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Abstract

The aim of our study is to transform the mixed initial boundary value problem considered in the
context of micropolar thermoelastic bodies whose micro-particles possess microtemperatures in a
temporal evolutionary equation on a Hilbert space. Then, with the help of some results from the
theory of semigroups, the existence and the uniqueness of the solution for this equation is proved.
Finally, we approach the continuous dependence of the solution upon initial data and loads, also
with the help of the semigroup.
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1. Introduction

In the last period of time, the theory of bodies with microstructure became a subject of inten-
sive study in the literature. For example, Eringen (1996) introduced the concept of micropolar
continua, which is similar with Cosserat continua. Unlike Cosserat theory, he introduced, addition-
ally, a conservation law for the microinertia tensor, as a special case of micromorphic continua.
Some fundamental results on micropolar bodies can be found in Chirita-Ghiba (2012), Dyszlewicz
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(2004), Iesan (2004), Marin (1996), Marin (1997), Marin (2010a) Marin (2010b) Marin (2010c).
Classical elasticity ignores the fact that the response of the material to external stimuli depends
heavily on the motions of its inner structure. It is not possible to consider this effect by ascribing
only translation degrees of freedom to the material points of the body. In the micropolar continuum
theory, we have six degrees of freedom, instead of the three considered in classical elasticity. The
difference is the consideration of the rotational degrees of freedom which play a central role in this
theory. Also, in order to characterize the force applied on the surface element, together with the
classical stress tensor, a couple stress tensor is introduced.

There are a lot of materials, such as crystals, composites, polymers, suspensions, blood, grid and
multibar systems, which can be considered as examples of media with microstructure, that is,
which point out the necessity for considering micromotions into the mechanical studies. Many
studies dedicated to the theory of microstretch elastic bodies were published (for instance see
Eringen (1999)). This theory is a generalization of the micropolar theory and a special case of the
micromorphic theory. In the context of this theory, each material point is endowed with three de-
formable directors. A body is a microstretch continuum if the directors are constrained to have only
breathing-type microdeformations. Also, the material points of a microstretch solid can stretch
and contract independently of their translations and rotations. Other materials with microstruc-
ture are studied in Marin (1996), Marin (1997), Marin (2010a), Ellahi et al. (2014a), Ellahi et al.
(2014b). Some considerations on waves for micropolar bodies can be found in Marin (2010b),
Marin (2010c), Straughan (2011) and Sharma-Marin (2013).

The purpose of these theories is to eliminate discrepancies between classical elasticity and exper-
iments, since classical elasticity failed to present acceptable results when the effects of material
microstructure were known to contribute significantly to the body’s overall deformations, for ex-
ample, in the case of granular bodies with large molecules (e.g. polymers), graphite, or human
bones. Also, the classical theory of elasticity does not explain certain discrepancies that occur in
the case of problems involving elastic vibrations of high frequency and short wavelength, that is,
vibrations generated by ultrasonic waves.

Other intended applications of this theory are to composite materials reinforced with chopped
fibers and various porous materials. Grot (1969) is considered as the initiator of the theory of
bodies with microtemperatures, who, on the basis of the theory of bodies with inner structure,
established a theory of thermodynamics of elastic bodies with microstructure whose microelements
possess microtemperatures. In this case, the entropy production inequality is adapted to include
microtemperatures. As a consequence, the first-order moment of the energy equations are added
to the usual balance laws of a continuum with microstructure. The theory of thermoelasticity with
microtemperatures has been investigated in various papers (for instance, see Chirita et al. (2013),
Iesan and Quintanilla (2000)).

In the present study we consider the effect of microtemperatures on the main characteristics of the
mixed initial boundary value problems for micropolar thermoelastic bodies. It is important to note
that the presence of the microtemperatures allows the transmission of heat as thermal waves at
finite speed. This mixed problem is transformed in an abstract evolutionary equation on a suitable
Hilbert space. Then, by using some results from the theory of semi-groups of operators, we deduce
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the existence and the uniqueness of the solution. Also, the continuous dependence of the solution
upon the initial data and loads is proved.

