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Abstract               

The present analysis deals with the dispersion characteristics of blood described as Herschel- 

Bulkley fluid in capillary with permeable walls for fluid and impermeable for the nanoparticles. 

The contribution of molecular and convective diffusion is recalled from the Taylor and Aris 

coefficient of diffusion. The effective longitudinal diffusion depends on three parameters namely 

rheological parameter, pressure parameter, and the permeability parameter. We investigate the 

influence of the longitudinal transport of nanoparticles with permeable blood vessels on the 

effective dispersion. It shows that the effective diffusion of nanoparticles reduces with increase 

in radius of the plug region (i.e., the volume of red blood cells) and the permeability of the blood 

vessels.  
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1.  Introduction 

In nanotechnology, drug delivery has many advantages in several fields: chemical, 

environmental, and biomedical engineering. The study of nanoparticle development is important 

because of their double role. They are small enough to be transported with the blood flow but 

they may be attached to cells and be transported by cells. If they are combined with drugs, these 

particles may change the transcription processes in cells. Nanoparticles are highly specific, 

efficient and rapidly internalized by the target cells. Generally, blood is a suspension of cells 
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such as erythrocytes (red blood cells), monocytes, platelets, proteins etc. About 45% of the blood 

volume in an average man is occupied by erythrocytes. This fraction is called hematocrit. In 

small vessels, blood shows a two-phase nature: (i) a peripheral layer of plasma shows Newtonian 

nature, (ii) a core region of vessel shows non- Newtonian nature. The velocity profile in core 

region of capillaries can be different from parabolic because of the presence of erythrocytes. For 

successful delivery, the particles have to pass through the vascular capillary wall. Smaller 

particles generally circulate longer and are taken up by cells of the lymphatic system and bone 

marrow while particles greater than 50 nm are taken up by liver cells. 

 

Nanofluids are the fluids of nanometer sized particles of metals, oxides, carbides, nitrides or 

nanotubes. Nowadays, nonofluids, among researchers, are considered an active area of research. 

In fact, nanofluids are a suspension of nanosized solid particles in a base fluid. The nanofluids 

have high thermal conductivity as compared to the base fluid. The longitudinal transport of 

passive species in a fluid flow is of fundamental importance in different fields as chemical 

engineering for the transport of reagents, environmental sciences for the transport of pollutants 

and in bio-nanomechanices for the delivery of nanoparticles carrying therapeutic and imaging 

agents.  

 

Taylor and Aris (1953 and 1956) proposed an idea of an effective diffusion coefficient 𝐷𝑒𝑓𝑓 and 

derived it as  

𝐷𝑒𝑓𝑓 = 𝐷𝑚 +
𝑅𝑒

2𝑈2

48𝐷𝑚
 ,  

 

where 𝑅𝑒 is the radius of vessel, and 𝑈 is the mean flow velocity. The 𝐷𝑒𝑓𝑓 accounts for both the 

diffusive and convective contribution with 𝑃𝑒 =
𝑅𝑒𝑈

𝐷𝑚
 as the peclet number. The analysis of Taylor 

and Aris approach is valid in the limit of large times or long channels and for unidirectional flow. 

Gill (1967) revisited the Taylor’s theory to obtain the local concentration c and derived an 

expression for 𝐷𝑒𝑓𝑓 . Sharp (1993) derived expressions of 𝐷𝑒𝑓𝑓  for casson fluid model. Decuzzi 

(2006) obtained a novel and more general expressions of  𝐷𝑒𝑓𝑓  for a Newtonian fluid in a 

permeable capillary, as  

 

                                                      𝐷𝑒𝑓𝑓 = 𝐷𝑚 [1 +
𝑃𝑒0

2

192
𝑓(Ω, Π, z′)] , 

 

where 𝑃𝑒0
 in the peclet number at the entrance of the capillary (𝑧′ = 0) and 𝑓 is the function of 

the permeability parameter Π  and the pressure parameter Ω  and of the longitudinal non- 

dimensional coordinate 𝑧′  along the capillary. Gentile et al. (2008) analyzed the longitudinal 

transport of nanoparticles in blood vessels by considering blood as a casson fluid. Further, they 

analyzed the effect of permeability and the rheology of blood. Shaw et al. (2013) studied drug 

targeting in a micro vessel with a glycocalyx layer where blood obeys a two phase fluid model. 

