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Abstract

We consider a single server batch arrival queueing system, where the server provides two
types of heterogeneous service. A customer has the option of choosing either type 1 service
with probability p1 or type 2 service with probability p2 with the service times follow general
distribution. After the completion of either type 1 or type 2 service a customer has the option to
repeat or not to repeat the type 1 or type 2 service. As soon as the customer service is completed,
the server will take a vacation with probability θ or may continue staying in the system with
probability 1− θ. The re-service periods and vacation periods are assumed to be general. Using
supplementary variable technique, the Laplace transforms of time dependent probabilities of
system state are derived and thus we deduce the steady state results. We obtain the average queue
size and average waiting time. Some system performance measures and numerical illustrations
are discussed.
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1. Introduction

Queueing models are essential for designing and monitoring of several communication systems.
In queueing theory, customers arrive randomly according to a Poisson process and form a queue.
In some practical situations like stored and forward communication networks the arrivals cannot
be characterized by a Poisson process the arriving messages are converted into a random number
of packets depending upon the size of the message. Similarly, in railway yards and ports the
cargo handling is done in batches of random size. For analyzing these sort of situations the
queueing models with bulk arrivals are developed. The bulk arrivals can be well characterised
by a compound Poisson process. In a typical manufacturing situation, the work-pieces arrive at
a machine center in batches and they leave in batches. A batch consists of identical work-pieces
that are processed and then transported in batches for further processing. Such a situation can
be modeled as queues with bulk arrivals. There is a discipline within the mathematical theory of
probability, called a bulk queue (also called batch queue) where customers are served in groups
of random size. The purpose of present paper is to provide overview of queueing models with
phase service and its applications in real life queueing problems. The motivation for studying
the queueing systems with phase service comes from numerous versatile applications in the
performance evaluation and dimensioning of production and manufacturing systems, computer
and communication networks, inventory and distribution systems, and so forth. During the last
few decades, attention has been paid increasingly by many researchers in studying the phase
service queueing models. In recent years, computer networks and data communication systems
are the fastest growing technologies, which have led to significant development in applications
such as swift advance in internet, audio data traffic, video data traffic, etc.

In a vacation queueing system, the server may not be available for a period of time due to many
reasons like, being checked for maintenance, working at other queues, scanning for new work
(a typical aspect of many communication systems) or simply taking break. This period of time,
when the server is unavailable for primary customers is referred as a vacation. A wide class of
vacation policies like N -policy, T -policy and D-policy, for governing the vacation mechanisms
like single vacation, multiple vacation, Bernoulli vacation and modified vacation, etc., have been
discussed in the literature. Single server queues with vacations have been studied extensively by
Doshi (1986). Keilson and Servi (1986) were introduced the concept of single server queueing
system with Bernoulli vacation, where the server takes a vacation after each service completion
with probability p or starts a new service with probability 1 − p. Takagi (1991) examined an
M/G/1 queueing model with exhaustive service by using supplementary variable technique. He
obtained explicit expression for time dependent solutions in terms of their Laplace transforms.
These models arise naturally in call centers with multi-task employees, customised manufacturing,
telecommunication and computer networks, maintenance activities, production and quality control
problem, etc. For a review of main results and methods, the reader is referred to the survey papers
by Madan and Anabosi (2003), Kumar and Arumuganathan (2008) and Gharbi and Ioualalen
(2010), Gross and Harris (2011) and Zhang and Hou (2012), Haghighi and Mishev (2016a) and
Haghighi and Mishev (2016b). Xu et al. (2009) studied the concept of bulk input queue with
working vacation.
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Madan and Ayman Baklizi (2002) have studied an M/G/1 queue with additional second stage
service and optional re-service. Madan et al. (2004) considered a bulk arrival queue with optional
re-service. In their system, before a service starts customer has the option to choose either type of
service, after completion of which the customer may leave the system or may opt for re-service
of the service taken by him. Recently Tadj and Ke (2008) analysed a bulk arrival two phase bulk
service queueing system with optional re-service facility. Badamchi Zadeh (2009) and Jain and
Upadhyaya (2010) discussed about second optional service. Later Ke et al. (2010) studied the
operating characteristics of an M/G/1 queueing system. Baruah et al. (2013) aimed at studying
a queuing model with two stage heterogeneous service where customer arrival in batches and
has a single server providing service in two stages, one after the other in succession.