2. Basic equations and conditions

We assume that a bounded region B of the three-dimensional Euclidean space R3 is occupied by a
micropolar elastic body, referred to the reference configuration and a fixed system of rectangular
Cartesian axes. Let B̄ denote the closure of B and call ∂B the boundary of the domain B. We
consider ∂B to be a piecewise smooth surface and designate by ni the components of the outward
unit normal to the surface ∂B. Letters in boldface stand for vector fields. We use the notation vi
to designate the components of the vector v in the underlying rectangular Cartesian coordinates
frame. Superposed dots stand for the material time derivative. We shall employ the usual summa-
tion and differentiation conventions: the subscripts are understood to range over integers (1, 2, 3).
Summation over repeated subscripts is implied and subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate.

The spatial argument and the time argument of a function will be omitted when there is no like-
lihood of confusion. We refer the motion of the body to a fixed system of rectangular Cartesian
axes Oxi, i = 1, 2, 3. Let us denote by ui the components of the displacement vector and by ϕi the
components of the microrotation vector. Also, we denote by φ the microstretch function and by θ
the temperature measured from the constant absolute temperature T0 of the body in its reference
state.

As usual, we denote by tij the components of the stress tensor and by mij the components of the
couple stress tensor over B. The equations of motion for micropolar thermoelastic bodies are (see
Iesan and Nappa (2005))

tji,j + %Fi = %üi, mji,j + εijktjk + %Gi = Iijϕ̈j . (1)

According to Iesan (2004), the balance of the first stress moment has the form

λi,i − σ + %L = Jφ̈. (2)

In these equations we have used the following notations: Fi are the components of the body force,
Gi are the components of the body couple, L is the generalized external body load, % is the reference
constant mass density, and J and Iij = Iji are the coefficients of microinertia.

If T is the temperature in the body, we will denote by θ the temperature measured from the constant
absolute temperature T0 in the body in its reference state, that is, θ = T −T0. We consider a generic
microelement in the reference configuration and denote by (X

′

i) the coordinates of its center of
mass. If (Xi) are the coordinates of an arbitary point in the body, then we can assume that the
absolute temperature in the body is a sum of the form

θ + Ti

(
X

′

i −Xi

)
, (3)

where the functions Ti are microtemperatures. We will denote by ϑi the microtemperatures mea-
sured from the microtemperatures T 0

i in the reference state, namely, ϑi = Ti − T 0
i .
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The behavior of the micropolar thermoelastic bodies with microtemperatures can be characterized
using the above - mentioned variables ui, ϕi, φ and variables χ, τi, defined by

χ =

∫ t

t0

θdt, τi =

∫ t

t0

ϑidt, (4)

in which, obviously, t0 is the reference time. The components of the strain tensors εij , µij and γi
are defined by means of the geometric equations

εij = uj,i + εijkϕk, µij=ϕj,i, γi = φ,i, (5)

where εijk is the alternating symbol.

Using a procedure analogous to that in Iesan and Quintanilla (2000), we obtain the constitutive
equations

tij = Aijmn εmn +Bijmnµmn + aijφ− αijχ̇+Dijmnτm,n,

mij = Bijmn εmn + Cijmnµmn + bijφ− βijχ̇+ Eijmnτm,n,

λi = Aij γj − dij τ̇j +Hijχ,j ,

σ = aij εij + bijµij + ζφ− κχ̇+ Fijτi,j , (6)
%η = αij εij + βijµij + κφ+ aχ̇+ Lijτi,j ,

%ηi = djiγj +Bij τ̇j + Cijχ,j ,

Si = Hjiγj − Cjiτ̇j +Kijχ,j ,

Λij = Dijmn εmn + Eijmnµij + Fjiφ− Ljiχ̇+Gijmnτm,n.

In the above equations, the notations used have the following meanings: tij , mij and λi are the
components of the stress, λi are the components of the internal hypertraction vector, σ is the gen-
eralized internal body load, η is the entropy per unit mass, ηi is the first entropy moment vector, Si
is the entropy flux vector and Λij is the first entropy flux moment tensor.