Shaw et al. (2014) studied the dispersion characteristics of blood during nanoparticle assisted 

drug delivery process through a permeable micro vessel. They investigated the influence of the 

nanoparticle volume fraction, the permeability of the blood vessels, pressure distribution, yield 

stress and the radius of the nanoparticle on the effective dispersion. 
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The object of the present work is to study the longitudinal transport of nanoparticles injected into 

the blood stream in terms of the effective diffusivity. Here we consider the Herschel- Bulkley 

fluid model. However, Gentile (2008 and 2010) investigated the longitudinal transport of 

nanoparticles in blood flow by taking Casson like fluid model. The Herschel – Bulkley equation 

contains one more parameter than the Casson equation so it would be expected that more 

detailed information about blood properties can be obtained by designing Herschel- Bulkley fluid 

model. But none of the authors has derived the effective diffusion coefficient by placing 

nanoparticle in to the blood as a Herschel Bulkley fluid. Therefore, in the present study, we 

develop a model on transportation of particles into the blood stream characterized as Herschel 

Bulkey fluid with an emphasis on the permeability of the capillary and rheology of the blood. 

 

2.  Formulation of the Problem 
 

A circular capillary with radius 𝑅𝑒 and length 𝑙 is considered as in Figure 1. A Hershel-Bulkley 

fluid is considered with capillary walls permeable to the fluid and impermeable to the solute (i.e., 

nanoparticles). 

 

In the following model, the velocity profile and the mean velocity for a Hershel- Bulkley fluid 

are expressed in terms of the longitudinal pressure gradient 𝑑𝑝 𝑑𝑧⁄ . Effective diffusion 

coefficient 𝐷𝑒𝑓𝑓 depend upon the permeability of the capillary and the rheology of blood i.e., 

𝐷𝑒𝑓𝑓   is a function of rheological parameter 𝜉𝑐 =
𝑟𝑐

𝑅𝑒
 , the ratio between the plug radius and 

capillary radius, and of the permeability and pressure parameters Π and Ω, respectively. 

 

2.1.  Mean Fluid Velocity for a Herschel-Bulkley fluid 

 

We have considered cylindrical polar coordinate system (𝑟, 𝜃, 𝑧), where 𝑟 and 𝜃 are coordinates 

along the radial and circumferential directions, respectively; the 𝑧-axis is along the axis of the 

blood vessels, 𝑝0 and 𝑝1 are the inlet and outlet vascular pressures, and 𝜋𝑖 is the interstitial fluid 

pressure. 

 

Here we assumed that, the permeability of the capillary is sufficiently small so that the fluid 

lateral flux does not modify substantially the velocity profile within the channel, which is 

parabolic in nature; that is to say, that the lateral fluid flow across the permeable walls affects 

only the flow rate.  

 

For Herschel-Bulkley fluid the governing equations are 

 

                                                          𝜏 = 𝜇𝑒𝑛 + 𝜏0 ,    𝜏 ≥  𝜏0 ,                                                   (1) 

   𝑒  =  0,              𝜏 <  𝜏0 , 

 

where  

𝑒 = −
𝑑𝑢

𝑑𝑟
  ,  𝜏 =

1

2
𝑃𝑟, 

 

and 𝑛 is the fluid flow index. 
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Non-dimensional variables are defined as 

 

         z′ =
𝑧

𝑙
 , 𝑝′ =

𝑝

𝜋𝑖
 , 𝑢′ =

𝑢

𝑢0
 ,     𝜇′ =

𝜇

𝜇0
,     𝑟′ =

𝑟

𝑅𝑒
 ,    𝑐′ =

𝑐

𝑐0
 ,   𝐷𝑚

′ =
𝐷𝑚

𝑢0𝑅𝑒
2 𝑙⁄

 .  