Artalejo and Choudhury (2004) studied an M/G/1 queue with repeated attempts and two-phase
service. A numbers of papers by Choudhury and Paul (2004), Madan and Choudhury (2004),
Choudhury and Madan (2005). Thangaraj and Vanitha (2010)analyzed a single server M/G/1

feedback queue with two types of service having general distribution. Tadj (2013) discussed
Bernoulli vacation schedule under T-Policy and Rajadurai et al. (2015) have recently appeared in
queueing literature in which the server provides each unit two phases of heterogeneous service
in succession with Bernoulli schedule vacation.

The motivation for such type of models comes from some computer and communication networks
where messages are processed in two stages by a single server. The case where both phases of
service are exponentially distributed is the so called Coxian distribution C2 distribution. Queueing
models wherein the server provide two phases of essential service to each customer are known as
two-phase essential service queueing model. Such types of queueing situations naturally arise in
many real time system namely in manufacturing system wherein the machine producing certain
items may require two phases of service in succession. For completing the processing of raw
materials, the periodic checking (first phase of service) followed by usual processing (second
phase of service) of raw material is required. Kumar and Arumuganathan (2008) considered
a single server retrial queue with batch arrivals under the assumption that the server provides
preliminary first essential service and second essential service to all arriving calls.

Though a lot of work has been done in queueing systems, there have not been many significant
studies on single server batch arrival queue with general service time, two types of service,
optional re-service and Bernoulli vacation. To the best of our knowledge, the current work that
explores batch arrival, two type of service queueing system with Bernoulli vacation. In this paper,
we consider a single server vacation queueing model, in which the server provides two types
of service and each arriving customer has the option of choosing either type of service. After
completion of type 1 or type 2 service a customer has the option to repeat or not to repeat the
type 1 or type 2 service. The re-service periods and vacation periods are assumed to be general.

The outline of the paper is as follows. In Section 2, the detailed description of the mathematical
model and practical justification of the model are given. Definitions are given in Section 3.
Equations governing the system and the time dependent solution have been obtained in Section 4

and corresponding steady state results have been derived explicitly in Section 5. Average queue
size and average waiting time are computed in Section 6. Particular cases and the effects of
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various parameters on the system performance are analyzed numerically in Sections 7 and 8,

respectively. The conclusion is given in Section 9.

2. Mathematical description of the model

We assume the following to describe the queueing model of our study.

• Customers arrive at the system in batches of variable size in a compound Poisson process
and they are provided one by one service on a first come - first served basis. Let λcidt
(i ≥ 1) be the first order probability that a batch of i customers arrives at the system during

a short interval of time (t, t+ dt], where 0 ≤ ci ≤ 1 and
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.
• There is a single server who provides either type 1 service or type 2 service for all customers,

as soon as the service of a customer is completed, he may opt to repeat the type 1 service
with probability r1 or may not repeat with probability (1 − r1). Similarly after taking the
type 2 service he may opt to repeat the type 2 with probability r2 or may not repeat with
probability (1− r2). Further, we assume that this option of repeating the type 1 or the type
2 service can be availed once.

• The service time follows a general (arbitrary) distribution with distribution function Bi(s)

and density function bi(s). Let µi(x)dx be the conditional probability density of service
completion during the interval (x, x+ dx], given that the elapsed time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,

and, therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

• The server’s vacation time follows a general (arbitrary) distribution with distribution function
V (t) and density function v(t). Let γ(x)dx be the conditional probability of a completion
of a vacation during the interval (x, x + dx] given that the elapsed vacation time is x, so
that

γ(x) =
v(x)

1− V (x)
,

and, therefore,

v(t) = γ(t)e
−

t∫
0

γ(x)dx
.

• Various stochastic processes involved in the system are assumed to be independent of each
other.

2.1. Practical justification of the suggested model
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An application of our model is in the following automobile repair garage for cars. Consider
one mechanic of automobile repair garage, the arrival of cars forms a random process. The
mechanic is responsible for routine maintenance of one car at one time (such as the routine
maintenance every 500 km, 1000km, etc.) Some vehicles may need tire, windshield wiper, or
battery replacement. The mechanic needs to prepare tools before the starting of busy period (i.e.,
continuous service period of server) and places the tools back at the end of busy period. In
this scenario, mechanic, routine maintenance, tire (windshield wiper or battery) replacement and
preparing tools are corresponding to the server, type 1 or type 2 service, re-service and vacation,
respectively, in the queueing terminology.

Another practical application is that such system can be modeled in a coffee shop. In a one-person
coffee shop, the arrival of customers follows a random process. Customers buy various coffee
beans and some of them buy various coffee grinders as well. The shopkeeper has to prepare scale
and other equipments in advance and put them back after the end of the each busy period. In this
scenario, shopkeeper, coffee beans, coffee grinders and preparing scale and other equipments are
corresponding to the server, essential service type 1 or type 2 service, re-service and vacation,
respectively, in the queueing terminology.