Also, the quantities Aijmn, Bijmn, ..., Lji and Gijmn are characteristic constitutive coefficients and
they obey the following symmetry relations

Aijmn = Amnij , Cijmn = Cmnij , Aij = Aji, Bij = Bji, Kij = Kji,

aij = aji, bij = bji, Dijmn = Djimn, Eijmn = Ejimn, Gijmn = Gmnij . (7)

If we denote by ξi the internal rate of production of entropy per unit mass and by Hi the mean
entropy flux vector, then from the equation of energy we deduce the relation

%ξi + Si −Hi = 0, (8)

wherein the meaning of Si was exposed above. Also, if we denote by s the external rate of supply
of entropy per unit mass and by Qi the first moment of the external rate of supply of entropy, we
can write two more equations of energy,

%η̇ = Si,i + %s, %η̇i = Λji,j + %Qi. (9)

We substitute now the geometric equations (5) and the constitutive equations (6) into the equations
of motion (1), in the balance of the first stress moment (2) and into the equations of energy (9). As
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such, we get a system of partial differential equations in which the unknown functions are ui, ϕi,
φ, χ and τi, namely,

Aijmn (um,nj + εmnkϕk,j) +Bijmnϕn,mj + aijφ,j − αijχ̇,j +Dijmnτm,nj + %Fi = %üi,

Bijmn (um,nj + εmnkϕk,j) + Cijmnϕn,mj + bijφ,j − βijχ̇,j + Eijmnτm,nj

+εijk[Ajkmn (um,n+εmnkϕk)+Bjkmnϕn,m+ajkφ− αjkχ̇+Djkmnτm,n]+%Gi=Iijϕ̈j ,

Aijφ,ij−dij τ̇j,i+Hijχ,ij−aij (uj,i+εijkϕk)−bijϕj,i−ζφ−κχ̇−Fijτi,j+%L=Jφ̈, (10)
Hjiφ,ij −Dij τ̇j,i +Kijχ,ij − αij (u̇j,i+εijkϕ̇k)− βijϕ̇j,i − κφ̇− aχ̈ = −%s,

Dijmn (um,nj + εmnkϕk,j) + Eijmnϕn,mj + Fjiφ,j

−Djiχ̇,j +Gijmnτm,nj − dijφ̇,j −Bij τ̈j = −%Qi.

Here we used the notation Dij = Cij + Lij . Taking into account the Dirichlet problem associated
to the system of equations (10), the boundary conditions have the form

ui = ūi, ϕi = ϕ̄i, φ = φ̄, χ = χ̄, τi = τ̄i, on ∂B × (0,∞), (11)

where ūi, ϕ̄i, φ̄, χ̄, τ̄i are known functions. In the case of a boundary value problem of Neumann
type, the boundary conditions (11) are replaced by the following,

tjinj = t̄i, mjinj = m̄i, λjnj = λ̄, Sjnj = S̄, Λjinj = Λ̄i, on ∂B × (0,∞), (12)

where also the functions t̄i, m̄i, λ̄, S̄ and Λ̄i are given.

In the following we restrict our considerations only on the Dirichlet problem.

The mixed initial boundary value problem associated to the system (10) is complete if we consider
the initial conditions, namely,

ui(x, 0) = u0i (x), u̇i(x, 0) = u1i (x), ϕi(x, 0) = ϕ0
i (x),

ϕ̇i(x, 0) = ϕ1
i (x), φ(x, 0) = φ0(x), φ̇(x, 0) = φ1(x), (13)

χ(x, 0) = χ0(x), χ̇(x, 0) = χ1(x), τi(x, 0) = τ0i (x), τ̇i(x, 0) = τ1i (x),

for any x ∈ B. Here the functions u0i , u1i , ϕ0
i , ϕ1

i , φ0, φ1, χ0, χ1, τ0i and τ1i are prescribed.

3. Qualitative results of the solutions

In this section we will study the existence and uniqueness of the solution of the mixed initial
boundary value problem in our context. Also, we obtain the continuous dependence of the solution
with regard to the initial data and charges.

In all that follows we will assume that the functions that appear in the equations and the conditions
formulated in Section 2 are sufficiently regular on their domain of definition to allow mathematical
operations that will be made later on them.

For the next result of uniqueness, we need the following auxiliary result.
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Theorem 3.1.

Between the variables that characterize the deformation of a thermoelastic micropolar body with
microtemperatures, the following equality takes place,

tijεij +mijµij + λiφ,i + σφ+ %ηχ̇+ %ηiτ̇i + Siχ,i + Λijτi,j

= Aijmnεijεmn + 2Bijmnεijµmn + 2aijεijφ+ 2Dijmnεijτm,n

+Cijmnµijµmn + 2bijµijφ+ 2Eijmnµijτm,n +Aijφ,iφ,j (14)
+2Hijφ,iχ,j + ζφ2 + 2Fijτi,jφ+Kijχ,iχ,j

+Gijmnτm,nτi,j + aχ̇2 +Bij τ̇iτ̇j .

