Ta) is a topological BCC-algebra of order n+ 1. �

Theorem 3.7.

Let α be an infinite cardinal number. Then there is a topological BCC-algebra of order α.

Proof:

Let X be a set with cardinal number α. Consider X0 = {x0 = 0, x1, x2, ...} as a countable subset
of X and define the operation ∗ on X0 by

xi ∗ xj =

{
0, if i = j

xi, if i 6= j.

Then, (X0, ∗, 0) is a BCC-algebra. The set In = {0, x1, ..., xn}, for any n ≥ 1 is a BCC-ideal
of X0. Since B0 = {In : n ≥ 1} is a prefilter of BCC-ideals in X0, by Theorem 3.3, there is a
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nontrivial topology T0 on X0 such that (X0, ∗, T0) is a topological BCC-algebra. Now define the
binary operation ◦ on X by

x ◦ y =


x ∗ y, if x, y ∈ X0

0, if x ∈ X0, y 6∈ X0

x, if x 6∈ X0, y ∈ X0

0, if x = y 6∈ X0

x, if x 6= y, x, y 6∈ X0.

It is routine to check that (X, ◦, 0) is a BCC-algebra of order α and the set B = T0 ∪ {{x} :

x 6∈ X0} is a subbase for a topology T on X. Since {0} 6∈ T , T is a nontrivial topology on X.
In the following cases we will show that (X, ◦, T ) is a topological BCC-algebra. For this, let
x ◦ y ∈ U ∈ B.

Case 1. If x, y ∈ X0, then x ◦ y = x ∗ y ∈ U ∈ T0. Since ∗ is continuous in (X0, T0), there are
V,W ∈ T0 containing x, y, respectively, such that V ∗W ⊆ U. Hence V ◦W ⊆ U which implies
that ◦ is continuous in (X, T ).

Case 2. If x ∈ X0 and y 6∈ X0, then X0 and {y} are two elements of T such that x ∈ X0,

y ∈ {y} and X0 ◦ {y} = {0} ⊆ U.

Case 3. If x 6∈ X0 and y ∈ X0, then x ◦ y = x ∈ U. Now {x} and X0 both belong to T and
x ∈ {x}, y ∈ X0 and {x} ◦X0 = {x} ⊆ U.

Case 4. If x = y 6∈ X0, then x ◦ y = 0 ∈ U. Then {x} is an open set in T which contains x, y
and {x} ◦ {x} = {0} ⊆ U.

Case 5. If x 6∈ X0 and y 6∈ X0, then x ∈ {x} ∈ T and y ∈ {y} ∈ T and {x} ◦ {y} ⊆ U.

Cases 1, 2, 3, 4, and 5 show that the operation ◦ is continuous in (X, T ). �

Theorem 3.8.

Let (X, ∗, 0, T ) be a topological BCC-algebra and α be a cardinal number. If α ≥ |X|, then
there is a topological BCC-algebra (Y, ◦, 0,U) such that α ≤ |Y | and X is a subalgebra of Y.

Proof:

Suppose

Γ = {(H,~, 0,U) : (H,~, 0,U) is a topological BCC-algebra, X ⊆ H ~ |X = ∗}.

The following relation is a partial order on Γ.

(H,~, 0,U) ≤ (K,�, 0,V)⇔ H ⊆ K, �|H = ~, U ⊆ V .

Let {(Hi,~i, 0,Ui) : i ∈ I} be a chain in Γ. Put H = ∪Hi and U = ∪ Ui. If x and y are
two elements of H, then for some i ∈ I, x, y ∈ Hi. Define x ~ y = x ~i y. We prove that
~ is an operation on H. Suppose x, y ∈ Hi ∩ Hj. Since {(Hi,~i, 0,Ui) : i ∈ I} is a chain,
Hi ⊆ Hj or Hj ⊆ Hi. Without the lost of generality, assume that Hi ⊆ Hj. Then, ~j|Hi

= ~i.
So x~j y = x~i y. This proves that ~ is an operation on H. Now it is easy to see that (H,~, 0)
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is a BCC-algebra such that ~|X = ∗. On the other hand, since {(Hi,~i, 0,Ui) : i ∈ I} is a chain,
U is a topology on H. We prove that (H,~,U) is a topological BCC-algebra. Let x~y ∈ U ∈ U .
Then there is an i ∈ I such that x ~ y = x ~i y ∈ U ∈ Ui. Since ~i is continuous in (Hi,Ui),
there are V,W ∈ Ui such that x ∈ V, y ∈ W, and V ~iW ⊆ U. This proves that ~ is continuous
in (H,U). Thus, (H,~, 0,U) is an upper bound for {(Hi,~i, 0,Ui) : i ∈ I} in Γ. By Zorn’s
Lemma, Γ has a maximal element. Suppose (Y, ◦, 0,U) is a maximal element of Γ. We prove
that |Y | ≥ α. If |Y | < α, then for some nonempty set C, |Y ∪C| = α. Take a ∈ Y \C and put
H = Y ∪ {a}. Then it is easy to claim that H with the following operation is a BCC-algebra.

x~ y =


x ◦ y, if x, y ∈ Y

0, if x ∈ Y, y = a

a, if x = a, y ∈ Y
0, if x = y = a.

