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Abstract  
 
Reliability analysis as one of the important research topics in engineering has been 

researched by a number of authors. Reliability in classical distributions is based on precise 

parameters. It is usually assumed that parameters of distributions are precise real numbers. 

However, in the real world, the data sometimes cannot be measured and recorded precisely. 

In this paper, the concept of fuzzy reliability is extended by the idea of generalized 

intuitionistic fuzzy reliability. We investigate the reliability characteristics of systems using 

Rayleigh lifetime distribution, in which the lifetime parameter is assumed to be generalized 

intuitionistic fuzzy number. Generalized intuitionistic fuzzy reliability, generalized 

intuitionistic fuzzy hazard function, generalized intuitionistic fuzzy mean time to failure and 

their cut sets are discussed when the systems follow generalized intuitionistic fuzzy Rayleigh 

lifetime distribution. In this approach, for every special cut set, reliability curve and hazard 

curve are like a band with upper and lower bound. A numerical example is given to illustrate 

the proposed approach. Further, reliability analysis of the series and parallel systems are 

done. 
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1.   Introduction 

 
One of the major fields in engineering is reliability analysis. The problem of the reliability 

analysis in statistical distributions used to engineering is one of the significant problems 

constantly facing those who are interested in lifetime data analysis. The Rayleigh distribution 

is known to have wide applications in survival analysis and reliability theory. Reliability 

analysis for the Rayleigh distribution and its generalization has been discussed by several 

authors such as Dey (2009), Fernandez (2010), Azimi et al. (2012), Tarvirdizade and 

Kazemzadeh Garehchobogh (2014), Rastogi and Merovci (2017),  Potdar and Shirke (2017) 

and Dey et al. (2017). However, the data sometimes cannot be measured and recorded 

precisely. Therefore, the researchers used fuzzy sets (FSs) to overcome this problem in the 

reliability analysis. Baloui Jamkhaneh (2011) considered the problem of the evaluation of 

system reliability, in which the lifetime of components is described using a fuzzy exponential 

distribution. Baloui Jamkhaneh (2014) investigated system reliability using fuzzy Weibull 

lifetime distribution. Pak et al. (2014) presented a Bayesian approach to estimate the 

parameter and reliability function of Rayleigh distribution from fuzzy lifetime data. 

Venkatesh et al. (2017) estimated the reliability and failure rate values of the fuzzy 

generalized Rayleigh distribution to compute the effects of oxytocin in cesarean segment 

underneath spinal anesthesia.  

 

Intuitionistic fuzzy sets (IFSs) theory defined by Atanassov (1986) as a generalization of FSs 

is a useful tool in modeling real life problems such as transportation problems (Ebrahimnejad 

and Verdegay 2016, 2017), wherein hesitation between belongingness and non-belongingness 

cannot be ruled out. For this reason, IFSs were considered in order to analyze the systems 

reliability by many researchers. Burillo et al. (1994) proposed the definition of intuitionistic 

fuzzy number (IFN). Mahapatra and Roy (2009) presented triangular intuitionistic fuzzy 

number (TIFN) and used it for reliability evaluation. Mahapatra and Mahapatra (2010) 

presented intuitionistic fuzzy fault tree using arithmetic operation of trapezoidal intuitionistic 

fuzzy number (TrIFN) which are evaluated based on (α, β)-cuts method. They discussed 

fault-tree of failure of fire protection system with components having failure rates as TrIFNs. 

Pandey et al. (2011) describes a novel approach, based on IFS theory for reliability analysis 

of series and parallel network. Kumar et al. (2011) developed a new approach for analyzing 

the fuzzy system reliability of series and parallel systems using IFS theory. Kumar and Yadav 

(2012) presented a method for system reliability analysis based on arithmetic operations of 

different types of IFNs.  

 

Sharma et al. (2012) presented the reliability of a system using IFS. Shaw and Roy (2012) 

presented some arithmetic operations on TIFN and its application on reliability evaluation. 

Garg et al. (2013) predicted the behavior of an industrial system under imprecise and vague 

environment. To handle the uncertainty in the data, they used IFS theory rather than FS 

theory. Also, Garg and Rani (2013) presented a technique for computing the membership 

functions of the IFS in reliability analyzed by utilizing imprecise, uncertain and vague data. 

Mahapatra and Roy (2013) proposed a definition of IFN according to the fuzzy number 

presentation approach. Also, they discussed the fault-tree of failure to start an automobile 

with components having failure rates as TrIFNs. Tyagi (2014) investigated the reliability 

analysis of a power loom plant by using interval valued intuitionistic fuzzy sets. He modeled 

a power loom plant as a gracefully degradable system having two units A(n) and B(m) 

connected in series. Kumar and Singh (2017) investigated the applications of generalized 

TrIFN in fuzzy reliability theory. 

https://www.sciencedirect.com/science/article/pii/S1018364717300769#!
https://www.sciencedirect.com/science/article/pii/S1018364717300769#!
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Classic lifetime distributions have crisp parameters. However, in real world, some collected 

lifetime data might be imprecise and are represented in the form of IFNs. Thus, there exists 

some uncertainty in the value of lifetime parameter obtained from estimation. So it is 

necessary to generalize classic lifetime distributions to intuitionistic fuzzy lifetime 

distribution. Bohra and Singh (2015) used intuitionistic fuzzy Rayleigh distribution in 

evaluating the systems reliability. Kumar and Singh (2015) presented fuzzy system reliability 

using intuitionistic fuzzy Weibull lifetime distribution, while Baloui Jamkhaneh and 

Nadarajah (2015) considered new generalized intuitionistic fuzzy sets ( GIFSB𝑠) and Baloui 

Jamkhnaeh (2017a), Baloui Jamkhaneh and Nadi Ghara (2017) and Baloui Jamkhaneh, and 

Nadarajah (2018) defined some operators over the GIFSBs. In 2017 Baloui Jamkhaneh and 

Garg considered some new operations over the generalized intuitionistic fuzzy sets and their 

application to decision making process.   

 

Shabani and Baloui Jamkhaneh (2014) introduced a new generalized intuitionistic fuzzy 

number (GIFNB ) based on generalization of the IFS. Then Baloui Jamkhaneh (2017b) 

presented system reliability using generalized intuitionistic fuzzy exponential lifetime 

distribution. He defined generalized intuitionistic fuzzy reliability, generalized intuitionistic 

fuzzy hazard function, generalized intuitionistic fuzzy mean time to failure and their (α1, α2)-
cut when systems follow generalized intuitionistic fuzzy lifetime parameter. Using the 

intuitionistic fuzzy set in reliability analysis is more powerful than the fuzzy sets at handling 

vagueness and uncertain information in practice. The main objective of this paper is to 

evaluate systems reliability using generalized intuitionistic fuzzy Rayleigh distribution, in 

which the lifetime parameter is taken as a GIFNB for handling the randomness, vagueness and 

incompleteness in information. Intuitionistic fuzzy system reliability is based on the concept 

of intuitionistic fuzzy set and intuitionistic fuzzy probability theory in our method. 

