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Abstract     
 
An analysis is carried out to study the Falkner–Skan flow and heat transfer of an 
incompressible, electrically conducting fluid over a wedge in the presence of variable 
viscosity and thermal conductivity effects. The similarity solutions are obtained using scaling 
group of transformations. Furthermore the similarity equations are solved numerically by 
employing Kellr-Box method.  Numerical results of the local skin friction coefficient and the 
local Nusselt number as well as the velocity and the temperature profiles are presented for 
different physical parameters.  
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List of symbols Greek symbols 

A fluid viscosity variation parameter β wedge angle
a constant ε  infinitesimal Lie group parameter

oB uniform magnetic field η similarity variable

b constant κ  thermal diffusivity
c constant depending on the nature of fluid κ ambient fluid thermal conductivity

f similarity function μ  dynamic viscosity
L  length of surface μ constant value of the coefficient of 

viscosity far away from the surface 
M magnetic parameter ν Kinematic viscosity
m Falkner-Skan power-law parameter θ Dimensionless temperature, 
Nu Nusselt number ρ density of the fluid

Pr Prandtl number σ electric conductivity
Re  Reynolds number

wτ Local skin friction

xRe   local Reynolds number ψ stream function Subscripts

S  thermal conductivity parameter
6321 α,...,α,α,α constants

T  temperature

eu  the velocity over the wedge Subscripts 

U  free stream velocity w  condition at the wall

eu  dimensionless free stream velocity   ambient condition Superscript

v,u velocity components along the x and y  
directions 

u ,v dimensionless velocity Superscript 
y,x Cartesian coordinates along the surface 

of the wedge and normal to it               

' differentiation with respect to η

 
 
 
1.  Introduction 
 
Within the field of aerodynamics, the analysis of boundary-layer problems for two-
dimensional steady and incompressible laminar flow passing a wedge is a common area of 
interest. Falkner and Skan (1931) considered two-dimensional wedge flows. They developed 
a similarity transformation method in which the partial differential boundary-layer equation 
was reduced to a nonlinear third-order ordinary differential equation which could then be 
solved numerically. Hartree (1937) solved this problem and gave numerical results for the 
wall shear stress for different values of the wedge angle. Rajagopal et al. (1983) studied the 
Falkner–Skan boundary layer flow of a homogeneous incompressible second grade fluid past 
a wedge placed symmetrically with respect to the flow direction. Lin and Lin (1987) 
introduced a similarity solution method for the forced convection heat transfer from 
isothermal or uniform-flux surfaces to fluids of any Prandtl number. The solutions of the 
resulting similarity equations are given by the Runge–Kutta scheme.   
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Hsu et al. (1997) studied the temperature and flow fields of the flow past a wedge by the 
series expansion method, similarity transformation, Runge-Kutta integration and the shooting 
method.  Harris et al. (2002) studied heat transfer problem for an impulsively started Falkner–
Skan flow, and the majority of cases considered relate to the acute, semi-infinite wedge 
problem. In all these studies, the fluid properties were assumed to be constant. However, in 
many industrial applications this assumption is not obeyed and we have to consider such 
problems by assuming variable viscosities or variable conductivity. It is well known that 
viscosities of liquids change with temperature e. g. the viscosity of water decreases by about 
24% when the temperature increases from C100  to C500 .  
 
The first attempt to solve the Falkner-Skan problem including the variation of viscosity with 
temperature was made by Herwing et al. (1986).  Seddeek et al. (2007) studied the effect of 
chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass 
transfer for Hiemenz flow through porous media in the presence of radiation and magnetic 
field.  The effect of temperature dependent viscosity on laminar mixed convection boundary 
layer flow and heat transfer on a continuously moving vertical surface is studied by Ali 
(2006), when the fluid viscosity is assumed to vary as an inverse linear function of 
temperature. Seddeek and Salem (2006) studied the effects of variable viscosity and magnetic 
field on flow and heat transfer to a continuously moving flat plate, when the fluid viscosity is 
assumed to vary as a linear function of temperature.  
 
Seddeek and Salama (2007) studied the effects of variable viscosity and thermal conductivity 
on an unsteady two-dimensional laminar flow of a viscous incompressible conducting fluid 
past a semi-infinite vertical porous moving plate taking into account the effect of magnetic 
field. Afify (2007) examined the effects of non-Darcian flow phenomena, variable viscosity, 
Hartmann-Darcy number and thermal stratification on free convective transport and 
demonstrates the variation in heat transfer prediction based on three different flow models.  
In this analysis, we discuss MHD Falkner-Skan flow and heat transfer over a wedge.   
 
The effects of variable viscosity and thermal conductivity are investigated.  By using scaling 
transformations, the set of governing equations and the boundary conditions are reduced to 
nonlinear ordinary differential equations with appropriate boundary conditions.  Furthermore 
the similarity equations are solved numerically by employing Kellr-Box method.  Numerical 
results of the local skin friction coefficient, the local Nusselt number and the local Sherwood 
numbers as well as the velocity and the temperature profiles are presented for different 
parameters. 
 