The set B = U ∪ {{a}} is a subbase for a topology V on H. In the following cases we prove
that (H,~,V) is a topological BCC-algebra. Let x, y ∈ H and x~ y ∈ U ∈ B.

Case 1. If U ∈ U , then or x, y, both, are in Y or x ∈ Y and y = a or x = y = a. If x, y ∈ Y,
then since ◦ is continuous in (Y,U), there are V,W ∈ U ⊆ B such that x ∈ V, y ∈ W and
V ~W = V ◦W ⊆ U. If x ∈ Y and y = a, then Y and {a} are two open sets in V containing
x and y, respectively, such that x~ y ∈ Y ~ {a} = {0} ⊆ U. If x = y = a, then {a} is an open
neighborhood of x, y in V such that {a}~ {a} = {0} ⊆ U.

Case 2. If U = {a}, then x = a ∈ {a} ∈ B and y ∈ Y ∈ B and x~ y ∈ {a}~ Y ⊆ U.

Thus by Cases 1 and 2, (H,~,V) is a topological BCC-algebra. But (H,~,V) is a member of
Γ which (Y, ◦, 0,U) < (H,~, 0,V), a contradiction. Therefore, |Y | ≥ α and X is a subalgebra
of Y. �

Theorem 3.9.

Let α be an infinite cardinal number. Then there is a right topological BCC-algebra of order α
which is not a topological BCC-algebra.

Proof:

Let X be a set with cardinal number α. Suppose X0 = {x0 = 0, x1, x2, ...} is a countable subset
of X. Define

xi ∗ xj =

{
0, if i ≤ j

xi, if i > j.

It is easy to prove that (X0, ∗, 0) is a BCC-algebra. If Ui = {xi, xi+1, xi+2, ...}, then B = {Ui :

i = 1, 2, 3, ...} is a base for a topology T0 on X0. We prove that (X0, ∗, T0) is a right topological
BCC-algebra. Let xi ∗ xj ∈ U ∈ T0. If i ≤ j, then xi ∗ xj = 0 ∈ U. Since X0 is the only open
neighborhood of 0, U = X0. Cleraly, xi ∈ X0 and X0 ∗ xj ⊆ U. If i > j, then xi ∗ xj = xi.

Since B is a base for T0, xi ∈ Ui ⊆ U. Since i > j, Ui ∗xj = Ui ⊆ U. Therefore, (X0, ∗, T0) is a
right topological BCC-algebra. But this space is not a topological BCC-algebra because x1 ∈ U1,
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x2 ∈ U2 and x2 ∗ x1 = x2 ∈ U2 but U2 ∗ U1 6⊆ U2. Consider X with the following operation

x ◦ y =


x ∗ y, if x, y ∈ X0

0, if x ∈ X0, y 6∈ X0

x, if x 6∈ X0, y ∈ X0

0, if x = y 6∈ X0

x, if x 6= y, x, y 6∈ X0,

then (X, ◦, 0) is a BCC-algebra. By the proof of Theorem 3.7, we can claim that B = T0∪{{x} :

x 6∈ X0} is a subbase for a topology T on X such that (X, ◦, T ) is a right topological BCC-
algebra. But ◦ is not continuous in (X, T ) because ∗ is not continuous in (X0, T0). �

Definition 3.10.

Let (X, ∗, 0) be a BCC-algebra. A nonempty subset V on X is preideal if for each x, y ∈ X,
x ≤ y, y ∈ V imply x ∈ V.

Clearly, ideals, BCC-ideals and initial segments are all preideal.

Proposition 3.11.

Let (X, ∗, 0) be a BCC-algebra. Then:
(1) the arbitrary union and intersection of preideals in X is a preideal in X,
(2) if V is a preideal, then 0 ∈ V,
(3) if V is a preideal, then for each x ∈ X the set V [x] is a preideal,
(4) if V is a preideal, then V ∗X ⊂ V.

Proof:

The proof is easy. �

Theorem 3.12.

Let Ω be a family of preideals in a BCC-algebra (X, ∗, 0) such that it is closed under intersection.
If for each x ∈ V ∈ Ω, there is a U ∈ Ω such that U [x] ⊆ V, then there is a topology T on X

such that (X, ∗, 0, T ) is a right topological BCC-algebra.