3. Definitions

We define

(1) P
(i)
n (x, t) = Pr{at time t, the server is active providing ith type service and there are n

(n ≥ 0) customers in the queue excluding one customer in the service being served and the

elapsed service time for this customer is x}. P (i)
n (t) =

∞∫
0

P
(i)
n (x, t)dx denotes the probability

that at time t there are n customers in the queue excluding one customer in the ith type
service irrespective of the value of x for i = 1, 2.

(2) R
(i)
n (x, t) = Probability that at time t, the server is active providing ith type re-service and

there are n (n ≥ 0) customers in the queue excluding one customer who is repeating ith

type service and the elapsed re-service time for this customer is x. Consequently R(i)
n (t) =

∞∫
0

R
(i)
n (x, t)dx denotes the probability that at time t there are n customers in the queue

excluding one customer who is repeating ith type service irrespective of the value of x for
i = 1, 2.

(3) Vn(x, t) = Probability that at time t, the server is under vacation with elapsed vacation

time x and there are n (n ≥ 0) customers in the queue. Accordingly Vn(t)=
∞∫
0

Vn(x, t)dx

denotes the probability that at time t there are n customers in the queue and the server is
under vacation irrespective of the value of x.

(4) Q(t) = Probability that at time t, there are no customers in the system and the server is
idle but available in the system.
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4. Equations governing the system

The model is then, governed by the following set of differential - difference equations:

∂
∂x
P

(1)
0 (x, t) + ∂

∂t
P

(1)
0 (x, t) + (λ+ µ1(x))P

(1)
0 (x, t) = 0, (1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + (λ+ µ1(x))P (1)

n (x, t)

= λ

n∑
k=1

ckP
(1)
n−k(x, t), n ≥ 1,

(2)

∂
∂x
P

(2)
0 (x, t) + ∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x)]P

(2)
0 (x, t) = 0, (3)

∂
∂x
P

(2)
n (x, t) + ∂

∂t
P

(2)
n (x, t) + [λ+ µ2(x)]P

(2)
n (x, t)

= λ
∑n

k=1 ckP
(2)
n−k(x, t), n ≥ 1, (4)

∂
∂x
R

(1)
0 (x, t) + ∂

∂t
R

(1)
0 (x, t) + [λ+ µ1(x)]R

(1)
0 (x, t) = 0, (5)

∂
∂x
R

(1)
n (x, t) + ∂

∂t
R

(1)
n (x, t) + [λ+ µ1(x)]R

(1)
n (x, t)

= λ
∑n

k=1 ckR
(1)
n−k(x, t), n ≥ 1, (6)

∂
∂x
R

(2)
0 (x, t) + ∂

∂t
R

(2)
0 (x, t) + [λ+ µ2(x)]R

(2)
0 (x, t) = 0, (7)

∂
∂x
R

(2)
n (x, t) + ∂

∂t
R

(2)
n (x, t) + [λ+ µ2(x)]R

(2)
n (x, t)

= λ
∑n

k=1 ckR
(2)
n−k(x, t), n ≥ 1, (8)

∂
∂x
V0(x, t) + ∂

∂t
V0(x, t) + [λ+ γ(x)]V0(x, t) = 0, (9)

∂
∂x
Vn(x, t) + ∂

∂t
Vn(x, t) + [λ+ γ(x)]Vn(x, t)

= λ
∑n

k=1 ckVn−k(x, t), n ≥ 1, (10)

d
dt
Q(t) = λQ(t) + (1− r1)(1− θ)

∫∞
0
P

(1)
0 (x, t)µ1(x)dx

+(1− r2)(1− θ)
∫∞

0
P

(2)
0 (x, t)µ2(x)dx+ (1− θ)∫∞

0
R

(1)
0 (x, t)µ1(x)dx+ (1− θ)

∫∞
0
R

(2)
0 (x, t)µ2(x)dx

+
∫∞

0
V0(x, t)γ(x)dx, (11)

P
(1)
n (0, t) = p1λcn+1Q(t) + p1(1− r1)(1− θ)

∫∞
0
P

(1)
n+1(x, t)µ1(x)dx

+p1(1− θ)
{

(1− r2)
∫∞

0
P

(2)
n+1(x, t)µ2(x)dx

+
∫∞

0
R

(1)
n+1(x, t)µ1(x)dx

}
+ p1(1− θ)