 

This paper is organized as follows: Section 2 presents basic concepts of GIFNBs. Section 3 

presents generalized intuitionistic fuzzy Rayleigh distribution. Section 4 gives generalized 

intuitionistic fuzzy reliability characteristics. In Section 5, generalized intuitionistic fuzzy 

reliability of series and parallel systems are calculated. The paper is concluded in Section 6. 

 

2.   Preliminaries 

 
In this section, we review some basic concepts of GIFNBs. 

 
2.1. Generalized Intuitionistic Fuzzy Number 
 
Definition 2.1.1. (Baloui Jamkhaneh, Nadarajah (2015))  

 

Let 𝑋  be a non-empty set. A generalized intuitionistic fuzzy sets (𝐺𝐼𝐹𝑆𝐵(𝑋)) 𝐴 in  𝑋 , is 

defined as an object of the form 𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)〉 ∶ 𝑥 ∈ 𝑋}  where the functions 

𝜇𝐴 : 𝑋 → [0,1]  and  𝜈𝐴: 𝑋 → [0,1] , denote the degree of membership and degree of non-

membership functions of 𝑥 in A, respectively, and 0 ≤ µ𝐴(𝑥)
𝛿 +  𝑣𝐴(𝑥)

𝛿 ≤ 1 for each 𝑥 ∈

𝑋and 𝛿 = 𝑛 or 
1

𝑛
, 𝑛 = 1,2, … ,𝑁. 
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Definition 2.1.2. (Shabani, Baloui Jamkhaneh (2014)) 
 

In special case, generalized L-R type intuitionistic fuzzy number A can be described as any 

 𝐺𝐼𝐹𝑆𝐵(𝑋)  of the real line ℝ  whose membership function µA(x)  and non-membership 

function νA(x) are defined as follows: 

 

𝜇𝐴(𝑥) =

{
 
 

 
 (

𝑥−𝑎

𝑏−𝑎
)
1

𝛿      ,        𝑎 ≤ 𝑥 ≤ 𝑏

1                ,       𝑏 ≤ 𝑥 ≤ 𝑐  

(
𝑑−𝑥

𝑑−𝑐
)
1

𝛿      ,        𝑐 ≤ 𝑥 ≤ 𝑑

0             ,                 𝑜. 𝑤.

  ,      𝜈𝐴(𝑥) =

{
 
 

 
 (

𝑏−𝑥

𝑏−𝑎1
)
1

𝛿     ,        𝑎1 ≤ 𝑥 ≤ 𝑏

0              ,       𝑏 ≤ 𝑥 ≤ 𝑐  

(
𝑥−𝑐

𝑑1−𝑐
)
1

𝛿     ,        𝑐 ≤ 𝑥 ≤ 𝑑1

1             ,                  𝑜. 𝑤.

, 

 

where  𝑎1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 ≤ 𝑑1 and  0 ≤ µ𝐴(𝑥)
𝛿 +  𝑣𝐴(𝑥)

𝛿 ≤ 1 , ∀𝑥 ∈ 𝑋 . The𝐺𝐼𝐹𝑁𝐵 A is 

denoted as 𝐴 = (𝑎1, 𝑎, 𝑏, 𝑐, 𝑑, 𝑑1, 𝛿). 
 

Definition 2.1.3. 

 

A 𝐺𝐼𝐹𝑁𝐵 is said to be symmetric 𝐺𝐼𝐹𝑁𝐵 if 𝑏 − 𝑎 = 𝑑 − 𝑐  and 𝑏 − 𝑎1 = 𝑑1 − 𝑐. 

 

2.2. Cut sets on GIFNB 

 
In this subsection, we explore the concept of cut set on GIFNB (Baloui Jamkhaneh 2016). 

Let 𝛼1, 𝛼2 ∈ [0,1] be fixed numbers such that  0 ≤ 𝛼1
𝛿 + 𝛼2

𝛿 ≤ 1 . A set of (𝛼1, 𝛼2)-cut 

generated by a 𝐺𝐼𝐹𝑁𝐵 A is defined by 

 

𝐴[𝛼1, 𝛼2, 𝛿] = {〈𝑥, 𝜇𝐴(𝑥) ≥ 𝛼1, 𝜈𝐴(𝑥) ≤ 𝛼2〉 ∶ 𝑥 ∈ 𝑋}. 
 

The 𝛼1- cut set of a 𝐺𝐼𝐹𝑁𝐵 A is a crisp subset of  ℝ, which defined is as 

 

𝐴[𝛼1, 𝛿] = {〈𝑥, 𝜇𝐴(𝑥) ≥ 𝛼1, 〉 ∶ 𝑥 ∈ 𝑋}         ,   0 ≤ 𝛼1 ≤ 1. 
 

According to the definition of 𝐺𝐼𝐹𝑁𝐵 , it can be easily shown that 

 

𝐴[𝛼1, 𝛿] = [𝐿1(𝛼1), 𝑈1(𝛼1)]         ,   0 ≤ 𝛼1 ≤ 1, 
𝐿1(𝛼1) = 𝑎 + (𝑏 − 𝑎)𝛼1

𝛿      , 𝑈1(𝛼) = 𝑑 − (𝑑 − 𝑐)𝛼1
𝛿 . 

 

Similarity a 𝛼2 - cut set of a 𝐺𝐼𝐹𝑁𝐵 A is a crisp subset of ℝ, which defined is as 

  

𝐴[𝛼2, 𝛿] = {〈𝑥, 𝜈𝐴(𝑥) ≤ 𝛼2〉 ∶ 𝑥 ∈ 𝑋}      ,     0 ≤ 𝛼2 ≤ 1. 
 

According to the definition of 𝐺𝐼𝐹𝑁𝐵, it can be easily shown that 

 

𝐴[𝛼2, 𝛿] = [𝐿2(𝛼2), 𝑈2(𝛼2)]    ,     0 ≤ 𝛼2 ≤ 1, 

L2(α2) = b(1 − α2
δ) + a1α2

δ     , U2(β) = c(1 − α2
δ) + d1α2

δ. 
 

Therefore, the (𝛼1, 𝛼2)-cut set of a 𝐺𝐼𝐹𝑁𝐵 is given by  

 

𝐴[𝛼1, 𝛼2, 𝛿] = {𝑥, 𝑥 ∈ [𝐿1(𝛼1), 𝑈1(𝛼1)] ∩ [𝐿2(𝛼2), 𝑈2(𝛼2)]}. 
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3. Generalized Intuitionistic Fuzzy Distribution 

 
Let the lifetime random variable of a component (X) is modeled by 𝑓(𝑥, �̃�), where �̃� is a 

𝐺𝐼𝐹𝑁𝐵. In this case, the generalized intuitionitic fuzzy probability of obtaining a value in B is 

�̃�(𝐵) which computes its cut sets as follows. 