Proof:

It is not difficult to prove that T = {U ⊆ X : ∀x ∈ U, ∃V ∈ Ω s.t V [x] ⊆ U} is a topology on
X. Let U ∈ Ω and x ∈ X. We show that U [x] ∈ T . For this, suppose y ∈ U [x]; then y ∗ x ∈ U.
Consider V ∈ Ω such that V [y ∗ x] ⊆ U. Let z ∈ V [y]. Since (z ∗ x) ∗ (y ∗ x) ≤ z ∗ y and
z ∗ y ∈ V, we get that (z ∗ x) ∗ (y ∗ x) ∈ V. Hence z ∗ x ∈ V [y ∗ x] ⊆ U. This shows that
y ∈ V [y] ⊆ U [x]. Therefore, U [x] is an open set for each U ∈ Ω and x ∈ X. Also, obviously,
the set B = {U [x] : U ∈ Ω, x ∈ X} is a base for T . Now we prove that ∗ is continuous in the
first variable. Let x ∗ y ∈ U [x ∗ y] ∈ B. If z ∈ U [x], since (z ∗ y) ∗ (x ∗ y) ≤ z ∗ x and z ∗ x ∈ U,
we conclude that (z ∗ y) ∗ (x ∗ y) ∈ U. So z ∗ y ∈ U [x ∗ y]. Thus, U [x] ∗ y ⊆ U [x ∗ y]. Therefore,
(X, ∗, 0, T ) is right topological BCC-algebra. �
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Theorem 3.13.

Let Ω be a family of preideals in the BCC-algebra (X, ∗, 0) such that it is closed under inter-
section. Let for each x ∈ V ∈ Ω, there is a U ∈ Ω such that U(x) ⊆ V. If for each x, y, z ∈ X,
(x∗y)∗z = (x∗z)∗y, then there is a topology T on X such that (X, ∗, 0, T ) is a semitopological
BCC-algebra.

Proof:

Define T = {U ⊆ X : ∀x ∈ U, ∃V ∈ Ω s.t. V (x) ⊆ U}. Easily, one can prove that T is
a topology on X. At first we show that B = {U(x) : U ∈ Ω, x ∈ X} is a base for T . Let
x ∈ U(a) ∈ B. Then there exists a V ∈ Ω such that V (x ∗ a) and V (a ∗ x); both are the subsets
of U. We show that x ∈ V (x) ⊆ U(a). Let y ∈ V (x). Then, y ∗ x and x ∗ y belong to V. Since

(y ∗ a) ∗ (x ∗ a) ≤ y ∗ x, (x ∗ a) ∗ (y ∗ a) ≤ x ∗ y,

we get that (y ∗ a) ∗ (x ∗ a) and (x ∗ a) ∗ (y ∗ a) both belong to V. Hence, y ∗ a ∈ V (x ∗ a) ⊆ U.

On the other hand, since

[(a ∗ y) ∗ (a ∗ x)] ∗ (x ∗ y) = [(a ∗ y) ∗ (x ∗ y)] ∗ (a ∗ x) ≤ (a ∗ x) ∗ (a ∗ x) = 0,

we have (a ∗ y) ∗ (a ∗ x) ≤ x ∗ y. As x ∗ y ∈ V, we get that (a ∗ y) ∗ (a ∗ x) ∈ V. In a similar
fashion, one can prove that (a∗x)∗(a∗y) ∈ V. Hence, a∗y ∈ V (a∗x) ⊆ U. Since a∗y and y∗a
both belong to U, we get that y ∈ U(a). Thus we could show that U(a) ∈ T , for each a ∈ X.
Now it is easy to prove that B is a base for T . In continuation we will prove that ∗ is continuous
in first and second variable. Let x ∗ y ∈ V (x ∗ y) ∈ B. We show that V (x) ∗ y ⊆ V (x ∗ y) and
x ∗ V (y) ⊆ V (x ∗ y). If a ∈ V (x), then since

(a ∗ y) ∗ (x ∗ y) ≤ a ∗ x, (x ∗ y) ∗ (a ∗ y) ≤ x ∗ a,

we get that (a ∗ y) ∗ (x ∗ y) ∈ V and (x ∗ y) ∗ (a ∗ y) ∈ V. Hence, a ∗ y ∈ V (x ∗ y) and so
V (x) ∗ y ⊆ V (x ∗ y). If b ∈ V (y), since

(x ∗ b) ∗ (x ∗ y) ≤ y ∗ b, (x ∗ y) ∗ (x ∗ b) ≤ b ∗ y,

we get that x ∗ b ∈ V (x ∗ y). Hence x ∗ V (y) ⊆ V (x ∗ y). �

Example 3.14.

(i) An algebra X = {0, 1, 2, 3} defined by the table

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 1 0.

is a BCC-algebra. Its preideals have the form {0, 1}, {0, 2}, {0, 1, 3} and {0, 2, 3}. Let U = {0, 2}
and V = {0, 2, 3}. Then V is not an ideal because 1∗3 = 0 ∈ V but 1 6∈ V. Also, V [0], V [2], U [3],

all, are the subsets of V and the sets U [0], U [2], both, are the subsets of U. Hence, Ω = {U, V }
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satisfies Theorem 3.12. Therefore, T = {W : ∀x ∈ W U [x] ⊆ W or V [x] ⊆ W} is a topology
on X such that (X, ∗, 0, T ) is a right topological BCC-algebra.

