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Abstract 
 
In this paper, we consider an integrated stochastic advertising-production system in the case of a 
duopoly.  Two firms spend certain amounts to advertise some product.  The expenses processes 
evolve according to the jumps of two homogeneous, finite-state Markov chains.  We assume that 
the items in stock may be subject to deterioration and the deterioration parameter is assumed to 
be random. 
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1. Introduction 
 
Managers, policy makers, and researchers are interested in understanding the effect of 
advertising on demand. A large number of response models have been proposed in the literature 
linking advertising expenditures to sales or market shares.  The first of these models seems to be 
the advertising model of Vidale and Wolfe (1957) 
 

 
 
where  represents the sales rate,  the advertising rate, and  and  are scaling factors.  A 
variety of other models have been built, typically by altering some aspect of the above dynamic 
equation.  For example: 
 
 The advertising model of Ozga (1960) 

 

 
 
 The advertising model of Nerlove and Arrow (1962) 

 

 
 
 The advertising model of Bradshaw and Porter (1975) 

 

 
 
 The advertising model of Sethi (1983) 

 

 
 
 The advertising model of Mahajan and Muller (1986) 

 

 
 
 The advertising model of Feinberg (2001) 

 

 
 

where  is S-shaped  and  are “acceleration” and “decay” functions of sales. 
 
Discrete-time analogs of these models have also been considered in the literature, see for 
example Park and Hahn (1991) and Hahn and Hyun (1991).  For a full review of the literature, 
see Feichtinger et al. (1994). Numerous stochastic models have been proposed too.  To review 
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some of them, we start with the stochastic, monopoly advertising model of Sethi (1983) given by 
the Itô equation 
 

 
 
where  represents a standard Wiener process.  In the stochastic model of Zhang et al. 

(2001), the demand rate is a two-state Markov chain.  Hitsch (2006) proposes the model 
 

 
 
where  is i.i.d. normal.  The model of Gozzi and Marinelli (2006) is given by 
 

 
 
where  is a Brownian motion defined on a filtered probability space , 

with  being the completion of the filtration generated by .  Raman (2006) postulates the 

following stochastic differential equation: 
 

 
 
where  is a standard Brownian motion process. 
 
Another research direction of these advertising models is to generalize them to cater for other 
system features for a better control.  For example, Colombo and Lambertini (2002) investigate an 
advertising model where product quality is endogenous.  Bradshaw and Porter (1975), Zhang et 
al. (2001), and Bouras et al. (20006) study integrated advertising-production systems.  Sethi et al. 
(2008) propose a model of new-product adoption that incorporates price and advertising effects. 
Marinelli and Savin (2008) extend the advertising model of Nerlove and Arrow (1962) by adding 
a spatial dimension while Grosset and Viscolani (2009) extend it by considering the presence of 
a constant exogenous interference. Bykadorov et al. (2009) take explicitly into account the 
retailer’s sales motivation and performance.   
 
Yet another research direction followed by certain researchers consists in extending the 
advertising models which deal with a single firm (monopoly) to the case of two firms (duopoly), 
or even multiple firms (oligopoly). Assuming a saturation market point , Kim (2001) considers 

that the market share  of firm  follows the dynamics given by 
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Also, in an -firm oligopoly market, Prasad and Sethi (2003) assume the dynamics of the th firm 
are given by 
 

 
 
Prasad and Sethi (2004) extend the work of Sethi (1983) by examining a dynamic duopoly with 
stochastic disturbances.  Denoting by  and  the market shares of firms 1 and 2 at time  
as, they use the following model dynamics 
 

 
 

 
 
where  is a white noise term. Another oligopolistic and deterministic extension of the 
monopoly model of Sethi (1983) is given by Erickson (2009): 
 

 
 
In the present paper we combine the two research direction cited above by considering an 
integrated stochastic advertising-production system in the context of a duopoly. A firm produces 
a certain product and spends a certain amount on advertisement while a competing company 
producing the same product also spends another (unknown) amount on advertisement. We 
assume that the item in stock may deteriorate at some (unknown) rate. Items deterioration is of 
great importance in inventory theory, as shown by the survey of Goyal and Giri (2001).  
Examples of deteriorating items include blood, photographic films, certain pharmaceutical, and 
food stuff. 
 