 

In a Herschel-Bulkley fluid, the normalized velocity profile is described by 

  

                              𝑢′(𝑟 ′) = 𝜑 (
𝑃′

2𝜇′
)

1

𝑛 𝑛

𝑛+1
[
(1 − 𝜉𝑐)

1

𝑛
+1  ,                                   𝑟 ′ ≤ 𝜉𝑐 ,

(1 − 𝜉𝑐)
1

𝑛
+1 – (𝑟 ′ − 𝜉𝑐)

1

𝑛
+1,         𝑟 ′ > 𝜉𝑐 ,

                 (2) 

 

where  

𝜑 =
𝑅𝑒

𝑢𝑜
(

𝜋𝑖

𝑙

𝑅𝑒

𝜇0
)

1 𝑛⁄

and  𝑃′ =
𝑑𝑝′

𝑑𝑧 ′
 . 

 

The volume flow rate is derived by the following formula 

 

                                                            𝑄′ = 2𝜋 ∫ 𝑢′(𝑟 ′)𝑟′𝑑𝑟 ′1

0
 ,                                                     (3) 

                                                           𝑄′ = 𝜑 (
𝑃′

2𝜇′
)

1

𝑛 𝑛

𝑛+1
𝐴(𝜉𝑐) ,                                                     (4) 

 

where   

 

                            𝐴(𝜉𝑐) = (1 − 𝜉𝑐)
1

𝑛
+1 [1 −

2𝑛

2𝑛+1
(1 − 𝜉𝑐) +

2𝑛

2𝑛+1

𝑛

3𝑛+1
(1 − 𝜉𝑐)2].                   (5) 

 

The mean fluid velocity is given by 

 

                                                         𝑈′ =
𝑄′

𝜋
= 𝜑 (

𝑃′

2𝜇′
)

1

𝑛 𝑛

𝑛+1
𝐴(𝜉𝑐) .                                             (6) 

 

2.2.  The Pressure Gradient in Permeable Capillary 

 

Decuzzi et al. (2006) defined the differential equation relating the parameters, such as hydraulic 

conductivity 𝐿𝑝 , the interstitial fluid pressure 𝜋𝑖, the inlet and outlet vascular pressures 𝑝0 and  

𝑝1 . It can be written as  

 

                                                 −
𝜋𝑅𝑒

4

8𝜇

𝜕2𝑝

𝜕𝑧2 − 𝐿𝑝(𝜋𝑖 − 𝑝)𝜆𝑝 = 0 ,                                                  (7) 

 

and the non- dimensional form can be given by the equation 

 

                                                            
𝜕2𝑝′

𝜕𝑧′2 − Π2𝑝′ = −Π2 ,                                                         (8) 

where 

                                                                 Π =
4𝑙

𝑅𝑒
√

𝜇 𝐿𝑝

𝑅𝑒
 ,                                                               (9) 
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the vascular dimensionless pressure 𝑝′ is derived as 

 

                            𝑝′ = (𝑝0
′ − 1)Ω cosh Π 𝑧′ +

(𝑝1
′−1)(1−Ωcosh Π)

sinh Π
sinh Π 𝑧′ + 1 ,                     (10) 

 

having pressure parameter 

                                                                 Ω =
𝑝0

′−1

𝑝1
′−1

  ,                                                                 (11) 

 

and lateral profile of permeable wall is represented by 𝐿𝑝 which is equal to 2𝜋𝑅𝑒  . When 𝑧′ = 0, 

Equation (10) becomes as 𝑝′ = (𝑝0
′ − 1)Ω + 1 = 𝑝0

′ , the pressure at the inlet being always 𝑝0
′ ;  

that is to say, that the inlet pressure does not depend on the parameters Π, Ω, and 𝜉𝑐. 

The normalized mean velocity for the Herschel-Bulkley fluid flow in a permeable capillary can 

be derived as  

 

                        𝑈′ = 𝜑 (−
1

2𝜇′
)

1

𝑛 𝑛

𝑛+1
𝐴(𝜉𝑐)[Π(𝑝1

′ − 1)]
1

𝑛⁄ [
cosh Π𝑧′−Ωcosh (Π   −𝑧′Π  )  

sinh Π
]

1
𝑛⁄

;         (12) 

 

and the normalized mean velocity at the capillary inlet  

 

                                 𝑈0
′ = 𝜑 (−

1

2𝜇′
)