(ii) It is easy to verify that X = [0,∞) by

x ∗ y =

{
0, if x ≤ y

x, if x > y,

is a BCC-algebra which is not proper. Let In = [0, n], for any n ≥ 1. Then:

In[x] =

{
In, if x ≤ n

{x}, if x > n.

Now, if Ω = {In : n ≥ 1}, then Ω satisfies Theorem 3.13, and so there is a topology T on X

such that (X, ∗, 0, T ) is a semitopological BCC-algebra.

4. Some results on (left, right) topological BCC-algeras

Proposition 4.1.

Let (X, ∗, 0, T ) be a topological BCC-algebra. If U ∈ T , then:
(1) if 0 ∈ U, then for each x ∈ X, there is an open neighborhood V of x such that V ∗ V ⊆ U,

(2) if x ∈ U, then for some V,W ∈ T , containing x and 0, respectively, V ∗W ⊆ U,

(3) if 0 ∈ U, then for each x ∈ X, there are two open sets V and W containing x and 0,

respectively, V ∗W ⊆ U,

(4) if 0 ∈ U and x, y ∈ X, then there are V,W ∈ T such that x ∈ V, y ∈ W and (V ∗W )∗V ⊆ U.

Proof:

We only prove (4). Let 0 ∈ U and x, y ∈ X. Since (x ∗ y) ∗ x = 0 and ∗ is continuous, there are
two open neighborhoods V1 and V2 containing x ∗ y and x, respectively, such that V1 ∗ V2 ⊆ U.

Again, since ∗ is continuous, for some open neighborhood V2 of x and an open set W containing
y, we have V2 ∗W ⊆ V1. Suppose V = V1 ∩ V2, then x ∈ V ∈ T , y ∈ W ∈ T and

(V ∗W ) ∗ V ⊆ (V2 ∗W ) ∗ V2 ⊆ V1 ∗ V2 ⊆ U.

�

Proposition 4.2.

Let (X, ∗, 0, T ) be a right topological BCC-algebra. If 0 ∈ U ∈ T , then for each x ∈ X, there are
two open neighborhoods V and W of 0 and x, respectively, such that V ∗x ⊆ U, and W ∗x ⊆ U.

Proof:

The proof is easy. �

Proposition 4.3.

Let (X, ∗, 0, T ) be a topological BCC-algebra. If 0 ∈ ∩T , then B ⊆ X is open if and only if 0

is an interior point of B.
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Proof:

If B is open, clearly 0 is an interior point of B. Let 0 be an interior point of B and x ∈ B.

Since 0 is an interior point of B and x ∗ x = 0, there is an open neighborhood V of 0 such that
x ∗ x = 0 ∈ V ⊆ B. Since ∗ is continuous, there exists an open set W containing x such that
W ∗W ⊆ V. By hypothesis, 0 ∈ W, hence x ∈ W ⊆ W ∗W ⊆ V ⊆ B. This proves that x is
an interior point of B. �

Proposition 4.4.

Let (X, ∗, 0, T ) be a left topological BCC-algebra which satisfies
(1) x ∗ y = 0⇔ x = y,

(2) if net {xi : i ∈ I} converges to 0, then 0 belongs to it.
Then B ⊆ X is closed if 0 ∈ B.

Proof:

Let 0 ∈ B and x ∈ B. If x = 0, then x ∈ B, so we assume that x 6= 0. Suppose {xi : i ∈ I} is a
net in B which converges to x. Since ∗ is continuous in second variable, the net {x ∗ xi : i ∈ I}
converges to 0. By (2), there is an i ∈ I, such that x ∗ xi = 0. By (1), x = xi ∈ B. �

Proposition 4.5.

Let (X, ∗, 0, T ) be a left topological BCC-algebra and I be an ideal in X. Then I is closed if 0

is an interion point of I, or 0 ∈ {xj : j ∈ J}, for each net {xj : j ∈ J} which converges to 0.

Proof:

Let x ∈ I, and {xj : j ∈ J} be a net in I which converges to x. Since (X, ∗, T ) is left topological
BCC-algebra, the net {x ∗ xj : j ∈ J} converges to 0. Now if 0 is an interior poin of I, then
there is an open set U such that 0 ∈ U ⊆ I. For some j ∈ J, x ∗ xj ∈ U ⊆ I. Since I is an
ideal, x ∈ I. If 0 ∈ {xj : j ∈ J}, for each net {xj : j ∈ J} which converges to 0, then for some
j ∈ J, x ∗ xj = 0 ∈ I which implies that x ∈ I. �

Proposition 4.6.

Let (X, ∗, 0, T ) be a semitopological BCC-algebra and I be an ideal in X. Then I is open and
closed if 0 is an interior point of I.