×
∫∞

0
R

(2)
n+1(x, t)µ2(x)dx+ p1

∫∞
0
Vn+1(x, t)γ(x)dx, n ≥ 0, (12)



510 K. Sathiya & G. Ayyappan

P
(2)
n (0, t) = p2λcn+1Q(t) + p2(1− r1)(1− θ)

∫∞
0
P

(1)
n+1(x, t)µ1(x)dx

+p2(1− θ)
{

(1− r2)
∫∞

0
P

(2)
n+1(x, t)µ2(x)dx

+
∫∞

0
R

(1)
n+1(x, t)µ1(x)dx

}
+ p2(1− θ)

×
∫∞

0
R

(2)
n+1(x, t)µ2(x)dx+ p2

∫∞
0
Vn+1(x, t)γ(x)dx, n ≥ 0, (13)

R
(1)
n (0, t) = r1

∫∞
0
P

(1)
n (x, t)µ1(x)dx, n ≥ 0, (14)

R
(2)
n (0, t) = r2

∫∞
0
P

(2)
n (x, t)µ2(x)dx, n ≥ 0, (15)

Vn(0, t) = θ(1− r2)
∫∞

0
P

(2)
n (x, t)µ2(x)dx

+θ(1− r1)
∫∞

0
P

(1)
n (x, t)µ1(x)dx+ θ

∫∞
0
R

(1)
n (x, t)µ1(x)dx

+θ
∫∞

0
R

(2)
n (x, t)µ2(x)dx, n ≥ 0. (16)

We assume that initially there are no customers in the system and the server is idle. So the initial
conditions are

P
(i)
n (0) = R

(i)
n (0) = Vn(0) = 0 for i = 1, 2, n ≥ 0 and Q(0) = 1. (17)

We define the probability generating functions, for i =1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t);

C(z) =
∞∑
n=1

cnz
n; R(i)(x, z, t) =

∞∑
n=0

znR(i)
n (x, t);

R(i)(z, t) =
∞∑
n=0

znR(i)
n (t); V (x, z, t) =

∞∑
n=0

znVn(x, t);

V (z, t) =
∞∑
n=0

znVn(t), (18)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace transform of a
function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (19)
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We take the Laplace transform of equation (1) and using (17) and (19), we get

∂
∂x

∞∫
0

e−stP
(1)
0 (x, t)dt+

∞∫
0

e−st ∂
∂t
P

(1)
0 (x, t)dt

+(λ+ µ1(x))
∞∫
0

e−stP
(1)
0 (x, t)dt = 0,

∂
∂x
P̄

(1)
0 (x, s) + s

∞∫
0

e−stP
(1)
0 (x, t)dt− P (1)

0 (0) + (λ+ µ1(x))P̄
(1)
0 (x, s) = 0,

∂
∂x
P̄

(1)
0 (x, s) + sP̄

(1)
0 (x, s) + (λ+ µ1(x))P̄

(1)
0 (x, s) = 0,

∂
∂x
P̄

(1)
0 (x, s) + [s+ λ+ µ1(x)]P̄

(1)
0 (x, s) = 0. (20)

By similar performance on equations (2) - (16), we get

∂
∂x
P̄

(1)
n (x, s) + [s+ λ+ µ1(x)]P̄

(1)
n (x, s) = λ

∑n
k=1 ckP̄

(1)
n−k(x, s),

n ≥ 1, (21)

∂
∂x
P̄

(2)
0 (x, t) + [s+ λ+ µ2(x)]P̄

(2)
0 (x, s) = 0, (22)

∂
∂x
P̄

(2)
n (x, s) + [s+ λ+ µ2(x)]P̄

(2)
n (x, s) = λ

∑n
k=1 ckP̄

(2)
n−k(x, s),

n ≥ 1, (23)

∂
∂x
R̄

(1)
0 (x, s) + [s+ λ+ µ1(x)]R̄

(1)
0 (x, s) = 0, (24)

∂
∂x
R̄

(1)
n (x, s) + [s+ λ+ µ1(x)]R̄

(1)
n (x, s) = λ

∑n
k=1 ckR̄

(1)
n−k(x, s),

n ≥ 1, (25)

∂
∂x
R̄

(2)
0 (x, s) + [s+ λ+ µ2(x)]R̄

(2)
0 (x, s) = 0, (26)

∂
∂x
R̄

(2)
n (x, s) + [s+ λ+ µ2(x)]R̄

(2)
n (x, s) = λ

∑n
k=1 ckR̄

(2)
n−k(x, s),

n ≥ 1, (27)