1

𝑛 𝑛

𝑛+1
𝐴(𝜉𝑐)[Π(𝑝1

′ − 1)]
1

𝑛⁄ [
1−ΩcoshΠ    

sinh Π
]

1
𝑛⁄

 ;                  (13) 

 

with the relation 

                                                  𝑈′ = [
cosh Π𝑧′−Ωcosh ( Π  −𝑧′ Π )  

1−Ω cosh Π
]

1
𝑛⁄

𝑈0
′ .                                    (14) 

 

 

2.3.  Effective Longitudinal Diffusion  

 

The transport of solutes within a concentrated suspension of particles can be augmented due to 

the effects of shear induced dispersive particle migrations (Gentile et al. 2008, Shaw 2010). The 

basic idea behind Taylor's approach is that it is not possible to superpose advection and diffusion 

for a liquid flowing in a pipe under the action of pressure gradient. 

 

The strength of Taylor's approach is to show that a superposition may be done by allowing the 

particles to move at the average velocity of the fluid and using an effective diffusion coefficient 

for the particle larger than the usual coefficient derived from the Einstein's formula.  

 

Suppose a capillary tube of radius 𝑅𝑒  in which liquid flows at a mean velocity 𝑈 , carrying 

particles with a concentration 𝑐.  The advection-diffusion equation written under a axisymmetric 
(𝑟, 𝑧) form, where z- axis is along the tube's axis of symmetry, is given by  
 

                                                   
𝜕𝑐

𝜕𝑡
+ 𝑢(𝑟)

𝜕𝑐

𝜕𝑧
=

𝐷𝑚 

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) + 𝐷𝑚 

𝜕2𝑐

𝜕𝑧2 ,                                   (15) 
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where 𝑢(𝑟) is the axial velocity of the fluid and 𝑐(𝑟, 𝑧, 𝑡) is the nanoparticle concentration. The 

term 
𝜕2𝑐

𝜕𝑧2 in Equation (15) may be omitted if it is assumed that the axial change in concentration 

is much less than the radial change. Furthermore, we use the transformation  𝑧̃ = 𝑧 − 𝑈𝑡, with 

the auxillary frame of reference (𝑟, 𝑧) moving with the mean velocity 𝑈 along 𝑧. Equation (15) 

can be written as (Decuzzi et al. 2006, Sharp 1993, Shaw et al. 2014). 

 

                                                             𝑢̂(𝑟)
𝜕𝑐

𝜕𝑧
=

𝐷𝑚 

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) ,                                                  (16) 

 

and the non-dimensional form of  above equation is given as  

 

                                                          
𝑢0

𝑙

𝑅𝑒
2 𝑢′

𝐷𝑚 

𝜕𝑐′

𝜕𝑧′ =
1

𝑟′

𝜕

𝜕𝑟′ (𝑟′ 𝜕𝑐′

𝜕𝑟′) ,                                             (17) 

 

where 𝑢̂(𝑟) = 𝑢(𝑟) − 𝑈 is the relative velocity about the mean velocity 𝑈. The right hand side 

term defines the molecular diffusion along the radial direction while the left hand side defines 

longitudinal diffusion owing to the non-uniform radial velocity profile. The nanoparticles are 

dragged along the capillary by the fluid.  

 

The normalized boundary conditions for the solution of the concentration equation are given by  

 

                                                                𝑐′ = 0  at  𝑟′ = 0 ,                                                       (18) 

                                                                
𝜕𝑐′

𝜕𝑟′ = 0 at  𝑟′ = 0 .                                                      (19) 

 

Equation (18) shows that the homogeneous boundary condition can be conveniently imposed 

since 𝐷𝑒𝑓𝑓 is not affected by the value of  𝑐′ at 𝑟′ = 0 (Decuzzi et al. 2006, Gentile et al. 2008, 

Sharp 1993, Shaw 2014). Equation (19) follows from the axial symmetry of the problem. It 

results in 

 

                                     𝑐1
′(𝑟′) = 𝜙

𝑟′2

4
[(1 − 𝜉𝑐)

1

𝑛
+2 −

𝑛

3𝑛+1
(1 − 𝜉𝑐)

1

𝑛
+3],   for 𝑟′ < 𝜉𝑐 ,        (20) 