Proof:

Let 0 be an interior point of I and x ∈ I. Then for some an open neighborhood U of 0, we have
x ∗x = 0 ∈ U ⊆ I. Since ∗ is continuous in first variable, there is a V ∈ T such that x ∈ V and
V ∗x ⊆ I. Now for each y ∈ V, y ∗x and x, both are in I, so y ∈ I. This shows that x ∈ V ⊆ I

and so I belongs to T . Since (X, T ) is left topological BCC-algebra, by Proposition 4.5, I is
closed. �

Proposition 4.7.

Let (X, ∗, 0, T ) be a right topological BCC-algebra. If all of elements of X are atoms, then
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0 ∈ B, or B is closed, for each B ⊆ X which 0 6∈ B.

Proof:

Let B be a subset of X which 0 6∈ B. Suppose B is not closed. Then there is a x ∈ B such
that x 6∈ B. Let {bi : i ∈ I} be a net in B which converges to x. Since ∗ is continuous in first
variable, the net {bi ∗ x : i ∈ I} converges to 0. Since x and bi, for each i ∈ I, are atoms and
0 6= x 6= bi, bi ∗ x = bi. Hence, the net {bi : i ∈ I} converges to 0, which implies that 0 ∈ B. �

Proposition 4.8.

Let (X, ∗, 0, T ) be a topological BCC-algebra and I be a BCC-ideal in X. Then I is a BCC-ideal.

Proof:

Let y ∈ I and x ∈ X. Given a net {yj : j ∈ J} in I which converges to y. Since ∗ is continuous,
the net {yj ∗x : j ∈ J} converges to y ∗x. Since I is a BCC-ideal and yj ∈ I, for any j ∈ J, the
net {yj ∗ x : j ∈ J} is a subset of I, so y ∗ x ∈ I. Now suppose y ∈ X and x, z ∈ I. Then there
are nets {xj : j ∈ J} and {zj : j ∈ J} in I which converge to x and z, respectively. Since ∗ is
continuous, the net {y ∗ ((y ∗xj) ∗ zj) : j ∈ J} converges to y ∗ ((y ∗x) ∗ z). Since for any j ∈ J,
xj, zj ∈ I and I is a BCC-ideal, y ∗ ((y ∗ xj) ∗ zj) belongs to I. Hence y ∗ ((y ∗ x) ∗ z) ∈ I. �

Proposition 4.9.

Let F and P be two disjoint subsetes of a topological BCC-algebra (X, ∗, T ). If F is compact
and P is closed and for any a ∈ X, the map la(x) = a ∗ x is an open map of X into X, then
there is an open neighborhood V of 0 such that (F ∗ V ) ∩ P = φ.

Proof:

Let x ∈ F ⊆ X \ P. Since (x ∗ 0) ∗ 0 = x ∈ X \ P ∈ T and ∗ is continuous, there exist
W,V0 ∈ T such that x∗0 ∈ W, 0 ∈ V0 and W ∗V0 ⊆ X \P. Also, there is an open neighborhood
V1 of 0 such that x ∗ V1 ⊆ W. If Vx = V0 ∩ V1, then (x ∗ Vx) ∗ Vx ⊆ W ∗ V0 ⊆ X \ P. Since
C = {x ∗ Vx : x ∈ F} is an open covering of the compact set F, there are x1 ∗ Vx1 , ..., xn ∗ Vxn
in C such that F ⊆

⋃n
i=1 xi ∗Vxi . Suppose V =

⋂n
i=1 Vxi . Then V is an open neighborhood of 0

such that for each y ∈ F, y ∈ xi ∗Vxi , for some xi, and y ∗V ⊆ (xi ∗Vxi)∗V ⊆ (xi ∗Vxi)∗Vxi ⊆
W ∗ V0 ⊆ X \ P. This proves that (F ∗ V ) ∩ P = φ. �

Recall in a BCC-algebra (X, ∗, 0), x ∧ y = y ∗ (y ∗ x) and it is commutative if x ∧ y = y ∧ x.

Proposition 4.10.

Let (X, ∗, 0, T ) be a left topological commutative BCC-algebra. Then ∧ is continuous in first
and second variable. Moreover, if ∗ is continuous, ∧ is so.

Proof:

Let x∧y ∈ U ∈ T . Since ∗ is continuous in second variable, there is a V ∈ T such that y∗x ∈ V
and y ∗ V ⊆ U. Again, since ∗ is continuous in second variable, there is an open neighborhood
W of x such that y ∗W ⊆ V. Now W is an open set which contains x and W ∧y ⊆ U. Hence, ∧
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is continuous in first variable. Since ∧ is commutative, it is continuous in second variable. The
proof of the other case is similar. �

Proposition 4.11.