Proof:

Multiply each equation in the system of the constitutive equations (6) as follows: tij .εij , mij .µij ,
λi.φ,i, σ.φ, %η.χ̇, %ηi.τ̇i, Si.χ,i and Λij .τi,j . Then we add the equalities which are obtained, member
with member, and by considering the relations of symmetry (7) we obtain the desired equality (14).

The following be useful for us in the following the quadratic form defined as follows

U =
1

2

[
Aijmnεijεmn + 2Bijmnεijµmn + 2aijεijφ+ 2Dijmnεijτm,n

+Cijmnµijµmn + 2bijµijφ+ 2Eijmnµijτm,n +Aijφ,iφ,j (15)

+2Hijφ,iχ,j + ζφ2 + 2Fijτi,jφ+Kijχ,iχ,j +Gijmnτm,nτi,j

]
.

Now we can state and prove the uniqueness of the solution of the mixed initial boundary value
problem considered in the previous section.

Theorem 3.2.

We assume that the following assumptions are met;

1. %, Iij , J and the constitutive coefficient a are strictly positive;

2. the symmetry relations (7) take place;

3. the quadratic form U defined in (15) is positive semi-definite; and

4. the constitutive coefficients Bij are components of a positive definite tensor.

Then, the mixed initial boundary value problem that consists of equations (10), the initial condi-
tions (13), and the boundary conditions (11) admits at most one solution.

Proof:

As in the proof of Theorem 1, we start by multiplying each equation in the system of the con-
stitutive equations (6) as follows: tij .ε̇ij , mij .µ̇ij , λi.φ̇,i, σ.φ̇, %η̇.χ̇, %η̇i.τ̇i, Si.χ̇,i and Λij .τ̇i,j . Then
we add the equalities which are obtained, member with member, and considering the relations of
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symmetry (7) and the quadratic form U from (15) we obtain the following equality,

tij ε̇ij +mijµ̇ij + λiφ̇,i + σφ̇+ %η̇χ̇+ %η̇iτ̇i + Siχ̇,i + Λij τ̇i,j

=
∂

∂t

(
U +

1

2
aχ̇2 +

1

2
Bij τ̇iτ̇j

)
. (16)

Now we take into account the geometric equations (5), the equations of motion (1), the balance of
the first stress moment (2) and the equations of energy (9) so that we are led to the equality

tij ε̇ij +mijµ̇ij + λiφ̇,i + σφ̇+ %η̇χ̇+ %η̇iτ̇i + Siχ̇,i + Λij τ̇i,j

=
(
tij u̇i +mijϕ̇i + λjφ̇+ Sjχ̇+ Λij τ̇i

)
,j

(17)

+%
(
Fiu̇i +Giϕ̇i + Lφ̇+ sχ̇+Qiτ̇i

)
− %üiu̇i − Iijϕ̈iϕ̇j − Jφ̈φ̇.

It is easy to see that equalities (16) and (17) provide the equality
1

2

∂

∂t

(
2U + %u̇iu̇i + Iijϕ̇iϕ̇j + Jφ̇2 + aχ̇2 +Bij τ̇iτ̇j

)
=
(
tij u̇i+mijϕ̇i+λjφ̇+Sjχ̇+Λij τ̇i

)
,j

+%
(
Fiu̇i+Giϕ̇i+Lφ̇+sχ̇+Qiτ̇i

)
. (18)

Equality (18) is integrated over the domain B such that with the help of the divergence theorem we
obtain

1

2

∂

∂t

∫
B

(
2U + %u̇iu̇i + Iijϕ̇iϕ̇j + Jφ̇2 + aχ̇2 +Bij τ̇iτ̇j

)
dV

=

∫
∂B

(
tjiu̇i+miϕ̇i+λjφ̇+Sjχ̇+Λij τ̇i

)
njdA+

∫
B
%
(
Fiu̇i+Giϕ̇i+Lφ̇+sχ̇+Qiτ̇i

)
dV, (19)

where ni are the components of the outward unit normal of the surface ∂B.

We will mark with "*" the difference of two solutions of the mixed problem that consists of (10),
(13) and (11), that is,

u∗i = u2i − u1i , ϕ∗
i = ϕ2

i − ϕ1
i , φ

∗ = φ2 − φ1, χ∗ = χ2 − χ1, τ∗i = τ2i − τ1i .