 

𝑃(𝐵)[𝛼𝑖] = {  ( )

B

i, ,f x dx     = [𝑃𝐿[𝛼𝑖], 𝑃
𝑈[𝛼𝑖]],    𝑖 = 1,2, 

 

for all  0 ≤ 𝛼1 ≤ 1, 0 ≤ 𝛼2 ≤ 1, 0 ≤ 𝛼1
𝛿 + 𝛼2

𝛿 ≤ 1, where  

 

𝑃𝐿[𝛼𝑖] = 𝑚𝑖𝑛{  ( )

B

i, ,f x dx     , 𝑖 = 1,2. 

𝑃𝑈[𝛼𝑖] = 𝑚𝑎𝑥{  ( )

B

i, ,f x dx      , 𝑖 = 1,2. 

 

Based on this definition, �̃�(𝐵) is a 𝐺𝐼𝐹𝑁𝐵, where [𝑃𝐿[𝛼1], 𝑃
𝑈[𝛼1]] and [𝑃𝐿[𝛼2], 𝑃

𝑈[𝛼2]] are 
𝛼1 - cut set of membership function, and 𝛼2 - cut set of non-membership function, 

respectively. Also (𝛼1, 𝛼2)- cut set is as follows 

 

𝑃(𝐵)[𝛼1, 𝛼2] = [𝑃
𝐿[𝛼1], 𝑃

𝑈[𝛼1]]⋂[𝑃
𝐿[𝛼2], 𝑃

𝑈[𝛼2]]. 
 

Let lifetime random variable of a component (X) be modeled by a Rayleigh distribution. Then 

  

𝑓(𝑥, �̃�) =
2𝑥

�̃�
𝑒
−
𝑥2

�̃� ,    𝑥 > 0,  

 

where λ̃ is a 𝐺𝐼𝐹𝑁𝐵. In this case we have 

 

�̃�(𝑛 ≤ 𝑋 ≤ 𝑚)[𝛼𝑖] = {∫
2𝑥

𝜆
𝑒−

𝑥2

𝜆 𝑑𝑥 |𝜆 ∈𝜆[𝛼𝑖, 𝛿]}
𝑚

𝑛

= [𝑃𝐿[𝛼𝑖], 𝑃
𝑈[𝛼𝑖]],    𝑖 = 1,2, 

 

for all  0 ≤ 𝛼1 ≤ 1, 0 ≤ 𝛼2 ≤ 1, 0 ≤ 𝛼1
𝛿 + 𝛼2

𝛿 ≤ 1, where  

 

𝑃𝐿[𝛼𝑖] = min{∫
2x

λ
e−

x2

λ dx |λ ∈λ[𝛼𝑖, 𝛿]} = min {e−
n2

λ − e−
m2

λ |λ ∈λ[𝛼𝑖, 𝛿]},   𝑖 = 1,2
m

n

, 

𝑃𝑈[𝛼𝑖] = max{∫
2x

λ
e−

x2

λ dx |λ ∈λ[𝛼𝑖 , 𝛿]}
m

n
= max {e−

n2

λ − e−
m2

λ |λ ∈λ[𝛼𝑖, 𝛿]} , 𝑖 = 1,2. 

 

4.   Reliability Characteristics 

 
In this section, we present generalized intuitionistic fuzzy reliability characteristics. 
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4.1. Generalized Intuitionistic Fuzzy Reliability Band 

 
Generalized intuitionistic fuzzy reliability (GIFR) is based on 𝐺𝐼𝐹𝑁𝐵 defined by Shabani and 

Baloui Jamkhaneh (2014). GIFR is the generalized intuitionistic fuzzy probability unit which 

survives beyond time t. Let the lifetime random variable X have a Rayleigh distribution with 

generalized intuitionistic fuzzy lifetime parameter �̃� = (𝑎1, 𝑎, 𝑏, 𝑐, 𝑑, 𝑑1, 𝛿) . In this case, 

GIFR of component is  �̃�(𝑡) and compute its cut sets as follows: 

 

𝑆(𝑡)[𝛼𝑖] = 𝑃(𝑋 > 𝑡)[𝛼𝑖] = {∫
2𝑥

𝜆
𝑒−

𝑥2

𝜆 𝑑𝑥 |𝜆 ∈𝜆[𝛼𝑖 , 𝛿]}
∞

𝑡
= {e−

t2

λ |λ ∈λ[𝛼𝑖, 𝛿]},    𝑖 = 1,2. 

 

Since 𝑒−
𝑡2

𝜆  is a monotonically increasing function with respect to λ , then  𝛼1 -cut set of 

membership function and 𝛼2-cut set of non-membership function are as follow: 

 

𝑆(𝑡)[𝛼1] = [𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼1]] = [𝑒

−
𝑡2

(𝑎+(𝑏−𝑎)𝛼1
𝛿), 𝑒

−
𝑡2

(𝑑−(𝑑−𝑐)𝛼1
𝛿)], 

𝑆(𝑡)[𝛼2] = [𝑆𝐿[𝛼2], 𝑆
𝑈[𝛼2]] = [𝑒

−
𝑡2

(𝑏(1−𝛼2
𝛿)+𝑎1𝛼2

𝛿), 𝑒
−

𝑡2

(𝑐(1−𝛼2
𝛿)+𝑑1𝛼2

𝛿)], 

 

where 𝑆(𝑡)[𝛼𝑖], 𝑖 = 1,2 are two dimensional functions in terms of 𝛼𝑖 and t (  0 ≤ α1 ≤ 1, 0 ≤

α2 ≤ 1, 0 ≤ α1
𝛿 + α2

𝛿 ≤ 1 and 0t ). For 
0t , S̃(t0) is a 𝐺𝐼𝐹𝑁𝐵  and membership function 

and non-membership functions of  �̃�(𝑡0) are as follows: 

 

𝜇𝑆(𝑡0)(𝑥) =

{
 
 
 

 
 
 
(
−
𝑡0
2

𝑙𝑛𝑥
−𝑎

𝑏−𝑎
)

1

𝛿

,    𝑒−
𝑡0
2

𝑎 ≤ 𝑥 ≤ 𝑒−
𝑡0
2

𝑏

  1              ,    𝑒−
𝑡0
2

𝑏 ≤ 𝑥 ≤ 𝑒−
𝑡0
2

𝑐

(
𝑡0
2

𝑙𝑛𝑥
+𝑑

𝑑−𝑐
)
1

𝛿   ,   𝑒−
𝑡0
2

𝑐 ≤ 𝑥 ≤ 𝑒−
𝑡0
2

𝑑

    0            ,               𝑜. 𝑤.              