The problem facing our firm is the estimation of two unknown yet crucial parameters, namely 
the items deterioration rate and the amount spent by the competing firm. To the best of our 
knowledge, parameter estimation in this context has not received a large amount of attention so 
far.  Such estimation is crucial though, as it enables decision makers to make educated decisions.  
Indeed, knowing how much the competing firm is spending on advertisement will help our firm 
decide how much it wants to spend on advertising itself. Also, knowing the amount of product 
that deteriorates helps management decide how much to produce.  The deterioration parameter is 
assumed to be random. Concerning expense processes, it is intuitively clear that they are not 
sequences of independent random variables. The simplest and most common form of dependence 
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used in modeling stochastic phenomena is the Markovian property, which usually is a good 
approximation of what is happening in reality. It is similar to using Taylor expansions to 
approximate highly non-linear functions. For this reason, we will assume that the expense 
processes evolve according to the jumps of a homogeneous, finite-state Markov chain. 
 
We are interested in their conditional probability distributions given past information. This paper 
gives algorithms to find the maximum likelihood estimators (MLEs) of these unknown 
probabilities. The identification of MLEs of parameters by the Expectation Maximization (EM) 
algorithm and its variants appears in many contexts, e.g., voice recognition in artificial 
intelligence and fitting phase-type distributions in queueing systems. The transformation of 
probability measures is used in contexts such as importance sampling to estimate the 
probabilities of rare events. The mathematical procedures as outlined in this paper have been 
detailed in references (2004) and (1995). 
 
In the next section we formally describe the system. In Section 3 we introduce a 'reference' 
probability measure under which all calculations are performed.  The 'real world' probability 
measure under which the dynamics of our model are given is then defined via a suitable 
martingale.   In section 4 we estimate recursively the joint conditional probability distribution of 
the (hidden) Markov chains which represent the expenses of the competing company and the 
perishability parameter. 
 
 
2. Model Formulation 
 
Let  be a probability space on which we develop a parametric, discrete-time multi-
period integer-valued inventory model with perishable items. 
 
Definition 1.  A discrete-time stochastic process , with finite-state space , 

defined on a probability space  is a Markov chain if 

 

 
 

for all  and all states . The Markov chain  is 

homogeneous if 
 

 
 

is independent of . The matrix  is called the transition probability 

matrix of the homogeneous Markov chain and it satisfies the property 
. 

 
Note that our transition matrix  is the transpose of the traditional transition matrix defined 
elsewhere.  The convenience of this choice will be apparent later. 
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Consider the filtration  and write .  

Then,  is a discrete-time Markov chain with state space the set of unit vectors  

 of , where the 'prime' means transpose.  However, the 

transition probability matrix of  is .  We can write: 

 

 
 
from which we conclude that  is the predictable part of , given the history of  up to 

time  and the non-predictable part of  must be   In fact, it can easily 

be shown that  is a mean 0, -vector martingale and we have the semimartingale (or 

Doob decomposition) representation of the Markov chain  : 
 

 (2.1)
 
Let  and  be such Markov chains with transition probability matrices  and  and state 

spaces   of , and   

of , respectively.  Then, we can write 
 

 

 
(2.2)

 
where    and  are mean 0, -vector martingales and  is the filtration generated by the 

Markov chains  and . 
 
Now consider a firm that manufactures a certain product, selling some and stocking the rest in a 
warehouse.  Assume that at epoch  an amount equal to  is spent on advertisement and 

another (hidden) amount equal to  is spent on advertisement by a competing company 

producing the same item.  The dynamics of the expenses processes  and  are regulated by 
equations (2.2). 
 
We are assuming that items in stock may be subject to deterioration.  Suppose  is an 

unknown parameter representing the proportion of items which did not perish, and let  be a 

sequence of i.i.d. random variables with a suitable probability density function . The interval 

(0,1) is partitioned into  conveniently chosen from past experience disjoint intervals, 

 

 
 
Write 
 

 (2.3)
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and let  an -dimensional unit vector such that  if . Then, we see that 
 

 
 
Let , , and  represent the inventory level, the demand rate, and the production rate at the 

beginning of the period , respectively. It is clear that  comprises the proportions of intact 

inventory which survived from the previous period plus the inventory produced during that same 
previous period minus the quantity sold. Taking into account equations (2.2) and (2.3), the 
dynamics of our integrated advertising-production system are as follows: 
 

 

 
(2.4)

 
We assume here the demand  is a non-negative random variable with a known probability 

density functions  . 

 
Define the filtrations  and .  
We assume that: 

(1) Processes   and  are not observed. 

(2) Processes  are either observed or predictable with respect to whatever 
information is available at each epoch. 

 
We wish to derive recursive conditional probability distributions for  and  given the filtration 

. 