∂
∂x
V̄0(x, s) + [s+ λ+ γ(x)]V̄0(x, s) = 0, (28)

∂
∂x
V̄n(x, s) + [s+ λ+ γ(x)]V̄n(x, s) = λ

∑n
k=1 ckV̄n−k(x, s), n ≥ 1, (29)



512 K. Sathiya & G. Ayyappan

(s+ λ)Q̄(s) = 1 + (1− r1)(1− θ)
∫∞

0
P̄

(1)
0 (x, s)µ1(x)dx

+(1− r2)(1− θ)
∫∞

0
P̄

(2)
0 (x, s)µ2(x)dx+

∫∞
0
V0(x, s)γ(x)dx

+(1− θ)
{∫∞

0
R̄

(1)
0 (x, s)µ1(x)dx+

∫∞
0
R̄

(2)
0 (x, s)µ2(x)dx

}
, (30)

P̄
(1)
n (0, s) = p1λcn+1Q̄(s) + p1(1− r1)(1− θ)

∫∞
0
P̄

(1)
n+1(x, s)µ1(x)dx

+p1(1− r2)(1− θ)
∫∞

0
P̄

(2)
n+1(x, s)µ2(x)dx+ p1

∫∞
0
Vn+1(x, s)γ(x)dx

+p1(1− θ)
{∫∞

0
R̄

(1)
n+1(x, s)µ1(x)dx+

∫∞
0
R̄

(2)
n+1(x, s)µ2(x)dx

}
,

n ≥ 0, (31)

P̄
(2)
n (0, s) = p2λcn+1Q̄(s) + p2(1− r1)(1− θ)

∫∞
0
P̄

(1)
n+1(x, s)µ1(x)dx

+p2(1− r2)(1− θ)
∫∞

0
P̄

(2)
n+1(x, s)µ2(x)dx+ p2∫∞

0
Vn+1(x, s)γ(x)dx+ p2(1− θ)

{∫∞
0
R̄

(1)
n+1(x, s)µ1(x)dx

+
∫∞

0
R̄

(2)
n+1(x, s)µ2(x)dx

}
, n ≥ 0, (32)

R̄
(1)
n (0, s) = r1

∫∞
0
P̄

(1)
n (x, s)µ1(x)dx, (33)

R̄
(2)
n (0, s) = r2

∫∞
0
P̄

(2)
n (x, s)µ2(x)dx, (34)

V̄n(0, s) = θ(1− r2)
∫∞

0
P̄

(2)
n (x, s)µ2(x)dx+ θ(1− r1)

∫∞
0
P̄

(1)
n (x, s)µ1(x)dx

+θ
∫∞

0
R̄

(1)
n (x, s)µ1(x)dx+ θ

∫∞
0
R̄

(2)
n (x, s)µ2(x)dx, n ≥ 0. (35)

Now multiplying equation (21) by zn summing over n from 0 to ∞, adding (20) and using (18),
we get

∂

∂x

∞∑
n=0

P̄ (1)
n (x, s)zn + [s+ λ+ µ1(x)]

∞∑
n=0

P̄ (1)
n (x, s)zn = λ

∞∑
n=0

n∑
k=1

ckP̄
(1)
n−k(x, s)z

n,

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]P̄ (1)(x, z, s) = 0. (36)

Similarly for equations (23) - (29), we get

∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]P̄ (2)(x, z, s) = 0, (37)

∂

∂x
R̄(1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]R̄(1)(x, z, s) = 0, (38)

∂

∂x
R̄(2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]R̄(2)(x, z, s) = 0, (39)
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∂

∂x
V̄ (x, z, s) + [s+ λ− λC(z) + γ(x)]V̄ (x, z, s) = 0. (40)

For the boundary conditions, we multiply both sides of equation (31) by zn summing over n
from 0 to ∞, and use equation (30), we get

zP̄ (1)(0, z, s) = p1[1− (s+ λ)Q̄(s)] + p1(1− r1)(1− θ)∫∞
0
P̄ (1)(x, z, s)µ1(x)dx+ p1λC(z)Q̄(s) + p1(1− r2)(1− θ)∫∞

0
P̄ (2)(x, z, s)µ2(x)dx+ p1(1− θ)

{∫∞
0
R̄(1)(x, z, s)µ1(x)dx

+
∫∞

0
R̄(2)(x, z, s)µ2(x)dx

}
+ p1

∫∞
0
V (x, z, s)γ(x)dx, n ≥ 0. (41)