, 

𝜈𝑆(𝑡0)(𝑥) =

{
 
 
 

 
 
 
(
𝑡0
2

𝑙𝑛𝑥
+𝑏

𝑏−𝑎1
)

1

𝛿

     ,     𝑒
−
𝑡0
2

𝑎1 ≤ 𝑥 ≤ 𝑒−
𝑡0
2

𝑏

  0                ,      𝑒−
𝑡0
2

𝑏 ≤ 𝑥 ≤ 𝑒−
𝑡0
2

𝑐

(
−
𝑡0
2

𝑙𝑛𝑥
−𝑐

𝑑1−𝑐
)
1

𝛿  ,     𝑒−
𝑡0
2

𝑐 ≤ 𝑥 ≤ 𝑒
−
𝑡0
2

𝑑1

  1               ,                  𝑜. 𝑤.              

. 

 

A (𝛼1, 𝛼2)- cut set of �̃�(𝑡) is as follows 

 

𝑆(𝑡)[𝛼1, 𝛼2] = 𝑆(𝑡)[𝛼1] ∩ 𝑆(𝑡)[𝛼2]. 
 

In this method, for every special 𝛼10 and 𝛼20 reliability curve is like a band with upper and 

lower bounds. In this case, it is called GIFR band. This reliability band has the following 
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properties: 

 

(i) 𝑆(0)[𝛼10, 𝛼20] = [1,1], i.e. no one starts off dead, 

(ii) 𝑆(∞)[𝛼10, 𝛼20] = [0,0],  i.e. everyone dies eventually, 

(iii)  𝑆(𝑡1)[𝛼10, 𝛼20] ≥ 𝑆(𝑡2)[𝛼10, 𝛼20] ⟺ 𝑡1 ≤ 𝑡2 ,  i.e. band of 𝑆(𝑡)[𝛼10, 𝛼20] declines 

monotonically. 

 

Corollary4.1.1. 

 

Let  𝜂 =
𝛼2
𝛿

1−𝛼1
𝛿 , 𝑘1 =

𝑏−𝑎

𝑏−𝑎1
 and 𝑘2 =

𝑑−𝑐

𝑑1−𝑐
 , then we have 

 

if 𝑘1 < 𝑘2 

𝑆(𝑡0)[𝛼1, 𝛼2] =

{
 
 

 
 [𝑆

𝐿[𝛼2], 𝑆
𝑈[𝛼2]]   ,                    𝜂 < 𝑘1

[𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼2]]   ,          𝑘1 ≤ 𝜂 ≤ 𝑘2

[𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼1]]    ,                    𝑘2 < 𝜂.

 ,  

 

if 𝑘1 > 𝑘2 

𝑆(𝑡0)[𝛼1, 𝛼2] =

{
 
 

 
 [𝑆

𝐿[𝛼2], 𝑆
𝑈[𝛼2]]   ,                    𝜂 < 𝑘2

[𝑆𝐿[𝛼2], 𝑆
𝑈[𝛼1]]   ,          𝑘2 ≤ 𝜂 ≤ 𝑘1

[𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼1]]    ,                    𝑘1 < 𝜂.

 ,  

 

if 𝑘1 = 𝑘2 = 𝑘 (i.e. �̃� is symmetric 𝐺𝐼𝐹𝑁𝐵) 

 

𝑆(𝑡0)[𝛼1, 𝛼2] = {
[𝑆𝐿[𝛼2], 𝑆

𝑈[𝛼2]]  ,             𝜂 < 𝑘

[𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼1]]   ,            𝜂 ≥ 𝑘.

 ,  

 

if 𝜂 = 1(i.e. 𝛼2
𝛿 = 1 − 𝛼1

𝛿), then 𝑆(𝑡0)[𝛼1, 𝛼2] = [𝑆
𝐿[𝛼1], 𝑆

𝑈[𝛼1]]. 

 

4.2. Generalized Intuitionistic Fuzzy Hazard Band 

 
Let the lifetime random variable X have a Rayleigh distribution with generalized intuitionistic 

fuzzy lifetime parameter �̃� = (𝑎1, 𝑎, 𝑏, 𝑐, 𝑑, 𝑑1, 𝛿) . In this case, generalized intuitionistic 

fuzzy hazard function (GIFHF) of component (ℎ̃(𝑡)) is as follows: 

 

ℎ(𝑡)[𝛼𝑖] = {
𝑓(𝑡)

𝑠(𝑡)
|𝜆 ∈𝜆[𝛼𝑖, 𝛿]} = {

2𝑡

𝜆
|𝜆 ∈𝜆[𝛼𝑖 , 𝛿]} , 𝑖 = 1,2,  

ℎ(𝑡)[𝛼𝑖] = [ℎ(𝑡)𝐿[𝛼𝑖], ℎ(𝑡)
𝑈[𝛼𝑖]], 𝑖 = 1,2, 

 

for all  0 ≤ 𝛼1 ≤ 1, 0 ≤ 𝛼2 ≤ 1, 0 ≤ 𝛼1
𝛿 + 𝛼2

𝛿 ≤ 1, where  

 

h(t)L[αi] = min{
2t

λ
|λ ∈λ[αi, δ]}   ,   h(t)

U[αi] = max{
2t

λ
|λ ∈λ[αi, δ]}, 𝑖 = 1,2. 
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Therefore, 

 

ℎ(𝑡)[𝛼1] = [
2𝑡

𝑑−(𝑑−𝑐)𝛼1𝛿
,

2𝑡

𝑎+(𝑏−𝑎)𝛼1𝛿
]  ,  ℎ(𝑡)[𝛼2] = [

2𝑡

𝑐(1−𝛼2𝛿)+𝑑1𝛼2𝛿
,

2𝑡

𝑏(1−𝛼2𝛿)+𝑎1𝛼2𝛿
]. 

 

The (𝛼1, 𝛼2)- cut set of ℎ̃(𝑡) is as follows 

 

ℎ(𝑡)[𝛼1, 𝛼2] = ℎ(𝑡)[𝛼1] ∩ ℎ(𝑡)[𝛼2]. 
 