 

where 

                                                       𝜙 =
𝑢0𝑅𝑒

2

𝑙𝐷𝑚
𝜑 (

𝑃′

2𝜇
)

1
𝑛⁄

𝑛

𝑛+1

2𝑛

2𝑛+1

𝜕𝐶′

𝜕𝑧′ .                                        (21) 

 

Similarly, in the cell-free layer, considering the condition of impermeability of the solute at the 

walls  

 

                                                            
𝜕𝑐′

𝜕𝑟′
= 0 at   𝑟′ = 1 ;                                                         (22) 

 

and the condition of continuity of concentration at the interface  𝑟′ = 𝜉𝑐 is given by  

 

                                                        𝑐′ = 𝑐1
′ = 𝑐2

′ at  𝑟′ = 𝜉𝑐 ;                                                  (23) 

 



638  Rekha Bali et al.   

 

results in 

 

      𝑐2
′(𝑟′) =

𝜙

2
[{(1 − 𝜉𝑐)

1

𝑛
+2 −

𝑛

3𝑛+1
(1 − 𝜉𝑐)

1

𝑛
+3}

𝑟′2

2
−

𝑛

3𝑛+1
(𝑟′ − 𝜉𝑐)

1

𝑛
+3 + (

𝑛

3𝑛+1
)

2

𝑟′
1

𝑛
+3

   

                       −
𝑛

2𝑛+1
𝜉𝑐 𝑟′

1

𝑛
+2

+
2𝑛+1

𝑛+1
𝜉𝑐

2  
𝑟′

1
𝑛+1

2
+ {

𝑛

2𝑛+1
−

2𝑛+1

2(𝑛+1)
− (

𝑛

3𝑛+1
)

2
} 𝜉𝑐

1

𝑛
+3

] .                        (24) 

 

Flux of the solute across a section at fixed 𝑧̃′ is given by 

 

                  𝐽′ =
1

𝜋
[∫ (𝑢̂𝑐

′𝑐1
′ − 𝐷𝑚

′ 𝜕𝑐′

𝜕𝑧′) 2𝜋𝑟′𝑑𝑟′ + ∫ (𝑢̂′𝑐2
′ − 𝐷𝑚

′ 𝜕𝑐′

𝜕𝑧′) 2𝜋𝑟′𝑑𝑟′1

𝜉𝑐

𝜉𝑐

0
] .            (25) 

 

From that the ratio of normalized diffusion coefficient and normalized molecular diffusion 

coefficient is derived by using 

 

                                                               𝐷′
𝑒𝑓𝑓 = − 𝐽′ 𝜕𝑐′

𝜕𝑧′⁄  ,  

 

as 

                                                     
𝐷′

𝑒𝑓𝑓

𝐷𝑚
′ = 1 + 𝑃𝑒

2 𝑅𝑒
2

𝑙2 (
2𝑛

2𝑛+1
)

2
(𝐷 + 𝐸)𝑍 ,                                 (26)  

 

where 

                                                  𝐷(𝜉
𝑐
) =

1

8
𝜉

𝑐
4 [(1 − 𝜉

𝑐
)

1

𝑛
+2

−
𝑛

3𝑛+1
(1 − 𝜉

𝑐
)

1

𝑛
+3

]
2

,                            (27) 

 

         𝐸(𝜉
𝑐
) =

1

8
(1 − 𝜉

𝑐
)

2
𝑛

+4
+

1

8
𝜉

𝑐
4(1 − 𝜉

𝑐
)

2
𝑛

+4
−

𝑛

4(3𝑛 + 1)
𝜉

𝑐
4(1 − 𝜉

𝑐
)

2
𝑛

+5
 

                  − [
1

8
(

𝑛

3𝑛+1
)

2
−

𝑛

3𝑛+1

𝑛

4𝑛+1
− 

3

4
(

𝑛

3𝑛+1
)

2 2𝑛+1

3𝑛+1
−

1

4
(

𝑛

3𝑛+1
)

2 2𝑛+1

5𝑛+2
] (1 − 𝜉

𝑐
)

2

𝑛
+6

      

                  − [
𝑛

3𝑛+1

𝑛

4𝑛+1

𝑛

5𝑛+1
+ (

𝑛

3𝑛+1
)