Performing similar operation on equations (32) to (35), we get

zP̄ (2)(0, z, s) = p2[1− (s+ λ)Q̄(s)] + p2(1− r1)(1− θ)∫∞
0
P̄ (1)(x, z, s)µ1(x)dx+ p2λC(z)Q̄(s) + p2(1− r2)(1− θ)∫∞

0
P̄ (2)(x, z, s)µ2(x)dx+ p2(1− θ)

{∫∞
0
R̄(1)(x, z, s)µ1(x)dx

+
∫∞

0
R̄(2)(x, z, s)µ2(x)dx

}
+ p2

∫∞
0
V̄ (x, z, s)γ(x)dx, n ≥ 0, (42)

R̄(1)(0, z, s) = r1

∫∞
0
P̄ (1)(x, z, s)µ1(x)dx, (43)

R̄(2)(0, z, s) = r2

∫∞
0
P̄ (2)(x, z, s)µ2(x)dx, (44)

V̄n(0, z, s) =θ(1− r1)

∫ ∞
0

P̄ (1)
n (x, z, s)µ1(x)dx

+ θ

∫ ∞
0

R̄(1)
n (x, z, s)µ1(x)dx+ θ

∫ ∞
0

R̄(2)
n (x, z, s)µ2(x)dx

+ θ(1− r2)

∫ ∞
0

P̄ (2)
n (x, z, s)µ2(x)dx, n ≥ 0.

(45)

Integrating equations (36) to (40) between 0 and x, we obtain

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
, (46)

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
, (47)

R̄(1)(x, z, s) = R̄(1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
, (48)
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R̄(2)(x, z, s) = R̄(2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
, (49)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ(t)dt
. (50)

Again integrating equations (46) to (50) with respect to x, we have

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
, (51)

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
, (52)

R̄(1)(z, s) = R̄(1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
, (53)

R̄(2)(z, s) = R̄(2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
, (54)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λ− λC(z))

s+ λ− λC(z)

]
, (55)

where

B̄1(s+ λ− λC(z)) =

∞∫
0

e−[s+λ−λC(z)]xdB1(x),

B̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdB2(x),

V̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV (x),

are the Laplace-Stieltjes transform of the type 1 service time B1(x), type 2 service time B2(x)

and vacation time V (x). Now multiplying both sides of equations (46) to (50) by µ1(x), µ2(x),
µ1(x), µ2(x) and γ(x), respectively, and integrating over x, we obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ− λC(z)], (56)

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λ− λC(z)], (57)
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∞∫
0

R̄(1)(x, z, s)µ1(x)dx = R̄(1)(0, z, s)B̄1[s+ λ− λC(z)], (58)

∞∫
0

R̄(2)(x, z, s)µ2(x)dx = R̄(2)(0, z, s)B̄2[s+ λ− λC(z)], (59)

∞∫
0

V̄ (x, z, s)γ(x)dx = V̄ (0, z, s)V̄ [s+ λ− λC(z)]. (60)

Using equations (56) and (57) in (43) and (44), we get

R̄(1)(0, z, s) = r1B̄1(a)P̄ (1)(0, z, s), (61)

R̄(2)(0, z, s) = r2B̄2(a)P̄ (2)(0, z, s), (62)

where a = s+ λ− λC(z).

Using equations (56) to (59) in (45), we get

V̄ (0, z, s) =θ(1− r1)B̄1(a)P̄ (1)(0, z, s) + θB̄1(a)R̄(1)(0, z, s)

+ θ(1− r2)B̄2(a)P̄ (2)(0, z, s) + θB̄2(a)R̄(2)(0, z, s).
(63)

Using equations (61) and (62) in the above equation, we have

V̄ (0, z, s) =θB̄1(a)(1− r1 + r1B̄1(a))P̄ (1)(0, z, s)

+ θB̄2(a)(1− r2 + r2B̄2(a))P̄ (2)(0, z, s).
(64)

Using equations (56) to (64) in (41) and (42), we get

P̄ (1)(0, z, s) =p1[1− (s+ λ)Q̄(s)] + λp1C(z)Q̄(s)

+ p1B̄2(a)BP̄ (2)(0, z, s),
(65)

P̄ (2)(0, z, s) =p2[1− (s+ λ)Q̄(s)] + λp2C(z)Q̄(s)

+ p2B̄1(a)AP̄ (1)(0, z, s),
(66)

where

A = (1− r1 + r1B̄1(a))(1− θ + θV̄ (a)) and

B = (1− r2 + r2B̄2(a))(1− θ + θV̄ (a)).
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From equations (65) and (66), we get