 

 
 
 
 
 
 
 

 
 
 

 
   Figure1. The flow configuration and coordinate system 
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2.  Mathematical Analysis  
 
We consider the boundary layer flow of an electrically conducting viscous fluid over a 
wedge, as shown in Figure 1, A magnetic field oB  acts transversely to the flow. The induced 

magnetic field is neglected by choosing small magnetic Reynolds number assumption. 
Furthermore the electric field is absent. The relevant problem is 
 

2
0

0

1
( ) ( )

1
( ) .

e
e e

p

u v

x y

u Bu u u
u v u T u u

x y x y y

T T T
u v k T

x y C y y


 



 



 
 

 

    
          

    
       

                                            (2.1) 

 
With the boundary conditions: 
 

0 , 0 , 0

( ) , ,
w

e

u v T T at y

u u x T T as y

    


  
                                                                            (2.2) 

 
where eu  is the velocity over the wedge. The exponent m, which is called the Falkner-Skan 

power –law parameter, is related to the wedge angle β by 
2

m






 .   is the density of the 

fluid (assumed constant),   and      are the viscosity coefficient and thermal diffusivity 
respectively which are variation as a function of temperature T ,   is the electrical 
conductivity, oB  the magnetic field of constant strength, T  is the fluid free stream 

temperature, wT is the wall temperature. The temperature-dependent fluid viscosity is given 

by Batchelor (1987) and the fluid thermal conductivity is given by Slattery (1972), 
respectively. 
 

[ ( )], [1 ( )]wa b T T c T T           ,                                            (2.3) 

 
where   is the constant value of the coefficient of viscosity far away from the surface,   

the ambient fluid thermal conductivity, a, b are constants and b > 0, and c is a constant 
depending on the nature of  the fluid. 
 
By using the non-dimensional variables: 
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where Re
U L

 



  is the Reynolds number, and U is the free stream velocity. 

 
Equation (2.3) can be rewritten as follows: 
 

[ ( )(1 )] [ (1 )] and [1 ]wa b T T a A S                   ,                     (2.5) 

 
where A fluid viscosity variation parameter, and S is the thermal conductivity parameter. 
Equation (2.1) can be rewritten as follows: 
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                                  (2.6) 

 

where 
2 oB L

M
U


 

 is the magnetic parameter, Pr pC 






  is the Prandtl number. 

 
The boundary conditions (2.2) become: 
 

0, 0, 1 at 0,

, 0 as .e

u v y

u u y




   
    

                                                                                  (2.7)                           

 

By using the stream function ,u v
y x

   
     

 and the velocity over the wedge m
eu x  

we have: 
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                (2.8) 

 
The boundary conditions are 
 

0, 0, 1 at  0

, 0 as .m
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                                                                                  (2.9)                            
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3.  Scaling group of Transformations 
 
We now introduce the simplified form of Lie group transformations namely, the scaling 
group of transformations Tapanidis et al. (2003): 
 

θeθv,evu,euψ,eψ y,ey x,ex:Γ 654321 α ε*α ε*α ε*α ε*α ε*α ε*          (3.1)                           
 
Equation (3.1) may be considered as a point-transformation which transforms coordinates 

)θv,u,ψ,y,(x,  to the coordinates )θ,v,u,ψ,y,(x ****** , substituting (3.1) in Equations (2.8) 
and boundary conditions (2.9), we get 
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             (3.2)   

 
The boundary conditions (2.9) become: 
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                                                (3.3) 

 
The system will remain invariant under the group of transformations , we would have the 
following relations among the parameters, namely 
 

 1 2 3 1 2 3 2 3 6

2 3 6 2 3

1

2 2 2 1 3 3

3

m

m

        
    


         

    

 
  

 
and 
  

1 2 3 6 2 6 2 62 2( )              . 

 
By solving the previous conditions with boundary conditions, we obtain  
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1 3 4 2 5 6,   0  and 1m           . 

 
The set of transformations   reduces to 
  

1 1 1   * * * * * *, , , , ,x xe y y e u e u v v              .                                            (3.4) 
 
Expanding by Taylor's method in powers of  and keeping terms up to the order  , we get 
 

* * *
1 1

* * *
1

,   ,  

,  ,   .

x x x y y

u u u v v

   

  

    

   
                                                                       (3.5) 

 
In terms of differentials these yield 
 

1 1 10 0 0

dx dy d du dv d

x u

 
  

                                                                                   (3.6) 

 
Solving the above equations, we get 
 

* * * *, ( ), ( )y x f        .                                                                                 (3.7) 
 
With the help of these relations, Equation (3.2) and boundary conditions (3.3) become 
 

2

2

[ (1 )] (  )  ( 1) 1 0

(1  )  Pr   0

a A f f A f M f f

S S f
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   

            

     
                     (3.8) 

 
with boundary conditions: 
 

0, 0, 1 at 0

1, 0 as .

f f

f

 

 

   
   