Let (X, ∗, 0, T ) be a semitopological BCC-algebra. Then for each a ∈ X, V ∈ T and F ⊆ X :

(1) the sets V (a) and V [a], both, are open,
(2) F (a) ⊆ F (a) and F [a] ⊆ F [a],

(3) if F is closed, then F (a) and F [a] are closed.

Proof:

(1) Let x ∈ V (a). Then x ∗ a and a ∗ x belong to V. Since (X, ∗, T ) is semitopological BCC-
algebra, there is an open set W containing x such that W ∗ a and a ∗W are two subsets of V.
Hence x ∈ W ⊆ V (a). Similarly, we can show that V [a] is open.

(2) Let y ∈ F (a). Then there is a net {xi : i ∈ I} in F (a) which converges to y. Since ∗ is
continuous in each variable separately, the net {xi ∗ a : i ∈ I} converges to y ∗ a and the net
{a ∗ xi : i ∈ I} converges to a ∗ y. Since the nets {xi ∗ a : i ∈ I} and {a ∗ xi : i ∈ I} are in F,
we get that a ∗ y and y ∗ a, both, are in F . Hence, y ∈ F (a). Similarly, F [a] ⊆ F [a].

(3) The proof is easy. �

5. Separation axioms on topological BCC-algebra

Theorem 5.1.

Let T be a topology on a BCC-algebra (X, ∗, 0). If for any a ∈ X the map la : X ↪→ X, by
la(x) = a ∗ x, is an open map, then (X, T ) is a T0 space.

Proof:

Let x 6= y ∈ X and U be an open neighborhood of 0. Then x ∗ U and y ∗ U are two open
neighborhoods of x and y, respectively. If x ∈ y ∗ U and y ∈ x ∗ U, then for some a, b ∈ X,
x = y ∗ a ≤ y and y = x ∗ b ≤ x. Hence x = y, which is a contradiction. Therefore, x 6∈ y ∗ U
or y 6∈ x ∗ U. This shows that (X, T ) is a T0 space. �

Theorem 5.2.

Let (X, ∗, 0, T ) be a right (left) topological BCC-algebra. Then (X, T ) is a T0 space if and only
if for any x 6= 0, there is a U ∈ T such that x ∈ U and 0 6∈ U.

Proof:

Let for any x 6= 0, there is a U ∈ T such that x ∈ U and 0 6∈ U. We prove that (X, T ) is a T0
space. Given x 6= y ∈ X. Then x ∗ y 6= 0 or y ∗ x 6= 0. Suppose x ∗ y 6= 0, then there exists a
U ∈ T such that x∗y ∈ U and 0 6∈ U. Since ∗ is continuous in first variable, there is an open set
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V containing x such that V ∗ y ⊆ U. y is not in V because if y ∈ V, then 0 = y ∗ y ∈ V ∗ y ⊆ U,

which is a contradiction. Hence, (X, T ) is a T0 space. The proof of converse is clear. �

Theorem 5.3.

Let X be a BCC-algebra such that for any a ∈ X \ {0}, there is a b ∈ X such that 0 < b < a.

Then there exists a nontrivial topology T on X such that (X, ∗, 0, T ) is a T0 right topological
BCC-algebra.

Proof:

Let Xa = {x ∈ X : a ≤ x}, for any a ∈ X. Since X =
⋃
a∈X Xa, the set B = {Xa : a ∈ X} is

a base of a topology T on X. Given a ∈ X \ {0}, then there is a b ∈ X such that 0 < b < a.

Thus, 0 6∈ Xb and a, b ∈ Xb. This implies that topology T is not a trivial topology. Now we
prove that ∗ is continuous in first variable. Consider x ∗ y ∈ Xx∗y and let z ∈ Xx. Since x ≤ z,

by (B2), x ∗ y ≤ z ∗ y. Hence Xx ∗ y ⊆ Xx∗y. This proves that (X, ∗, 0, T ) is a right topological
BCC-algebra. To complete the proof we have to prove that this space is T0. Let x 6= 0. Then
there is a b ∈ X such that 0 < b < x. The set Xb is an open neighborhood of x such that 0 6∈ Xb.

Hence by Theorem 5.2, (X, T ) is T0. �

Theorem 5.4.

If α is an infinite cardinal number, then there is a T0 right topological BCC-algebra of order α.

Proof:

Let (X0, ∗, T0) and (X, ◦, T ) be right topological BCC-algebras in Theorem 3.9. Let x ∈ X \{0}.
If x ∈ X0, then for some i ≥ 1, x ∈ Ui ∈ T and 0 6∈ Ui. If x 6∈ X0, then x ∈ {x} ∈ T and
0 6∈ {x}. Therefore, by Theorem 5.2, (X, ◦, T ) is a T0 right topological BCC-algebra of order
α. �

Theorem 5.5.

If α is an infinite cardinal number, then there is a T0 topological BCC-algebra of order α in
which its topology is nontrivial.