Thus, for a generalized intuitionistic fuzzy Rayleigh distribution, the GIFH function is 

increasing with respect to time. For 
0t , ℎ̃(𝑡0) is a generalized intuitionistic fuzzy number and 

membership function and non-membership function of  h̃(t0) are as follows: 

 

𝜇ℎ(𝑡0)(𝑥) =

{
 
 
 

 
 
 
(
𝑑−

2𝑡0
𝑥

𝑑−𝑐
)

1

𝛿

   ,    
2𝑡0

𝑑
≤ 𝑥 ≤

2𝑡0

𝑐

  1              ,    
2𝑡0

𝑐
≤ 𝑥 ≤

2𝑡0

𝑏

(
2𝑡0
𝑥
−𝑎

𝑏−𝑎
)
1

𝛿    ,   
2𝑡0

𝑏
≤ 𝑥 ≤

2𝑡0

𝑎

    0             ,       𝑜. 𝑤.              

,𝜈ℎ(𝑡0)(𝑥) =

{
 
 
 

 
 
 (

2𝑡0
𝑥
−𝑐

𝑑1−𝑐
)
1

𝛿      ,     
2𝑡0

𝑑1
≤ 𝑥 ≤

2𝑡0

𝑐

  0               ,    
2𝑡0

𝑐
≤ 𝑥 ≤

2𝑡0

𝑏

(
𝑏−

2𝑡0
𝑥

𝑏−𝑎1
)

1

𝛿

   ,   
2𝑡0

𝑏
≤ 𝑥 ≤

2𝑡0

𝑎1

    1             ,       𝑜. 𝑤.              

. 

 

In this method, for every special 𝛼10 and 𝛼20 hazard function (ℎ̃(𝑡)) is like a band with upper 

and lower bounds. In this case, it is called GIFH band. The bandwidth depends on the value 

of  𝛿 parameter and the uncertainty value of the lifetime parameter. When the value of  𝛿 

increases, the bandwidth of 𝑆(𝑡)[𝛼10] and ℎ(𝑡)[𝛼10] becomes wider, and the bandwidth of 

𝑆(𝑡)[𝛼20] and ℎ(𝑡)[𝛼20] narrows down. Moreover, more uncertainty value results in a more 

bandwidth. 

 

Corollary 4.2.1.  

 

For every 𝛿 , 𝑆(𝑡)[1,0] = [𝑒−
𝑡2

𝑏 , 𝑒−
𝑡2

𝑐 ] , ℎ(𝑡)[1,0] = [
2𝑡

𝑐
,
2𝑡

𝑏
] , 𝑆(𝑡)[0,1] = [𝑒−

𝑡2

𝑎 , 𝑒−
𝑡2

𝑑 ] , 

ℎ(𝑡)[1,0] = [
2𝑡

𝑑
,
2𝑡

𝑎
]. 

 

Corollary4.2.2.  

 

Let  𝜂 =
𝛼2
𝛿

1−𝛼1
𝛿 , 𝑘1 =

𝑏−𝑎

𝑏−𝑎1
and 𝑘2 =

𝑑−𝑐

𝑑1−𝑐
 , then we have 

if 𝑘1 < 𝑘2 

 

ℎ(𝑡0)[𝛼1, 𝛼2] =

{
 
 

 
 [ℎ

𝐿[𝛼2], ℎ
𝑈[𝛼2]]   ,                    𝜂 < 𝑘1

[ℎ𝐿[𝛼2], ℎ
𝑈[𝛼1]]   ,          𝑘1 ≤ 𝜂 ≤ 𝑘2

[ℎ𝐿[𝛼1], ℎ
𝑈[𝛼1]]    ,                    𝑘2 < 𝜂.

 , 

 

if 𝑘1 > 𝑘2 
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ℎ(𝑡0)[𝛼1, 𝛼2] =

{
 
 

 
 [ℎ

𝐿[𝛼2], ℎ
𝑈[𝛼2]]   ,                    𝜂 < 𝑘2

[ℎ𝐿[𝛼1], ℎ
𝑈[𝛼2]]   ,          𝑘2 ≤ 𝜂 ≤ 𝑘1

[ℎ𝐿[𝛼1], ℎ
𝑈[𝛼1]]    ,                    𝑘1 < 𝜂.

 , 

 

 

if 𝑘1 = 𝑘2 = 𝑘 

ℎ(𝑡0)[𝛼1, 𝛼2] = {
[ℎ𝐿[𝛼2], ℎ

𝑈[𝛼2]]  ,             𝜂 < 𝑘

[ℎ𝐿[𝛼1], ℎ
𝑈[𝛼1]]   ,            𝜂 ≥ 𝑘.

 , 

 

if 𝜂 = 1(i.e. 𝛼2
𝛿 = 1 − 𝛼1

𝛿), then ℎ(𝑡0)[𝛼1, 𝛼2] = [ℎ𝐿[𝛼1], ℎ
𝑈[𝛼1]]. 

 

4.3. Generalized Intuitionistic Fuzzy Mean Time to Failure 

 
Generalized intuitionistic fuzzy mean time to failure (GIFMTTF) is the expected the mean 

time to failure (MTTF). According definition, MTTF of any component with generalized 

intuitionistic fuzzy Rayleigh distribution is a 𝐺𝐼𝐹𝑁𝐵 defined as follows: 

 

𝐺𝐼𝐹𝑀𝑇𝑇𝐹[𝛼𝑖] = {∫ 𝑠(𝑥)𝑑𝑥 |𝜆 ∈𝜆[𝛼𝑖, 𝛿]}
∞

0

= {∫ 𝑒−
𝑥2

𝜆 𝑑𝑥 |𝜆 ∈𝜆[𝛼𝑖, 𝛿]} =
∞

0

{
√𝜋𝜆

2
|𝜆 ∈𝜆[𝛼𝑖 , 𝛿]},    𝑖 = 1,2, 

𝐺𝐼𝐹𝑀𝑇𝑇𝐹[𝛼1] =

[
 
 
 √𝜋(𝑎 + (𝑏 − 𝑎)𝛼1

𝛿)

2
,
√𝜋(𝑑 − (𝑑 − 𝑐)𝛼1

𝛿)

2

]
 
 
 

, 

GIFMTTF[𝛼2] =

[
 
 
 √π(𝑏(1 − 𝛼2

𝛿) + 𝑎1𝛼2
𝛿)

2
,
√π(𝑐(1 − 𝛼2

𝛿) + 𝑑1𝛼2
𝛿)

2

]
 
 
 

, 

 

where membership function and non-membership function of 𝐺𝐼𝐹𝑀𝑇𝑇𝐹 are defined as 

follows: 

 

𝜇𝐺(𝑥) =

{
 
 
 
 

 
 
 
 
(

4𝑥2

𝜋
− 𝑎

𝑏 − 𝑎
)
1

𝛿      ,    
1

2
√𝜋𝑎 ≤ 𝑥 ≤

1

2
√𝜋𝑏

1                      ,    
1

2
√𝜋𝑏 ≤ 𝑥 ≤

1

2
√𝜋𝑐

(
𝑑 −

4𝑥2

𝜋

𝑑 − 𝑐
)

1

𝛿

   ,     
1

2
√𝜋𝑐 ≤ 𝑥 ≤

1

2
√𝜋𝑑

  0                 ,              𝑜. 𝑤.                 