2 𝑛

4𝑛+1
+

3

2
(

𝑛

3𝑛+1
)

2 2𝑛+1

4𝑛+1

𝑛

5𝑛+1
+

3

2
(

𝑛

3𝑛+1
)

3 2𝑛+1

4𝑛+1
] (1 − 𝜉

𝑐
)

2

𝑛
+7

        

                  − (
𝑛

3𝑛+1
)

2 𝑛

5𝑛+1
(1 − 𝜉

𝑐
)

1

𝑛
+2

+ [(
𝑛

3𝑛+1
)

2 𝑛

5𝑛+1
+

1

2
{

𝑛

2𝑛+1
−

2𝑛+1

2(𝑛+1)
−

𝑛

(3𝑛+1)2}] (1 − 𝜉
𝑐
)

1

𝑛
+2

𝜉
𝑐

1

𝑛
+5  

                  +
2𝑛+1

2(𝑛+1)

𝑛

3𝑛+1
(1 − 𝜉

𝑐
)

1

𝑛
+2

𝜉
𝑐

1

𝑛
+5

+
𝑛

3𝑛+1

𝑛

4𝑛+1
𝜉

𝑐
(1 − 𝜉

𝑐
)

1

𝑛
+2

−
𝑛

3𝑛+1

𝑛

4𝑛+1
(1 − 𝜉

𝑐
)

1

𝑛
+2

𝜉
𝑐

1

𝑛
+5

   

                  −  2𝑛+1

2(𝑛+1)

𝑛

3𝑛+1
𝜉𝑐

2(1 − 𝜉𝑐)
1
𝑛

+2 +
1

8
(

𝑛

3𝑛+1
)

2
𝜉𝑐

4(1 − 𝜉𝑐)
2
𝑛

+6   

                   + [(
𝑛

3𝑛+1
)

2 𝑛

4𝑛+1

𝑛

5𝑛+1
+

3

2
(

𝑛

3𝑛+1
)

3 2𝑛+1

4𝑛+1

𝑛

5𝑛+1
]    (1 − 𝜉

𝑐
)

2

𝑛
+8

  

                    + (
𝑛

3𝑛+1
)

3 𝑛

5𝑛+1
(1 − 𝜉

𝑐
)

1

𝑛
+3

− [(
𝑛

3𝑛+1
)

3 𝑛

5𝑛+1
−

𝑛

2𝑛+1

𝑛

3𝑛+1

𝑛

4𝑛+1
] (1 −  𝜉

𝑐
)

1

𝑛
+3

𝜉
𝑐

1

𝑛
+5

  

                      − 
𝑛

2𝑛+1

𝑛

3𝑛+1

𝑛

4𝑛+1
𝜉

𝑐
(1 − 𝜉

𝑐
)

1

𝑛
+3

+ (
𝑛

3𝑛+1
)

2 2𝑛+1

2(𝑛+1)
𝜉

𝑐
2(1 − 𝜉

𝑐
)

1

𝑛
+3
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                  − [(
𝑛

3𝑛+1
)

2 2𝑛+1

2(𝑛+1)
+

1

2
{

𝑛

2𝑛+1
−

2𝑛+1

2(𝑛+1)
− (

𝑛

3𝑛+1
)

2
}

𝑛

3𝑛+1
] (1 − 𝜉

𝑐
)

1

𝑛
+3

𝜉
𝑐

1

𝑛
+5          

                   − [
3

4
(

𝑛

2𝑛+1
) +

2𝑛+1

2(3𝑛+1)

𝑛

5𝑛+2
] (1 − 𝜉𝑐)

1
𝑛

+5 +
2𝑛+1

4(3𝑛+1)
(

𝑛

3𝑛+1
)

2
    

                  − [
𝑛+1

5𝑛+2

2𝑛+1

2𝑛
(

𝑛

3𝑛+1
)

2

+
𝑛

2(5𝑛+2)
] 𝜉

𝑐
+ [

𝑛+1

8

1

(3𝑛+1)2
+

𝑛+1

4(2𝑛+1)
+

1

8

2𝑛+1

𝑛+1
] 𝜉

𝑐
2      

                 − [
𝑛+1

4𝑛

1

3𝑛+2
+

(2𝑛+1)2

4𝑛(3𝑛+2)
] 𝜉𝑐

3 +
1

16(𝑛+1)
(

2𝑛+1

𝑛
)