Also, we will mark with "*" the other quantities which correspond to the above differences. Be-
cause of linearity, these differences also satisfy the equations of motion (1), the balance of the
first stress moment (2) and the energy equations (9), but with null body loads. Also, the initial
conditions become homogeneous, that is, for any x ∈ B,

u∗i (x, 0) = 0, u̇∗i (x, 0) = 0, ϕ∗
i (x, 0) = 0, ϕ̇∗

i (x, 0) = 0, φ∗(x, 0) = 0,

φ̇∗(x, 0) = 0, χ∗(x, 0) = 0, χ̇∗(x, 0) = 0, τ∗i (x, 0) = 0, τ̇∗i (x, 0) = 0, (20)

and, certainly, the boundary conditions become null,

u∗i = 0, ϕ∗
i = 0, φ∗ = 0, χ∗ = 0, τ∗i = 0, on ∂B × (0,∞), (21)

ε∗ij(x, 0) = 0, µ∗ij(x, 0) = 0, φ∗,i(x, 0) = 0, χ∗
,i(x, 0) = 0, τ∗i,j(x, 0) = 0, x ∈ B. (22)

Taking into account these considerations, the relation (19) written for these differences, becomes∫
B

(
2U∗ + %u̇∗i u̇

∗
i + Iijϕ̇

∗
i ϕ̇

∗
j + J

(
φ̇∗
)2

+ a (χ̇∗)2 +Bij τ̇
∗
i τ̇

∗
j

)
dV = 0, t ≥ 0. (23)
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Based on hypothesis 3 of the theorem and using (22), we deduce that the quadratic form U written
for the differences becomes null and then from (23) we deduce that∫

B

[
%u̇∗i u̇

∗
i + Iijϕ̇

∗
i ϕ̇

∗
j + J

(
φ̇∗
)2

+ a (χ̇∗)2 +Bij τ̇
∗
i τ̇

∗
j

]
dV = 0. (24)

Considering the hypothesis 1 of the theorem regarding the amounts %, Iij , J and a and the hypoth-
esis 4 regarding the tensor Bij , from (24) we must have

u̇∗i = 0, ϕ̇∗
i = 0, φ̇∗ = 0, χ̇∗ = 0, τ̇∗i = 0, on B × (0,∞),

so that, if we take into account (20), we deduce that

u∗i = 0, ϕ∗
i = 0, φ∗ = 0, χ∗ = 0, τ∗i = 0, on B × (0,∞),

so the proof of the theorem is complete.

We shall prove now a result of existence of the solution for the mixed initial boundary value
problem, mentioned above, but in the case in which the boundary conditions are homogeneous,
that is,

ui = ϕi = φ = χ = τi = 0, on ∂B × (0,∞). (25)

Because the system of governing equations and conditions for our problem is more complicated,
it is necessary a new approach for the existence of the solution in this context. To this end we will
transform the problem in an abstract evolutionary equation on a Hilbert space, suitably chosen.

Using the usual Hilbert spaces W 1,2
0 and L2, we consider the Hilbert space H defined by

H = W1,2
0 × L2 ×W1,2

0 × L2 ×W 1,2
0 × L2 ×W 1,2

0 × L2 ×W1,2
0 × L2,

where we used the notation W1,2
0 = W 1,2

0 × W 1,2
0 × W 1,2

0 , or, shorter, W1,2
0 =

[
W 1,2

0

]3
. Also,

L2 =
[
L2
]3. For Hilbert and Sobolev spaces see the basic book by Adams (1975).

On the space H we define the following scalar product

〈(ui, Ui, ϕi,Ψi, φ,Φ, χ, µ, τi, νi) , (u
∗
i , U

∗
i , ϕ

∗
i ,Ψ

∗
i , φ

∗,Φ∗, χ∗, µ∗, τ∗i , ν
∗
i )〉

=
1

2

∫
B

(%UiU
∗
i + IijΨiΨ

∗
i + JΦΦ∗ + aµµ∗ +Bijνiν

∗
i ) dV

+
1

2

∫
B

[
Aijmnεijε

∗
mn +Bijmn

(
εijµ

∗
mn + ε∗ijµmn

)
+ aij

(
εijφ

∗ + ε∗ijφ
)

+Dijmn

(
εijτ

∗
m,n + ε∗ijτm,n

)
+ Cijmnµijµ

∗
mn + bij

(
µijφ

∗ + µ∗ijφ
)

(26)
+Eijmn

(
µijτ

∗
m,n + µ∗ijτm,n

)
+Aijφ,iφ

∗
,j +Hij

(
φ,iχ

∗
,j + φ∗,iχ,j

)
+ζφφ∗ + Fij

(
τi,jφ

∗ + τ∗i,jφ
)

+Kijχ,iχ
∗
,j +Gijmnτm,nτ

∗
i,j

]
dV.