Proof:

Let (X0, ∗, T0) and (X, ◦, T ) be topological BCC-algebras in Theorem 3.7. It is clear that T is
nontrivial. Let x ∈ X \ {0}. If x ∈ X0, then for some n ≥ 1, x 6∈ In. Hence, x ∈ x/In ∈ T and
0 6∈ x/In. If x 6∈ X0, then x ∈ {x} ∈ T and 0 6∈ {x}. Now by Theorem 5.2, (X, ◦, T ) is a T0
topological BCC-algebra of order α. �

Theorem 5.6.

Let (X, ∗, 0, T ) be a semitopological BCC-algebra. Then (X, T ) is a T1 space if and only if for
any x 6= 0, there are two open neighborhoods U and V of x and 0, respectively, such that 0 6∈ U
and x 6∈ V.
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Proof:

If (X, T ) is T1, then the proof is obvious. Conversely, let for any x 6= 0, there are two open
neighborhoods U and V of x and 0, respectively, such that 0 6∈ U and x 6∈ V. We prove that
(X, T ) is a T1 space. Given x 6= y, then x∗y 6= 0 or y∗x 6= 0. Without lost of generality, assume
that x ∗ y 6= 0. Then there are two open neighborhoods U and V of x ∗ y and 0, respectively,
such that x ∗ y 6∈ V and 0 6∈ U. Since ∗ is continuous in each variable separately, there are W
and W1 belong to T such that x ∈ W, y ∈ W1 and W ∗ y ⊆ U and x ∗W1 ⊆ U. But x 6∈ W1

because if x ∈ W1, then 0 = x ∗ x ∈ x ∗W1 ⊆ U, a contradiction. Similarly, y 6∈ W. Therefore,
(X, T ) is a T1 space. �

Theorem 5.7.

Let (X, ∗, 0, T ) be a semitopological BCC-algebra. Then (X, T ) is a T1 space if and only if it
is a T0 space.

Proof:

Let (X, T ) be a T0 space and x 6= y. Then, x ∗ y 6= 0 or y ∗ x 6= 0. Without lost of generality,
suppose x∗y 6= 0. Then there is a U ∈ T such that x∗y ∈ U and 0 6∈ U or 0 ∈ U and x∗y 6∈ U.
First assume that x ∗ y ∈ U and 0 6∈ U. Since (X, ∗, T ) is a semitopological BCC-algebra,
there are two open neighborhoods V and W of x and y, respectively, such that V ∗ y ⊆ U and
x ∗ W ⊆ U. But x 6∈ W because if x ∈ W, then 0 = x ∗ x ∈ x ∗ W ⊆ U, a contradiction.
Similarly, y 6∈ V. Now if 0 ∈ U and x ∗ y 6∈ U, then since x ∗ x = y ∗ y = 0 ∈ U, there are
open sets V and W such that x ∈ V, y ∈ W and x ∗ V ⊆ U and W ∗ y ⊆ U. If x ∈ W, then
x ∗ y ∈ W ∗ y ⊆ U, a contradiction. Similarly, y 6∈ V. Therefore, (X, T ) is a T1 space. If (X, T )

is T1, clearly it is T0. �

Corollary 5.8.

If α is an infinite cardinal number, then there is a T1 topological BCC-algebra of order α which
its topology is nontrivial.

Proof:

By Theorems 5.5 and 5.7 the proof is clear. �

Theorem 5.9.

Let (X, ∗, 0, T ) be a topological BCC-algebra. Then (X, T ) is Hausdorff if and only if for each
x 6= 0, there are two disjoint open neighborhoods U and V of x and 0, respectively.

Proof:

If (X, T ) is Hausdorff, the proof is clear. Conversely, let for each x 6= 0, there are two disjoint
open neighborhoods U and V of x and 0, respectively. We prove that (X, T ) is Hausdorff. For
this, take x 6= y. Then x∗y 6= 0 or y∗x 6= 0. Without lost of generality, we suppose that x∗y 6= 0.

Then there are two disjoint open neighborhoods U and V of x ∗ y and 0, respectively. Since ∗
is continuous, there are two open sets W and W1 such that x ∈ W, y ∈ W1 and W ∗W1 ⊆ U.
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If z ∈ W ∩W1, then 0 = z ∗ z ∈ W ∗W1 ⊆ U, which is a contradiction. Hence, W ∩W1 = φ.

Therefore, (X, T ) is Hausdorff. �

Theorem 5.10.

Let (X, ∗, 0, T ) be a topological BCC-algebra. Then (X, T ) is a T1 space if and only if it is a
Hausdorff space.

Proof:

Let (X, ∗, 0, T ) be a T1 topological BCC-algebra. Given x 6= 0. Then there are U, V ∈ T
such that x ∈ U, 0 ∈ V and x 6∈ V and 0 6∈ U. By Proposition 4.1 (2), there are two open
neighborhoods W and W1 such that x ∈ W, 0 ∈ W1 and W ∗W1 ⊆ U. If z ∈ W ∩W1, then
0 = z ∗z ∈ W ∗W1 ⊆ U, which is a contradiction. Hence W ∩W1 = φ. By Theorem 5.9, (X, T )

is Hausdorff. The converse is obvious. �

Corollary 5.11.