 , 
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𝜈𝐺(𝑥) =

{
 
 
 

 
 
 (

−
4𝑥2

𝜋
+𝑏

𝑏−𝑎1
)
1

𝛿     ,     
1

2√𝜋𝑎1 ≤ 𝑥 ≤
1

2
√𝜋𝑏

0                 ,      
1

2
√𝜋𝑏 ≤ 𝑥 ≤

1

2
√𝜋𝑐

(
4𝑥2

𝜋
−𝑐

𝑑1−𝑐
)

1

𝛿

    ,      
1

2
√𝜋𝑐 ≤ 𝑥 ≤

1

2
√𝜋𝑑1

 1              ,                            𝑜. 𝑤.      

. 

 

 

4.4. Numerical Example 

 

Let the lifetime of electronic product be modeled by a Rayleigh distribution with generalized 

intuitionistic fuzzy parameter �̃� = (0.2,0.25,0.3,0.35,0.4,0.45,0.5) . Then 𝛼𝑖 -cut of 

generalized intuitionistic fuzzy probability of  0 ≤ 𝑋 ≤ 2 is as follows: 

 

𝑃(0 ≤ 𝑋 ≤ 2)[𝛼𝑖] = {1 − 𝑒−
4

𝜆|𝜆 ∈𝜆[𝛼𝑖, 0.5]},    𝑖 = 1,2.  

𝑃(0 ≤ 𝑋 ≤ 2)[𝛼1] = [1 − 𝑒
−

4

0.4−0.05𝛼1
0.5 , 1 − 𝑒

−
4

0.25+0.05𝛼1
0.5]. 

𝑃(0 ≤ 𝑋 ≤ 2)[𝛼2] = [1 − 𝑒
−

4

0.35+0.1𝛼2
0.5
, 1 − 𝑒

−
4

0.3−0.1𝛼2
0.5]. 

 

The membership function and non-membership function of �̃�(0 ≤ 𝑋 ≤ 2)  are given as 

follows: 

 

𝜇𝑃(𝑥) =

{
 
 

 
 (8 + 80(𝑙𝑛(1 − 𝑥))

−1)2     ,    1 − 𝑒−10 ≤ 𝑥 ≤ 1 − 𝑒−
4

0.35

1                                              ,   1 − 𝑒−
4

0.35 ≤ 𝑥 ≤ 1 − 𝑒−
4

0.3

(−5 − 80(𝑙𝑛(1 − 𝑥))−1)2  ,     1 − 𝑒−
4

0.3 ≤ 𝑥 ≤ 1 − 𝑒−16

0                                             ,                            𝑜. 𝑤.              

 , 

𝜈𝑝(𝑥) =

{
 
 

 
 (−3.5 − 40(𝑙𝑛(1 − 𝑥))

−1)2   ,   1 − 𝑒−
4

0.45 ≤ 𝑥 ≤ 1 − 𝑒−
4

0.35

0                                                  ,    1 − 𝑒−
4

0.35 ≤ 𝑥 ≤ 1 − 𝑒−
4

0.3

(3 + 40(𝑙𝑛(1 − 𝑥))−1)2       ,      1 − 𝑒−
4

0.3 ≤ 𝑥 ≤ 1 − 𝑒−
4

0.2

1                                                 ,                            𝑜. 𝑤.                 

. 

 

Table 1.  Values of  �̃�(0 ≤ 𝑋 ≤ 2) for different (𝛼1, 𝛼2) –cuts 

𝛼1 𝛼2 �̃�(0 ≤ 𝑋 ≤ 2) 
1 0 [1 − 𝑒−11.4256, 1 − 𝑒−13.3333] 

0.5 0.5 [1 − 𝑒−10.9696, 1 − 𝑒−14.0176] 
0 1 [1 − 𝑒−10, 1 − 𝑒−16] 

 

Table 1 shows (𝛼1, 𝛼2)-cuts of generalized intuitionistic fuzzy probability of  0 ≤ 𝑋 ≤ 2. 

According to this table we see that, with increasing 𝛼2and decreasing 𝛼1, ambiguity increases 

in probability. The 𝛼𝑖-cut and (𝛼1, 𝛼2) -cut of GIFR of component is given by 
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𝑆(𝑡)[𝛼1] = [𝑒
−

𝑡2

0.25+0.05𝛼1
0.5 , 𝑒

−
𝑡2

0.4−0.05𝛼1
0.5
] , 𝑆(𝑡)[𝛼2] = [𝑒

−
𝑡2

0.3−0.1𝛼2
0.5
, 𝑒
−

𝑡2

0.35+0.1𝛼2
0.5
]. 

 

𝑆(𝑡)[𝛼1, 𝛼2] = [𝑒
−

𝑡2

0.25+0.05𝛼1
0.5 , 𝑒

−
𝑡2

0.4−0.05𝛼1
0.5
]∩ [𝑒

−
𝑡2

0.3−0.1𝛼2
0.5
, 𝑒
−

𝑡2

0.35+0.1𝛼2
0.5
]. 

 

If 𝑡 = 2 then 𝛼𝑖-cut set of GIFR are  

 

𝑆(2)[𝛼1] = [𝑆𝐿[𝛼1], 𝑆
𝑈[𝛼1]] = [𝑒

−
4

0.25+0.05𝛼1
0.5 , 𝑒

−
4

0.4−0.05𝛼1
0.5
]. 

 

𝑆(2)[𝛼2] = [𝑆𝐿[𝛼2], 𝑆
𝑈[𝛼2]] = [𝑒

−
4

0.3−0.1𝛼2
0.5
, 𝑒
−

4

0.35+0.1𝛼2
0.5
]. 

 

The membership function and non-membership function of  �̃�(2) are as follows: 

 

𝜇𝑆(2)(𝑥) =

{
  
 

  
 (

−
4

𝑙𝑛𝑥
−0.25

0.05
)

2

, 𝑒−
4

0.25 ≤ 𝑥 ≤ 𝑒−
4

0.3

  1                    ,    𝑒−
4

0.3 ≤ 𝑥 ≤ 𝑒−
4

0.35

(
4

𝑙𝑛𝑥
+0.4

0.05
)2     ,   𝑒−

4

0.35 ≤ 𝑥 ≤ 𝑒−
4

0.4

 0                   ,              𝑜. 𝑤.              

, 

 

νS(2)(x) =

{
  
 

  
 (

4

lnx
+0.3

0.1
)

2

    ,     e−
4

0.2 ≤ x ≤ e−
4

0.3

  0                   ,    e−
4

0.3 ≤ x ≤ e−
4

0.35

(
−

4

lnx
−0.35

0.1
)2  , e−

4

0.35 ≤ x ≤ e−
4

0.45

  1                   ,              o. w.              