We can prove that the norm induced by this scalar product is equivalent to the original norm on the
Hilbert space H.
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Now, with a suggestion given by the operators which appear in the left-hand side of equations (10),
we introduce the operators

A1
iu =

1

%
Aijmnum,nj , A

2
iϕ =

1

%
[Aijmnεmnkϕk,j +Bijmnϕn,mj ] , B

1
i φ =

1

%
aijφ,j ,

C1
i µ=−1

%
αijµ,j , D

1
i τ =

1

%
Dijmnτm,nj , A

3
iu=

1

Iij
(Bijmnum,nj+εijkAjkmnum,n) ,

A4
sϕ=Wsi [Aijmnεjmnϕj+Bijmnεjmnϕn,m+Cijmnϕn,mj ] , B

2
sφ=Wsi (bijφ,j+ajkεijkφ) ,

C2
sµ = −Wsi (βijµ,j + εijkαjkµ) , D2

sτ = Wsi (Eijmnτm,nj + εijkDjkmnτm,n) ,

Eφ =
1

J
(Aijφ,ij − ζφ) , Fν = − 1

J
dijνj,i, Gχ =

1

J
Hijχ,ij , Hu = − 1

J
aijuj,i, (27)

Kϕ=− 1

J
(aijεijkϕk+bijϕj,i) , Lµ =

1

J
κµ, Mτ = − 1

J
Fijτi,j , Nχ =

1

a
Kijχ,ij ,

Pφ=
1

a
Hijφ,ij , Qν=−1

a
Dijνj,i, R

1v=−1

a
αijvi,j , R

2Ψ=−1

a
(αijεijkΨk+βijΨj,i) ,

SΦ=−1

a
κΦ, A5

su=ΓsiDijmnum,nj , A
6
sϕ=Γsi (Dijmnεmnkϕk,j+Eijmnϕn,mj) ,

Wsφ = ΓsiFijφ,j , Xsµ = −ΓsiDijµ,j , Ysτ = ΓsiGijmnτm,nj , ZsΦ = −ΓsidjiΦ,j ,

in which the matrices Wsi and Γsi are defined by means of the equations WsiJir = δsr,ΓsiBir = δsr.

If we denote by T the matrix operator which has as components the operators defined in (27), then
the mixed initial boundary value problem is transformed in a Cauchy problem associated to an
evolutionary equation, namely

dU
dt

= T U(t) + F(t), U(0) = U0. (28)

In order to use the theoretical results that follow, we have to take as domain for the operator T , that
is, D(T ), the next set(

W1,2
0 ∩W2,2

)
×W1,2

0 ×
(
W1,2

0 ∩W2,2
)
×W1,2

0 ×
(
W 1,2

0 ∩W
2,2
)
×W 1,2

0 ×
(
W 1,2

0 ∩W
2,2
)
×W 1,2

0

×
(
W 1,2

0 ∩W
2,2
)
×W 1,2

0 ×
(
W 1,2

0 ∩W
2,2
)
×W 1,2

0 ×
(
W1,2

0 ∩W
2,2
)
×W1,2

0 ×
(
W1,2

0 ∩W
2,2
)
×W1,2

0 .

Also, the unknown matrix function U , the initial data U0 and the matrix of charges F are defined
by

U =
(
ui, vi, ϕi,Ψi, φ,Φ, χ, µ, τi, νi

)
,

U0 =
(
u0i , v

0
i , ϕ

0
i ,Ψ

0
i , φ

0,Φ0, χ0, µ0, τ0i , ν
0
i

)
,

F = (0, Fi,0, Gi, 0, L, 0, s,0, Qi) .

We will prove, in the next theorem, a property of the operator T which is needed to prove the
existence of the solution of the abstract problem (28).

Theorem 3.3.