2

𝜉𝑐
4   

                          − [
𝑛+1

4(2𝑛+1)
− 𝑛

2(5𝑛+2)
− 𝑛+1

4𝑛
1

3𝑛+2
− {

𝑛+1
3𝑛+2

− 𝑛
2(2𝑛+1)

− 1
4𝑛

}
(2𝑛+1)

2

4𝑛(𝑛+1)
  

                        − {
𝑛+1

5𝑛+2
−

𝑛

2(3𝑛+1)
−

𝑛+1

4𝑛

1

2𝑛+1
}

2𝑛+1

2𝑛
(

𝑛

3𝑛+1
)

2
] 𝜉𝑐

1

𝑛
+6

                                                          (28) 

                         𝑍(𝜉
𝑐
) = [1 + (

2

𝑛
+ 2) 𝜉

𝑐
] [1 +

4𝑛

2𝑛+1
(1 − 𝜉

𝑐
) −

4𝑛

2𝑛+1

𝑛

3𝑛+1
(1 − 𝜉

𝑐
)

2
] .                           (29) 

 

Substituting Equation (14), it can be represented as 

 

                        
𝐷′

𝑒𝑓𝑓

𝐷𝑚
′ = 1 + 𝑃𝑒0

2  
𝑅𝑒

2

𝑙2 (
2𝑛

2𝑛+1
)

2

[
cosh Πz′−Ωcosh ( Π  −z′Π )  

1−Ω cosh Π
]

2
𝑛⁄

(𝐷 + 𝐸)𝑍 ,              (30)                                     

 

where 𝑃𝑒 =
𝑅𝑒𝑈

𝐷𝑚
 , the peclet number and 𝑃𝑒0

 is the peclet number at the inlet of the capillary. 

 

3.  Results and Discussions 
 

The effect of the governing parameters such as peclet number, pressure distribution, permeability 

of the capillary and the rheology parameter on the relative effective longitudinal diffusion 

𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  are shown in Figures 2 - 6. The physical parameters considered for the present study 

are given in the Table 1. The expression derived for the effective longitudinal diffusion consist of 

two terms; the first is the molecular diffusion term 𝐷𝑚
′  and the second depends on the 

permeability and pressure parameters Π  and Ω, respectively with the non-dimensional 

coordinates z′ along the capillary with the rheological parameter 𝜉𝑐. 

 

Different sizes of the nanoparticles are used in drug delivery for different organs. The particles 

greater than 200 nm are efficiently filtered by liver, spleen and bone marrow, while particles 

smaller than 10 nm can be quickly cleared by the kidneys or through extravasations. Generally, 

defined as molecules with lengths that range from 1 to 100 nm in at least two dimensions, 

nanoparticles and nano-sized molecules show remarkable structural diversity and include nano-

tubes, dots, wires, fibers and capsules. Nanotechnology has exciting implications for medicine 

and presents challenges regarding particle biocompatibility. When the nanoparticles are injected 

into the blood flow, they spread across the vessel under the combined effects of diffusion and 

fluid flow (Lutters et al. 2004, Singh and Nawla, 2011). In general, as 𝜉𝑐  increases, the core 

region of the capillary with a flat velocity grows and reduces the thickness of the lateral cell-free 

layer. This leads to the enhancement of the volume fraction of RBC in the blood which increases 

the nanoparticle concentration in vessels thereby leading to higher relative diffusion rate.  
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The influence of 𝜉𝑐 on the effective longitudinal transport is shown in Figure 2 where the ratio 

𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  is plotted for different values of peclet number for impermeable capillary (Π = 0). 

The ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄ decreases sharply as 𝜉𝑐 increases up to 0.4. As 𝜉𝑐 further increases, there is 

no change. At fixed 𝜉𝑐, 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  increases with increasing peclet number 𝑃𝑒. For 𝜉𝑐 tending to 

unity, the effective diffusion 𝐷′
𝑒𝑓𝑓 becomes equal to 𝐷𝑚

′
 (molecular diffusion). 