P̄ (1)(0, z, s) =
p1[1− sQ̄(s)] + p1λ(C(z)− 1)Q̄(s)

Dr
, (67)

where

Dr = z − (1− θ + θV̄ (a))[p1B̄1(a)(1− r1 + r1B̄1(a))

+p2B̄2(a)(1− r2 + r2B̄2(a))], (68)

P̄ (2)(0, z, s) =
p2[1− sQ̄(s)] + λp2(C(z)− 1)Q̄(s)

Dr
. (69)

By substituting equations (67) and (69) in (61), (62) and (64), we get

R̄(1)(0, z, s) =
r1B̄1(a)[p1(1− sQ̄(s)) + p1λ(C(z)− 1)Q̄(s)]

Dr
, (70)

R̄(2)(0, z, s) =
r2B̄2(a)[p2(1− sQ̄(s)) + p2λ(C(z)− 1)Q̄(s)]

Dr
, (71)

V̄ (0, z, s) = θ
Dr

[p1B̄1(a)(1− r1 + r1B̄1(a)) + p2B̄2(a)

×(1− r2 + r2B̄2(a))][λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))]. (72)

By substituting equations (67), (69) to (72) in (51) to (55), we have

P̄ (1)(z, s) =
[λp1(C(z)− 1)Q̄(s) + p1(1− sQ̄(s))]

Dr

[
1− B̄1(a)

a

]
, (73)

P̄ (2)(z, s) =
[λp2(C(z)− 1)Q̄(s) + p2(1− sQ̄(s))]

Dr

[
1− B̄2(a)

a

]
, (74)

R̄(1)(z, s) =
r1B̄1(a)[λp1(C(z)− 1)Q̄(s) + p1(1− sQ̄(s))]

Dr

[
1− B̄1(a)

a

]
, (75)

R̄(2)(z, s) =
r2B̄2(a)[λp2(C(z)− 1)Q̄(s) + p2(1− sQ̄(s))]

Dr

[
1− B̄2(a)

a

]
, (76)

V̄ (z, s) = θ
Dr

[p1B̄1(a)(1− r1 + r1B̄1(a)) + p2B̄2(a)(1− r2 + r2B̄2(a))]

×[λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))]
[

1−V̄ (a)
a

]
. (77)
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Thus, P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s) are completely determined from
equations (73) to (77).

5. The steady state results

In this section, we shall derive the steady state probability distribution for our queueing model.
To define the steady state probabilities, we suppress the argument t wherever it appears in the
time-dependent analysis. This can be obtained by applying the Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t). (78)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s) completely, we
have yet to determine the unknown Q which appears in the numerators of the right hand sides
of equations (73) to (77). For that purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) +R(1)(1) +R(2)(1) + V (1) +Q = 1.

The steady state probabilities for M [X]/G/1 queue with two types of service, optional re-service
and Bernoulli vacation are given by

P (1)(1) =
λp1E(I)E(B1)Q

dr
,

P (2)(1) =
λp2E(I)E(B2)Q

dr
,

R(1)(1) =
λr1p1E(I)E(B1)Q

dr
,

R(2)(1) =
λr2p2E(I)E(B2)Q

dr
,

V (1) =
λθE(I)E(V )Q

dr
,

where

dr = 1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )], (79)

P (1)(1), P (2)(1), R(1)(1), R(2)(1), V (1) and Q are the steady state probabilities that the server
is providing type 1 service, type2 service, type 1 re-optional service, type 2 re-optional service,
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server under vacation and idle respectively without regard to the number of customers in the
queue. Thus multiplying both sides of equations (73) to (77) by s, taking limit as s → 0,
applying property (78) and simplifying, we obtain

P (1)(z) =
p1[B̄1(b)− 1]Q

D(z)
, (80)

P (2)(z) =
p2[B̄2(b)− 1]Q

D(z)
, (81)

R(1)(z) =
p1r1B̄1(b)[B̄1(b)− 1]Q

D(z)
, (82)

R(2)(z) =
p2r2B̄2(b)[B̄2(b)− 1]Q

D(z)
, (83)

V (z) =
θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))][V̄ (b)− 1]

D(z)
, (84)

where

D(z) = z − (1− θ + θV̄ (b))[p1B̄1(b)(1− r1 + r1B̄1(b))

+p2B̄2(b)(1− r2 + r2B̄2(b))], (85)

and b = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size irrespective of the state
of the system. Then adding equations (80) to (84), we obtain

Wq(z) = P (1)(z) + P (2)(z) +R(1)(z) +R(2)(z) + V (z)