                                                                        (3.9) 

 
The quantities of physical interest in this problem are the local skin friction coefficient and 
the local Nusselt number, which are defined by 
 

Re [1 (1 ) (0)]f xC A f    ,                                                                                    (3.10)                           

(0)Nu                                                                                                                  (3.11)                           
 
 
4.  Results and Discussions 
 
By applying one-parameter group theory to the analysis of the governing equations and the 
boundary conditions, the two independent variables are reduced by one; consequently, the 
governing equations reduce to a system of non-linear ordinary differential equations with the 
appropriate boundary conditions. Finally, the systems of similarity equations (3.8) with 
boundary conditions (3.9) are solved numerically by employing Kellr-Box method Perot and 
Subramanian (2007).   
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The computations have been carried out for various values of variable viscosity parameter A , 
magnetic filed parameter M, variable thermal conductivity S  when Prandtl number 

7.0Pr  (air) and 1a  . The edge of the boundary layer 8η   depending on the values of 
parameters.  In this work, we only discussed the similarity equation with m = 1, where the 
primary stream-wise boundary layer is the famous stagnation point flow.  See White (1991), 
Schlichting and Gersten (2000) and Rosehead (1963).   
 
From Table 1, we see that the local skin friction coefficient at the surface increases by 
increasing of the variable viscosity parameter but the local Nusselt number decreases by 
increasing of the variable viscosity parameter.  The results presented demonstrate quite 
clearly that A, which is an indicator of the variation of viscosity with temperature, has a 
substantial effect on the drag and heat transfer characteristics.  From Table 2, we see that the 
local skin friction coefficient at the surface and the local Nusselt number decrease by 
increasing of variable thermal conductivity.  From Table 3, we see that the local skin friction 
coefficient and the local Nusselt number increase by increasing of the magnetic parameter. 
This result qualitatively agrees with the expectations, since the magnetic field exerts retarding 
force on the free convection flow. 
 
Figure 2 shows that the velocity profiles decrease by increasing the temperature-dependent 
fluid viscosity parameter A. Figure 3 show that the temperature profiles increase slightly with 
an increase in the temperature-dependent fluid viscosity parameter A.  Figure 4 shows that the 
velocity profiles increase by increasing the magnetic parameter. Figure 5 show that the 
temperature profiles decrease by increasing the magnetic parameter.  Figures (6) and (7) 
depict the velocity and the temperature profiles for different values the thermal conductivity 
parameter S. It is also observed that the velocity profiles increase slightly and the temperature 
profiles increase by increasing the thermal conductivity parameter S. 
    

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1



f'

A=-0.1,0.0,0.5,1.5

 
Figure 2.   Velocity profiles for )(ηf  : 5.0,1.0,7.0Pr  SM  with different values of A  
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Figure 3. Temperature profiles )θ(η  for: 5.0,1.0,7.0Pr  SM  with different values of A  
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Figure 4. Velocity profiles for: 5.0,1.0,7.0Pr  SA with different values of M 
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Figure 5.  Temperature profiles )θ(η  for: 5.0,1.0,7.0Pr  SA  with different values of M 
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Figure 6. Velocity profiles for: for: for Pr 0.7, 0.1, 0.1M A   .with different values of S 
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Figure 7. Temperature profiles ( )   for Pr 0.7, 0.1, 0.1M A   with different values of S 
 
 
Table 1. Values of  )(0f   and (0)θ  for 0.5S0.1,M   
 0.1A   00.A   0.5A   1.5A   

)(0f   1.261131 1.27218 1.325965 1.427501 
)0(   0.39135 0.39127 0.39086 0.39015 

 
 
Table 2. Values of  (0)f   and (0)θ  for 0.1A0.1,M   
 0S   2S   4S   6S   

(0)f   1.285337 1.279977 1.278218 1.277287 
(0)θ  0.49821 0.26897 0.20839 0.17713 

 
 
Table 3. Values of  )(0f   and )(0θ  for 0.5S0.1,A   
 0.0M   1.0M   4.0M   1.0M   

)(0f   1.243536 1.283126 1.395266 1.596315 
)(0θ  0.38936 0.39118 0.39606 0.40392 

 
 
 
5.  Conclusions 
 
In this paper, we discuss a steady MHD Falkner-Skan flow and heat transfer over a wedge. 
The effects of variable viscosity parameter, magnetic parameter, and variable thermal 
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conductivity are investigated. The similarity solutions are obtained using scale group of 
transformations. The set of governing equations and the boundary conditions are reduced to 
ordinary differential equations with appropriate boundary conditions. Furthermore, the 
differential equations are solved numerically by employing Kellr-Box method.  We observed 
that, the local skin friction coefficient at the surface increase by increasing of the variable 
viscosity parameter and magnetic parameter. On the contrary it is decrease by increasing of 
variable thermal conductivity. The Nusselt number decrease by increasing of the variable 
viscosity parameter and variable thermal conductivity parameter. On the contrary it is 
increase by increasing of the magnetic parameter. 
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