We assume that the following assumptions are met;

1. %, Iij , J and the constitutive coefficient a are strictly positive;
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2. the symmetry relations (7) take place;

3. the quadratic form U defined in (15) is positive definite; and

4. the constitutive coefficients Bij are components of a positive definite tensor.

Then, the operator T is dissipative.

Proof:

In fact, we have to prove that

〈T U ,U〉 ≤ 0, ∀ U ∈ D(T ). (29)

Let us consider U , an arbitrary element in the domain of the operator T . Taking into account the
definition of the scalar product (26) and the expressions of the operators defined in (27), we obtain

〈T U ,U〉 = −
∫
∂B

(tjiUi +mijΨi + λjΦ + Sjµ+ Λijνi)njdA

+

∫
B

[
Aijmnεijε

∗
mn +Bijmn

(
εijµ

∗
mn + ε∗ijµmn

)
+ aij

(
εijφ

∗ + ε∗ijφ
)

+Dijmn

(
εijτ

∗
m,n + ε∗ijτm,n

)
+ Cijmnµijµ

∗
mn + bij

(
µijφ

∗ + µ∗ijφ
)

(30)
+Eijmn

(
µijτ

∗
m,n + µ∗ijτm,n

)
+Aijφ,iφ

∗
,j +Hij

(
φ,iχ

∗
,j + φ∗,iχ,j

)
+ζφφ∗ + Fij

(
τi,jφ

∗ + τ∗i,jφ
)

+Kijχ,iχ
∗
,j +Gijmnτm,nτ

∗
i,j

]
dV.

The integrand in the last integral from (30) is a quadratic form which corresponds to the elements
ω = (ui, ϕi, φ, χ, τi) and ω∗ = (Ui,Ψi,Φ, µ, νi), that is, this integral is of the form∫

B
W (ω,ω∗)dV =

∫
B
W ((ui, ϕi, φ, χ, τi) , (Ui,Ψi,Φ, µ, νi)) dV.

Keep in mind this observation and apply the divergence theorem in the first integral in (30) so that
we get

〈T U ,U〉 = −
∫
B

(tjiUi,j +mjiΨi + λjΦ,j + Sjµ,j + Λijνi,j) dV

+

∫
B
W ((ui, ϕi, φ, χ, τi) , (Ui,Ψi,Φ, µ, νi)) dV = 0,

which concludes the proof of the theorem.

The property of the operator T which will be proved in the following theorem is essential to char-
acterize the solution of the problem (28).

Theorem 3.4.

Suppose that the conditions of the Theorem 3 are satisfied. Then, the operator T satisfies the range
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condition.

Proof:

Let U∗ be an element in the Hilbert space H, defined above, that is, it has the form U∗ =

(u∗i , U
∗
i , ϕ

∗
i ,Ψ

∗
i , φ

∗,Φ∗, χ∗, µ∗, τ∗i , ν
∗
i ). The affirmation of the statement of the theorem is equivalent

to showing that equation T U = U∗ has a solution U ∈ D(T ). In view of operators (27), we will use
the vector notations

A1 = (A1
i ), A2 = (A2

i ), A3 = (A3
i ), A4 = (A4

s), A5 = (A5
s), A6 = (A6

s),

B1 = (B1
i ), B2 = (B2

s ), C1 = (C1
i ), C2 = (C2

s ), D1 = (D1
i ), D2 = (D2

s), (31)
W = (Ws), X = (Xs), Y = (Ys), Z = (Zs).

Taking into account the operators from (27) and the notations (31), the system of equations (10)
can be rewritten in the form

U = u∗,

A1u + A2ϕ+ B1φ+ C1µ+ D1τ = U∗,

Ψ = ϕ∗,

A3u + A4ϕ+ B2φ+ C2µ+ D2τ = Ψ∗,

Φ = φ∗, (32)
Hu + Eφ+Gχ+ Lµ+Mτ + Fν = Φ∗,

µ = χ∗,

RU + Pφ+ SΦ +Nχ+Qν = µ∗,

ν = τ ∗,

A5u + A6ϕ+ Wφ+ ZΦ + Xµ+ Yτ = ν∗.