 

With an increase in the volume fraction of the nanoparticle, the interparticle distance decreases 

which disturbs the rotational motion of red blood cells. This reduces the nanoparticle motion 

towards the capillary wall and reduces the relative effective diffusion ratio of the nanoparticles 

which is shown in Figures 3 - 6. Figure 3 depicts the ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  as a function of the 

rheological parameter 𝜉𝑐 in permeable capillary (Π = 2, Ω = −2, 𝑃𝑒0
≃ 16). In this graph, the 

ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  decreases up to the point 0.6; after that point, this ratio increases. The portion of 

the capillary where 𝐷′
𝑒𝑓𝑓 = 𝐷𝑚

′ becomes wider as 𝜉𝑐 increases. Similar results were obtained by 

Gentile (2008) using Casson fluid model.  

 

Figure 4 shows that the ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄   decreases as permeability parameter Π  increases 

( Π = 4). It is also clear from the figure that the portion of the capillary where 𝐷′
𝑒𝑓𝑓 = 𝐷𝑚

′
 

becomes wider than in Figure 3. This distance decreases between any two consecutive curves for 

different values of rheological parameter 𝜉𝑐. 

 

In figure 5, the effect of the pressure parameter Ω is detected with permeability parameter Π = 2 

for different values of rheological parameter 𝜉𝑐. The ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄   changes until the particle 

diffusion reaches a minimum value at z′ = 0.6. When 𝑧′reaches above 0.6, it gives the portion 

of the vessel where 𝐷′
𝑒𝑓𝑓 = 𝐷𝑚

′ up to the point 0.8. After that point the ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  further 

increases. Figure 6 shows that at a fixed 𝜉𝑐 , the ratio 𝐷′
𝑒𝑓𝑓 𝐷𝑚

′⁄  decreases more in comparison 

to corresponding curve in Figure 5. This is due to the decrease in pressure parameter Π. Thus, as 

Π  is reduced the curves which show the portion of the capillary with 𝐷′
𝑒𝑓𝑓 = 𝐷𝑚

′  move 

upwards. The velocity profile for the Herschel- Bulkley fluid is shown in Figure 7. It is parabolic 

in nature and shows that the flat velocity profile increases as the radius of the plug region 

increases. It means that if there is no RBC, the flow shows Poiseullie character in nature. 

 

4.  Conclusions 

 
The effective longitudinal diffusion of nanoparticles injected intravascularly has been estimated 

for the permeability of the vessel and the rheology of the blood. The effect of the permeability 

parameter Π, the pressure drop across the vessel wall Ω, the rheological parameter 𝜉𝑐 has been 

analyzed. It has been shown that the effective diffusion coefficient reduces as 𝜉𝑐 and Π increase. 

From the above findings, we can conclude that, the main strategy is that to increase the number 

of the nanoparticles targeting or reduce the nanoparticle dispersion to the vessels. Finally, it is 

important to note that the dispersion of the nanoparticles depends on the nature of the organs. 

Such findings can be of particular consequence towards understanding the role of nanoparticles 

delivery on the small vessels for designing and developing of nanomedicine based on drug 

delivery systems.    
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Table 1. Standard values of the parameters 

Vessel                 Re (mm)           L(mm)                     𝑃𝑒 =
𝑅𝑒𝑈

𝐷𝑚
                        U(mm/s)                    

Aorta                    25                      50                           1.6 × 1010                    400                                 

Artery                    4                     1.5-2                        6.67 × 108                    100                    

Arteriole            0.02-0.1              1.5-2                       1.67 − 8.33 × 105           5                                   

Capillary           0.005-0.01            0.5                          833- 41667                   0.1-1                               

Venules             0.02-0.05               1                           1.66 − 4.16 × 104         0.5                                 

Vein                     2-5                    1-14                        1.6 − 4.1 × 108              50                                 

Vena Cava            30                    40-50                         5 × 109                        100                                

      𝑃𝑒 is calculated for 𝐷𝑚 = 6 × 10−13 𝑚2/𝑠  &   flow index of the Herschel - Bulkley fluid      

     (𝑛) = 0.95. 