. 

 

The (0.5,0.5)-cut set of �̃�(𝑡) is as follows 

 

𝑆(𝑡)[𝛼1] = [𝑒−3.5044𝑡
2
, 𝑒−2.7424𝑡

2
]       , 𝑆(𝑡)[𝛼2] = [𝑒−4.3613𝑡

2
, 𝑒−2.3769𝑡

2
]. 

 

𝑆(𝑡)[0.5,0.5] = 𝑆(𝑡)[𝛼1] ∩ 𝑆(𝑡)[𝛼2]=[e
−3.5044𝑡2 , e−2.7424𝑡

2
]. 

 

The(1,0)-cut set of  �̃�(𝑡) is as follows 

 

𝑆(𝑡)[𝛼1] = [e−3.3333𝑡
2
, e−2.8571𝑡

2
]   ,    𝑆(𝑡)[𝛼2] = [e−3.3333𝑡

2
, e−2.8571𝑡

2
]. 

 

𝑆(𝑡)[1,0] = [e−3.3333𝑡
2
, e−2.8571𝑡

2
]. 
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The 𝛼𝑖-cut and (𝛼1, 𝛼2) -cut of GIFHF are given by 

 

ℎ(𝑡)[𝛼1] = [
2𝑡

0.4−0.05𝛼10.5
,

2𝑡

0.25+0.05𝛼10.5
]  ,  ℎ(𝑡)[𝛼2] = [

2𝑡

0.35+0.1𝛼2
0.5 ,

2𝑡

0.3−0.1𝛼2
0.5]. 

ℎ(𝑡)(𝛼1, 𝛼2) = [
2𝑡

0.4 − 0.05𝛼10.5
,

2𝑡

0.25 + 0.05𝛼10.5
] ∩ [

2𝑡

0.35 + 0.1𝛼2
0.5 ,

2𝑡

0.3 − 0. 1𝛼2
0.5]. 

 

The membership function and non-membership function of  ℎ̃(2) are given as follows: 

 

𝜇ℎ(2)(𝑥) =

{
  
 

  
 (

0.4−
4

𝑥

0.05
)

2

  ,               10 ≤ 𝑥 ≤ 11.4286

  1              ,     11.4286 ≤ 𝑥 ≤ 13.3333

(
4

𝑥
−0.25

0.05
)2  ,               13.3333 ≤ 𝑥 ≤ 16

 0              ,                            𝑜. 𝑤.              

, 

 

𝜈ℎ(2)(𝑥) =

{
  
 

  
 (

4

𝑥
−0.35

0.1
)2     ,     8.8888 ≤ 𝑥 ≤ 11.4286

  0                , 11.4286 ≤ 𝑥 ≤ 13.3333

(
0.3−

4

𝑥

0.1
)

2

   ,            13.3333 ≤ 𝑥 ≤ 20

 1                 ,                      𝑜. 𝑤.                  

. 

 

The (0.5,0.5)- cut sets of  ℎ̃(𝑡) is as follows 

 

ℎ(𝑡)[𝛼1] = [5.4848𝑡, 7.0088𝑡]  ,  ℎ(𝑡)[𝛼2] = [4.7539𝑡, 8.7226𝑡], 
 

ℎ(𝑡)(0.5,0.5) = ℎ(𝑡)[𝛼1] ∩ ℎ(𝑡)[𝛼2] = [5.4847𝑡, 7.0088𝑡]. 
 

The 𝛼𝑖-cut of GIFMTTF is given by 

 

GIFMTTF[𝛼1] = [
√π(0.25+0.05𝛼1

0.5)

2
,
√π(0.4−0.05𝛼1

0.5)

2
], 

 

GIFMTTF[𝛼2] = [
√π(0.3−0.1𝛼2

0.5)

2
,
√π(0.35+0.1𝛼2

0.5)

2
]. 

 

Membership function and non-membership function of 𝐺𝐼𝐹𝑀𝑇𝑇𝐹 are as follows: 

 

𝜇𝐺(𝑥) =

{
 
 
 

 
 
 (

4𝑥2

𝜋
−0.25

0.05
)2      ,     

1

2
√0.25𝜋 ≤ 𝑥 ≤

1

2
√0.3𝜋

1                    ,   
1

2
√0.3𝜋 ≤ 𝑥 ≤

1

2
√0.35𝜋

(
0.4−

4𝑥2

𝜋

0.05
)

2

    ,      
1

2
√0.35𝜋 ≤ 𝑥 ≤

1

2
√0.4𝜋

  0                  ,                           𝑜. 𝑤.                 

, 
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𝜈𝐺(𝑥) =

{
 
 
 

 
 
 (

−
4𝑥2

𝜋
+0.3

0.1
)2      ,          

1

2
√0.2𝜋 ≤ 𝑥 ≤

1

2
√0.3𝜋

0                    ,      
1

2
√0.3𝜋 ≤ 𝑥 ≤

1

2
√0.35𝜋

(
4𝑥2

𝜋
−0.35

0.1
)

2

   ,      
1

2
√0.35𝜋 ≤ 𝑥 ≤

1

2
√0.45𝜋

 1                   ,                                  𝑜. 𝑤.           

. 

 

5.   GIFR of Series and Parallel Systems 

 
In this section, we evolve a generalized intuitionistic fuzzy reliability evaluation technique 

for series and parallel systems. 

 

5.1. Series System 

 
If n-components are connected in series, then the 𝛼𝑖 -cut ( 𝑖 = 1,2 ) of GIFR with generalized 

intuitionistic fuzzy Rayleigh distribution is given by 

 

𝑆(𝑡)[𝛼𝑖] = {𝑃(𝑌1 > 𝑡) |𝜆 ∈𝜆[𝛼𝑖, 𝛿]} = {𝑒
−
𝑛𝑡2

𝜆 |𝜆 ∈𝜆[𝛼𝑖 , 𝛿]},    𝑖 = 1,2. 
 