In the next step, from the system (32) we get a new system of equations in which the main un-
knowns are (u,ϕ, φ, χ, τ ) and the other variables pass on the right-hand side, in the role of "free
terms". The resulting system is

A1u + A2ϕ+ B1φ+ D1τ = U∗ −C1χ∗,

A3u + A4ϕ+ B2φ+ D2τ = Ψ∗ −C2χ∗,

Hu + Eφ+Gχ+Mτ = Φ∗ − Lχ∗ − Fτ ∗, (33)
Pφ+Nχ = µ∗ −Ru∗ − Sφ∗ −Qτ ∗,

A5u + A6ϕ+ Wφ+ Yτ = ν∗ − Zφ∗ −Xχ∗.

Now we introduce the notations

ũ = A1u + A2ϕ+ B1φ+ D1τ ,

ϕ̃ = A3u + A4ϕ+ B2φ+ D2τ ,

φ̃ = Hu + Eφ+Gχ+Mτ , (34)
χ̃ = Pφ+Nχ,

τ̃ = A5u + A6ϕ+ Wφ+ Yτ ,
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such that the scalar product
〈(

ũ, ϕ̃, φ̃, χ̃, τ̃
)
, (u,ϕ, φ, χ, τ )

〉
is a bounded bilinear form on W 1,2

0 .

Moreover, by direct calculations we obtain

〈(u,ϕ, φ, χ, τ ) , (u,ϕ, φ, χ, τ )〉

=

∫
B

[Aijmnεijεmn + 2Bijmnεijµmn + 2aijεijφ+ 2Dijmnεijτm,n

+Cijmnµijµmn + 2bijµijφ+ 2Eijmnµijτm,n +Aijφ,iφ,j (35)

+2Hijφ,iχ,j + ζφ2 + 2Fijτi,jφ+Kijχ,iχ,j +Gijmnτm,nτi,j

]
dV,

such that, based on the assumptions of the theorem, we infer that this bilinear form is coercive
on the space W 1,2

0 . Clearly, the functions from the right-hand side of the system (33), namely,
U∗−C1χ∗, Ψ∗−C2χ∗, Φ∗−Lχ∗−Fτ ∗, µ∗−Ru∗−Sφ∗−Qτ ∗, and ν∗−Zφ∗−Xχ∗, are functions
which belong to the space W 1,2. So, we met the conditions to apply the Lax-Milgram theorem,
which ensures the existence of the functions U = (u,ϕ, φ, χ, τ ) as a solution of the system (33),
and this, in turn, ensure the existence of the solution for the system (32). Thus, the proof of the
theorem is complete.

Based on Theorem 3 and Theorem 4 we deduce that the operator T satisfies the requirements of
the Lumer-Phillips corollary of the known Hille-Yosida theorem (see Pazy (1983)). That is, we
have the following result.

Theorem 3.5.

We assume that the following assumptions are met;

1. %, Iij , J and the constitutive coefficient a are strictly positive;

2. the symmetry relations (7) take place;

3. the quadratic form U defined in (15) is positive definite; and

4. the constitutive coefficients Bij are components of a positive definite tensor.

Then, the operator T generates a semigroup of contracting operators on the Hilbert space H. Also,
with the help of the same corollary, we deduce the following result of uniqueness.

Theorem 3.6.

Suppose that the conditions of Theorem 5 are satisfied. Moreover, we assume that Fi, Gi, L, s,Qi

∈ C1([0,∞), L2)∩C0([0,∞),W 1,2
0 ) and the initial data U0 belongs to the domain of the operator T .

Then the abstract problem (28) admits the only one solution U(t) ∈ C1([0,∞),H). A final result to
characterize the solution of the abstract problem (28) is a result regarding the continuous depen-
dence of the solutions with respect to the initial data and loads.
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Theorem 3.7.

Suppose that the conditions of Theorem 5 are satisfied. Then the solution U = (u,ϕ, φ, χ, τ ) of
problem (28) depends continuously with regard to the initial data U0 and the loads Fi, Gi, L, s,Qi,
that is,

|U(t)| ≤ |U0|+
∫ t

0
‖(Fi, Gi, L, s,Qi)‖ ds.

4. Conclusion

To get a more faithful behavior of modern materials both the consideration of the intimate structure
of those materials and the fact that the microtemperatures are important for microparticles were
proposed. Consequently, the number of unknown functions and the number of differential equa-
tions, of the boundary conditions and of the initial data have been increased. Due to the suppleness
of the theory of semigroups of operators, these complications do not affect the qualitative results
of the mixed initial boundary value problem considered in the context of micropolar thermoelastic
bodies with microtemperatures.
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