If α is an infinite cardinal number, then there is a Hausdorff topological BCC-algebra of order
α in which its topology is nontrivial.

Proof:

By Theorems 5.5, 5.7, and 5.10, the proof is clear. �

Theorem 5.12.

Let (X, ∗, T ) be a topological BCC-algebra. Then (X, T ) is Hausdorff if and only if {0} is
closed.

Proof:

Let {0} be closed. We show that for each a ∈ X the set {a} is closed. Take a ∈ X. By
Proposition 4.9, ∧ is continuous, hence ∧−1(0) = {(0, 0)} is closed in X × X. On the other
hand, since ∗ is continuous, the map h : X ↪→ X × X by h(x) = (a ∗ x, x ∗ a) is continuous.
Hence h−1(0, 0) = {x : a ∗ x = x ∗ a = 0} = {a} is closed in X. Thus, (X, T ) is T1. By
Theorem 5.10, (X, T ) is Hausdorff. �

Theorem 5.13.

LetN be a fundamental system of neighborhoods of 0 in the topological BCC-algebra (X, ∗, 0, T ).

The following conditions are equivalent.
(1) (X, T ) is T0 space,
(2) (X, T ) is T1 space,
(3) (X, T ) is Hausdorff space,
(4) ∩N = {0}.

Proof:

By Theorems 5.7, 5.10, (1), (2) and (3) are equivalent. We prove that (ii) and (iv) are equivalent.
If (X, T ) is T1 space and x 6= 0, then by Theorem 5.6, there is a U ∈ N such that x 6∈ U, hence
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x 6∈ ∩N . Conversely, let ∩N = {0} and x 6= 0. Then there is a V ∈ N such that x 6∈ V. By
Propsition 4.10 (1), U(x) is an open neighborhood of x. But 0 6∈ U(x) because x 6∈ U. Thus,
U and U(x) are two open sets containing 0, x, respectively, such that x 6∈ U and 0 6∈ U(x). By
Theorem 5.6, (X, T ) is T1 space. �

Theorem 5.14

The topological BCC-algebra (X, ∗, 0, T ) is an Uryshon space if and only if for any x 6= 0, there
are two open sets U and V containing x and 0, respectively, such that U ∩ V = φ.

Proof:

Let for any x 6= 0, there are two open sets U and V containing x and 0, respectively, such
that U ∩ V = φ. We prove that (X, T ) is Uryshon space. For this, suppose x 6= y. Then we
can assume that x ∗ y 6= 0. Take two open sets U and V such that x ∗ y ∈ U and 0 ∈ V

and U ∩ V = φ. Since ∗ is continuous, there are open neighborhoods W and W1 of x and y,

respectively, W ∗W1 ⊆ U. If z ∈ W ∩W1, then there are two nets {xi : i ∈ I} and {yi : i ∈ I}
in W and W1, respectively, which converges to z. Now {xi ∗ yi : i ∈ I} is a net in U which
converges to 0. Hence 0 ∈ U ∩V = φ, a contradiction. This proves that (X, T ) is Uryshon space.
The converse is clear. �

Theorem 5.15.

The topological BCC-algebra (X, ∗, 0, T ) is a Uryshon space if and only if it is Hausdorff.

Proof:

Let (X, T ) be Hausdorff space and x 6= 0. Then there are two disjoint open neighborhoods U
and V of x and 0, respectively. By Proposition 4.1 (2), there are two open sets W and W1 such
that x ∈ W and 0 ∈ W1 and W ∗W1 ⊆ U. We prove that W ∩W1 = φ. Let z ∈ W ∩W1.

Then there are two nets {xi : i ∈ I} ⊆ W and {yi : i ∈ I} ⊆ W1, which both converges to z.

Thus, {xi ∗ yi : i ∈ I} is a net in U that converges to 0 which implies that 0 ∈ U. Since V is an
open neighborhood of 0, V ∩U 6= φ, a contradiction. Now by Theorem 5.14, (X, T ) is Uryshon
space. If (X, T ) is Uryshon space, clearly it is Hausdorff. �

Corollary 5.16.

If α is an infinite cardinal number, then there is an Uryshon topological BCC-algebra of order
α in which its topology is nontrivial.

Proof:

By Theorem 5.15 and Corollary 5.11, the proof is obvious. �

6. Conclusion

In this note, we have studied (semi)topological BCC-algebras. We have proved that for each
infinite cardinal number α there exists at least a Hausdorff (semi)toplogical BCC-algebras of
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order α with nontrivial topology. In the future, we will investigate regularity, normality, and
metrizability on (semi)topological BCC-algebras.
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