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Abstract 
 
In this paper a steady, axisymmetric flow, with a constricted tube has been studied. The artery 
has been represented by a two-layered model consisting of a core layer and a peripheral layer. 
It has been shown that the resistance to flow and wall shear stress increases as the peripheral 
layer viscosity increases. The results are compared graphically with those of previous 
investigators. It has been observed that the existence of peripheral layer is useful in 
representation of diseased arterial system. 
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1. Introduction 
 
Stenosis means constriction or narrowing. An artery which is affected by this abnormal 
growth can lead to serious consequences such as blockage of the artery, stroke and many 
other arterial diseases. The study of blood flow through stenotic arteries plays an important 
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role in the diagnostic and fundamental understanding of cardiovascular diseases. To 
understand the effects of mild stenosis, several researchers such as Haldar (1987), Misra and 
Chakravarty (1986), and Young (1968) investigated the flow of blood through constricted 
tube treating blood as a Newtonian fluid. The model has been extended by assuming that 
blood behaves like a non-Newtonian fluid Nakamura and Sawada (1988) and Shukla et al. 
(1980). In all above models, the blood flow is represented by single-layered model. 
Bugliarello and Sevilla (1970) have shown experimentally that the blood flowing through 
narrow tubes can be well represented by a two-layered model instead of one. In this type of 
models there is a peripheral layer of plasma and a core region of suspension of red blood cells. 
Shukla et al. (1980) have taken two-layered model to analyze the peripheral layer viscosity. 
Ponalagusamy (2007) focused on slip velocity, thickness of peripheral layer and core layer 
viscosity at the vessel wall. Srivastava (2003) studied analytically and numerically effects of 
mild stenosis on blood flow characteristics in a two-fluid model. In this study we analysed the 
flow of blood through axisymmetric, mild and composite shaped stenosis. The results 
obtained are compared with previous investigators Shukla, et al. (1980).  
 
 
2.  Formulation of the Problem 
 
We considered the flow of blood in a tube having axisymmetric mild stenosis. It is assumed 
that blood is an incompressible fluid which is represented by a two-layered model. The 
external layer shows peripheral layer of plasma and the internal core layer describes the 
suspension of red blood cells. The schematic diagram showing the flow is given by the 
following figure:  
 

 
where the symbols stand for                                                                                                        

0R  :  Radius of the non-stenotic region 

( )R z :   Radius of the stenotic region 

1( )R z : Radius of the central layer in stenotic region 

L :   The length of the artery 

0L :  The length of the stenosis 
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Figure 1: Geometry of stenosed artery, 
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d :  Location of stenosis 

ip  :  Inlet fluid pressure  

0p :  Instantaneous outlet fluid pressure 

s :  Instantaneous maximum height of the stenosis 

i :   Maximum bulging of interface 

1 :  Viscosity of fluid in central core layer 

2 :  Viscosity of fluid in peripheral layer 

 :  Ratio of central core radius to the tube radius. 
 
 
The geometry of the stenotic tube without peripheral layer is described as follows: 
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The governing equation of blood flow is given by Kapur (1985), 
   

 1
0

dp w
r r

dz r r r
        

 ,                                                                                 (2) 

 
where w  is axial velocity, p is fluid pressure and  r is viscosity of fluid. 

 
 
The boundary conditions are 
 

0w   at ( )r R z                                                                                                     (3) 
 
and 
  

0
w
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 at 0r  .                                                                                                      (4) 

 
Solving equation (2) under boundary conditions (3) and (4), we get 
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The volumetric flow rate is given by 
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0

2
R

Q r wdr  ,                                                                                                      (6) 

 
which on using equation (5) gives 
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Thus, the pressure gradient can be obtained as 
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where,  
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Integrating equation (8) using conditions 0ip p at z  and 0 at ,p p z L  , we have 
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The resistance to flow is defined by, 
 

0ip p

Q



 .                                                                                                              (11) 

 
From equations (1), (10) and (11), we can find 
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where      
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Now, the shear stress at wall is given by, 
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By using equations (5) and (8) in (14), we can find shear stress at maximum height of 

stenosis i.e. at 0

2

L
z d  , which is as follows 
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For finding the effects of peripheral layer viscosity, the viscosity function ( )r can be 
defined as 
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where 1  and 2 are the viscosities of the central and the peripheral layers respectively. The 

function 1( )R z  represents the shape of the central layer with stenosis. The mathematical 

representation of this model can be described as 
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By using equation (16) in (5), velocities cw and pw can be obtained and then the 

corresponding volumetric flow rates cQ and pQ are obtained as follows 
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where 2 2 1   . 

 
 
Thus, the total volumetric flow rate Q is defined as 
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Equation (20) can also be obtained by equation (7) using (16), which shows that Q is a 
constant. 
 
Integrating equation (18), (19) and (20) across the length of artery, assuming that pressure 
drop is same in each case, we obtain 
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where, 
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Now 
 

  4
0 0

0
28 1

ip p R M
Q

L
L MG

L








   
 

 ,                                                                                       (31) 

 
where 
 

  4
21 1M                                                                                                      (32) 

           
and 
 

5 6G g g   ,                                                                                                             (33) 

 
where 
 

 

0

2

5 4 4

1
2

0 0

1

1

L
d

d

dz
g

L RR

R R





          
     

                                                                         (34) 

 
and 
 

 

0

0

6 4 4

1
2 2

0 0

1

1

d L

L
d

dz
g

L RR

R R







          
     

 .                                                                       (35)   

 
From equations (21) through (31) and using c pQ Q Q  , we can find 
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Now using 1R R  in equation (17), we get 
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On comparing equations (1) and (37), we can observe that  
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Now, keeping in mind the equation (16), the dimensionless resistance to flow   and the 

dimensionless shear stress s can be obtained by using equation (31) in equations (11) and 
(15) as follows 
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 , and 0  and 0 are the resistance to flow and wall shear stress for the case 

of no stenosis respectively, with 2 1  . 

 
 
Evaluating the integrals (34) and (35) after using equation (38) and rewriting the expressions 

for   and s  as follows 
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The s obtained in (42) is the same as in Shukla, et al. (1980). 

 
 

If 2 1   in equations (41) and (42), we get 
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which is the same as the ratio obtained by Joshi et al. (2009), and  
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which is the same as the one obtained by Young (1968). 
 
 
 
3.  Conclusion 
 
A two-layered model of blood flow through a stenosed artery has been considered. The 
model consists of a central core layer of erythrocytes surrounded by a peripheral plasma layer 

both with different viscosities. The expressions for   and s have been plotted for different 

values of parameters. Figures 2 and 3 represents the variations of  and s with 
0

s

R


for 

different values of 2 and 0L

L
 respectively. It has been observed that  and s increases with 
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the increase in the height of stenosis, this increase have also been noted when 2  increased. 

It is further noted that resistance to flow  (denoted by broken lines in the fig 2) is lower in 
the present model as compared to previous investigation of Shukla et al. (1980). Also, using 

the data 0
2 0.3, 1.0, 0.95

L

L
     and 

0

0.1s

R


  in equations (41) and (42), it can be 

noted that   and s are decreased by 27% and 4%, respectively, when compared with the 

case of no stenosis with 2 1  . Again, in the absence of peripheral layer these characteristics 

are increased by 5% and 37% respectively for the same stenosis size and 2 1  . Thus, it 

seems that the results of present analysis of two-layered model can better explain the flow 
behaviour of stenotic arteries. 
 
 
 

 
Figure 2. 
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Figure 3. 
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