 
 
3. Reference Probability 
 
In our context, the objective of the method of reference probability is to choose a measure , on 

the measurable space  , under which 

(3)  is a  random variable with density function , 

(4)  is a  sequence of i.i.d. random variables uniformly distributed on the set of unit 

vectors , 

(5)  is a  sequence of i.i.d. random variables uniformly distributed on the set of unit 

vectors . 
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The probability measure  is referred to as the 'real world' measure, that is, under this measure 
 

 
(3.1)

 
Denote by  the stochastic process whose value at time  is given by 

 

 

(3.2)

 
where  and 

 

 
 
 It is easily seen that the sequence  given by (3.2) is a -martingale. 

 
Define the 'real world' measure  in terms of , by setting 
 

 
 
The existence of  follows from Kolmogorov Extension Theorem.  Under probability measure , 
the ‘real world' dynamics in (3.1) hold.  For proofs and more details on measure change 
techniques, see Aggoun and Elliott (2004) and Elliott et al. (1995). 
 
Remark 1. The purpose of the change of measure is to work under a “nice” artificial probability 

measure under which calculation are made easy.  Note that, at each time , the two 

probability measures are connected via  which is the projection of the Radon-

Nikodym  on the information available at time . This, of course, allows for the 

results to be expressed under the original `real world' probability measure . 
 
 

4. Recursive State Estimation 
 
As mentioned earlier, we are interested in deriving recursive conditional probability distributions 
for  and  given the filtration .  We shall be working under probability measure .  Write 



 
363AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2]

 

 
 
Using a generalized version of Bayes' Theorem; see Aggoun and Elliott (2004) and Elliott et al. 
(1995) 
 

 
 
Theorem 1.: For , we have 
 

 
 
 
Proof.  
 
In view (3.2) and the independence and distribution assumption under , for an arbitrary Borel 

function , we see that 

 

 
 
Here we replace the product with a summation involving only the index  because index  is 

equal to  and is fixed.  The right-hand side of the above equation becomes 
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Here, because of the independence assumptions under , we can replace  with  which is 
in fact the purpose of the change of the probability.  Thus, 
 

 
 
Since  is arbitrary, the recursion follows.                
 
 

5. Parameter Updating 
 
Using the EM algorithm, see Baum and Petrie (1966) and Dempster et al. (1977), the transitions 
probabilities of the Markov chains  and  are updated.  Let 
 

 
 
Here  is considered a nuisance parameter and we shall suppose that it is known or that it was 
estimated via the recursion in Theorem 1. 
 
Suppose our model is determined by such a set  and we wish to determine a new set 
 

 
 
which maximizes the conditional pseudo-log-likelihood defined below.  To replace, at time , 

the parameters  by new ones , define: 
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An argument similar to that used earlier shows that we can define a new probability measure  
by setting 
 

 
 
It is easy to see that under , the Markov chains  and  have transition probabilities given by 

 and  respectively.  Write 

 

 

 
 
where  does not contain .  Recalling that  is -measurable 
 

 
 

 
 
(5.1)

Therefore, to re-estimate parameters  we shall require estimates of 
 

(1) , a discrete time counting process for the state transitions , where , 

 
 
(5.2)

 
(2) , a discrete time counting process for the state transitions , where , 

 

 
 

(3) , the cumulative sojourn time spent by the process  in state , 
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(4) , the cumulative sojourn time spent by the process  in state , 
 

 
 
Rather than directly estimating the quantities , ,  and , recursive forms can be 

found to estimate the related product-quantities ,  etc.  The outputs of 

these filters can then be manipulated to marginalize out the process , resulting in filtered 

estimates of the quantities of primary interest, namely , ,  and . 

 
Now the parameters  must satisfy 

 
    (5.3)

 
We wish, therefore, to choose  to maximize (5.1) subject to the constraint (5.3).  The optimum 

choice of  is 
 

 
 
 

 
      
Write 
 

 
 
 
Lemma 1.  
 

Process  is computed recursively by the dynamics 
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Proof.  
 
In view of (3.3) and (5.2): 
 

 
 
The first expectation is 
 

 
 
The second expectation yields: 
 

 
 
Write 
 

 
 
A similar argument shows that: 
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Lemma 2. Process  is computed recursively by the dynamics 

 

 
 
The filter recursions given by Lemmas 1 and 2 provide updates to estimate product processes, 
each involving the process .  What we would like to do, is manipulate these filters so as to 

remove the dependence upon the process .  Since  takes values on a canonical basis of 

indicator functions (in fact the standard unit vectors of ), we see that, omitting , 
 

 
 
etc.  Here . 
 
 
6. Concluding Remarks 
 
In this paper an integrated stochastic advertising-production system with deteriorating items is 
proposed.  The firm advertises for its product and is faced with the problem of estimating both 
the deterioration rate and the amount spent by a competing firm in advertising the same product.  
Using hidden Markov models techniques, the conditional probability distributions of these 
parameters given past information are obtained. 
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