𝑆(𝑡)[𝛼1] = [𝑒
−

𝑛𝑡2

𝑎+(𝑏−𝑎)𝛼1
𝛿
, 𝑒
−

𝑛𝑡2

𝑑−(𝑑−𝑐)𝛼1
𝛿
] ,  𝑆(𝑡)[𝛼2] = [𝑒

−
𝑛𝑡2

𝑏(1−𝛼2
𝛿)+𝑎1𝛼2

𝛿
, 𝑒
−

𝑛𝑡2

𝑐(1−𝛼2
𝛿)+𝑑1𝛼2

𝛿
], 

 

For 𝑡0, GIFR is a 𝐺𝐼𝐹𝑁𝐵 and membership function and non-membership function of  S̃(t) are 

as follows: 

 

𝜇𝑆(𝑡0)(𝑥) =

{
 
 
 

 
 
 
(
−
𝑛𝑡0

2

𝑙𝑛𝑥
−𝑎

𝑏−𝑎
)

1

𝛿

, 𝑒−
𝑛𝑡0

2

𝑎 ≤ 𝑥 ≤ 𝑒−
𝑛𝑡0

2

𝑏

  1                ,   𝑒−
𝑛𝑡0

2

𝑏 ≤ 𝑥 ≤ 𝑒−
𝑛𝑡0

2

𝑐

(
𝑛𝑡0

2

𝑙𝑛𝑥
+𝑑

𝑑−𝑐
)
1

𝛿    ,   𝑒−
𝑛𝑡0

2

𝑐 ≤ 𝑥 ≤ 𝑒−
𝑛𝑡0

2

𝑑

 0               ,                𝑜. 𝑤.              

,𝜈𝑆(𝑡0)(𝑥) =

{
 
 
 

 
 
 
(
𝑛𝑡0

2

𝑙𝑛𝑥
+𝑏

𝑏−𝑎1
)

1

𝛿

 , 𝑒
−
𝑛𝑡0

2

𝑎1 ≤ 𝑥 ≤ 𝑒−
𝑛𝑡0

2

𝑏

  0                , 𝑒−
𝑛𝑡0

2

𝑏 ≤ 𝑥 ≤ 𝑒−
𝑛𝑡0

2

𝑐

(
−
𝑛𝑡0

2

𝑙𝑛𝑥
−𝑐

𝑑1−𝑐
)
1

𝛿  , 𝑒−
𝑛𝑡0

2

𝑐 ≤ 𝑥 ≤ 𝑒
−
𝑛𝑡0

2

𝑑1

1                ,               𝑜. 𝑤.              

 . 

 
5.2. Parallel System 

 
If n-components are connected in parallel, then the 𝛼𝑖-cut (𝑖 = 1,2) of GIFR with generalized 

intuitionistic fuzzy Rayleigh distribution is given by 

 

𝑆(𝑡)[𝛼𝑖] = {𝑃(𝑌𝑛 > 𝑡) |𝜆 ∈𝜆[𝛼𝑖, 𝛿]} = {1 − (1 − 𝑒
−
𝑡2

𝜆 )

𝑛

|𝜆 ∈𝜆[𝛼𝑖 , 𝛿]},    𝑖 = 1,2. 
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𝑆(𝑡)[𝛼1] = [1 − (1 − 𝑒
−

𝑡2

𝑎+(𝑏−𝑎)𝛼1
𝛿
)𝑛,1 − (1 − 𝑒

−
𝑡2

𝑑−(𝑑−𝑐)𝛼1
𝛿
)𝑛].  

 

S(t)[𝛼2] = [1 − (1 − e
−

t2

𝑏(1−𝛼2
𝛿)+𝑎1𝛼2

𝛿
)n,1 − (1 − e

−
t2

𝑐(1−𝛼2
𝛿)+𝑑1𝛼2

𝛿
)n]. 

 

For 
0t , this is a 𝐺𝐼𝐹𝑁𝐵 and membership function and non-membership function of  �̃�(𝑡0) are 

as follows 

 

𝜇𝑆(𝑡0)(𝑥) =

{
 
 
 
 

 
 
 
 
(
−𝑎−𝑡0

2(𝑙𝑛(1−(1−𝑥)
1
𝑛))−1

𝑏−𝑎
)
1

𝛿   ,   1 − (1 − 𝑒−
𝑡0
2

𝑎 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒−
𝑡0
2

𝑏 )𝑛

 1                                               ,    1 − (1 − 𝑒−
𝑡0
2

𝑏 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒−
𝑡0
2

𝑐 )𝑛

(
𝑑+𝑡0

2(𝑙𝑛(1−(1−𝑥)
1
𝑛))−1

𝑑−𝑐
)

1

𝛿

   ,    1 − (1 − 𝑒−
𝑡0
2

𝑐 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒−
𝑡0
2

𝑑 )𝑛

0                                             ,                        𝑜. 𝑤.                                               

, 

𝜈𝑆(𝑡0)(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

(
𝑏+𝑡0

2(𝑙𝑛(1−(1−𝑥)
1
𝑛))−1

𝑏−𝑎1
)

1

𝛿

   ,   1 − (1 − 𝑒
−
𝑡0
2

𝑎1 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒−
𝑡0
2

𝑏 )𝑛

  0                                                ,   1 − (1 − 𝑒−
𝑡0
2

𝑏 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒−
𝑡0
2

𝑐 )𝑛

(
−𝑐−𝑡0

2(𝑙𝑛(1−(1−𝑥)
1
𝑛))−1

𝑑1−𝑐
)

1

𝛿

    ,    1 − (1 − 𝑒−
𝑡0
2

𝑐 )𝑛 ≤ 𝑥 ≤ 1 − (1 − 𝑒
−
𝑡0
2

𝑑1 )𝑛

 1                                               ,                        𝑜. 𝑤.                                                

. 

 

6.   Conclusion 

 
In this paper, we have presented a method for analyzing system reliability of different types 

of systems using generalized intuitionistic fuzzy sets theory, where the lifetime parameter of 

a component is represented by 𝐺𝐼𝐹𝑁𝐵. We investigated the generalized intuitionistic fuzzy 

reliability function and generalized intuitionistic fuzzy hazard function and then constructed 

their (𝛼1, 𝛼2)- cut. In this approach, 𝑆(𝑡)[𝛼𝑖] and ℎ(𝑡)[𝛼𝑖] are two dimensional functions in 

terms of 𝛼𝑖 and 𝑡. For 𝑡0, �̃�(𝑡0) and ℎ̃(𝑡0) are generalized intuitionistic fuzzy numbers and for 

every especially 𝛼10 and 𝛼20, reliability curve and hazard curve are like a band with upper 

and lower bound. Any increase in the value of 𝛿 can result in an increase in bandwidth of 

𝑆(𝑡)[𝛼10] and ℎ(𝑡)[𝛼10] and can also decrease bandwidth of 𝑆(𝑡)[𝛼20] and ℎ(𝑡)[𝛼20]. The 

GIFH band is increasing with respect to time. Finally, we described reliability analysis of 

series and parallel system based on generalized intuitionistic fuzzy lifetime parameter. Our 

method is more comprehensive than any previous methods such as Bohra and Singh’s (2015). 

For the future research, one can define conditional reliability, mean residual lifetime function, 

mean past lifetime function, cumulative hazard function and reversed hazard function under 

the generalized intuitionistic fuzzy lifetime distribution and study their properties. 
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