=
p1[B̄1(b)− 1]Q

D(z)
+
p2[B̄2(b)− 1]Q

D(z)
+
p1r1B̄1(b)[B̄1(b)− 1]Q

D(z)

+
θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))][V̄ (b)− 1]Q

D(z)

+
p2r2B̄2(b)[B̄2(b)− 1]Q

D(z)
. (86)

In order to find Q, we use the normalization condition Wq(1) + Q =1. We see that for z=1, Wq(1)

is indeterminate of the form 0/0. Therefore, we apply L’Hospital’s rule and on simplifying, we
get



AAM: Intern. J., Vol. 11, Issue 2 (December 2016) 519

Wq(1) =
λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]Q

dr
, (87)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers, E(V ) = −V̄ ′(0),
E(Bi) = −B̄′i(0) for i = 1, 2.

Therefore, adding Q to equation (87), equating to 1 and simplifying, we get

Q = 1− ρ, (88)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )], (89)

where ρ < 1, is the stability condition under which the steady state exists. Equation (88) gives
the probability that the server is idle.

By knowing Q from (88), we have completely and explicitly determined Wq(z), the probability
generating function of the queue size.

6. The average queue size and average waiting time

Let Lq denote the mean number of customers in the queue. Then,

Lq =
d

dz
Wq(z) at z = 1,

since this formula gives 0/0 form. Then we write Wq(z) given in (86) as

Wq(z) =
N(z)

D(z)
Q,

where

N(z) =p1(B̄1(b)− 1)(1 + r1B̄1(b)) + p2(B̄2(b)− 1)(1 + r2B̄2(b))

+ θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))]

× (V̄ (b)− 1),

and D(z) given in equation (85). Then, we use
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Lq = lim
z→1

d

dz
Wq(z)

= lim
z→1

[
D′(z)N ′′(z)−N ′(z)D′′(z)

2(D′(z))2

]
Q

=

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q, (90)

where primes and double primes in equation (90) denote first and second derivative at z = 1

respectively. Carrying out the derivative at z = 1, we have

N ′(1) = λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )],

N ′′(1) = λ2(E(I))2[p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2) + θE(V 2)]

+λE(I(I − 1))[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]

+2λ2(E(I))2[p1r1(E(B1))2 + p2r2(E(B2))2]

+2θλ2(E(I))2E(V )[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)],

D′(1) = 1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )],

D′′(1) = −2λ2(E(I))2θE(V )[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

−λ2(E(I))2[θE(V 2) + p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2)]

−λE(I(I − 1))[θE(V ) + p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

−2λ2(E(I))2[p1r1(E(B1))2 + p2r2(E(B2))2],

where E(B2
1), E(B2

2) and E(V 2) are the second moment of type 1 service, type 2 service and
vacation time respectively. E(I(I−1)) is the second factorial moment of the batch size of arriving
customers. Further, we find the average system size L by using Little’s formula. Thus, we have

L = Lq + ρ, (91)

where Lq is obtained from equation (90) and ρ is obtained from equation (89).

Let Wq and W denote the average waiting time in the queue and in the system respectively.
Then, by using Little’s formula, we obtain,

Wq =
Lq
λ
,

W =
L

λ
,

where Lq and L have been found in equations (90) and (91).
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7. Particular cases

In this section, we analyze briefly some special cases of our model, which are consistent with
the existing literature.

7.1. Case 1

If server has no vacation i.e., θ=0. Then, our model reduces to the M [X]/G/1 queue with two
types of service and optional re-service.

Using this in the main result of (88), (89) and (90), we can find the the idle probability Q,

utilization factor ρ and the mean queue size Lq can be simplified to the following expressions

Q = 1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)],

ρ = λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)],

Lq =
1

2[1− λE(I)(p1(1 + r1)E(B1) + p2(1 + r2)E(B2))]{
λ2(E(I))2[p1(1 + r1)E(B2

1) + p2(1 + r2)E(B2
2)]

+ λE(I(I − 1))[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

+ 2λ2(E(I))2[p1r1(E(B1))2 + p2r2(E(B2))2]

}
.

The above result coincides with results given by Madan et al. (2004).

7.2. Case 2

If there is no second type of service i.e., p2= 0. Then, our model reduces to M [X]/G/1 queue
with re-service and Bernoulli vacation.

Using this in the main result of (88), (89) and (90) we can find the idle probability Q, utilization
factor ρ and the mean queue size Lq can be simplified to the following expressions

Q = 1− λE(I)[(1 + r1)E(B1) + θE(V )],

ρ = λE(I)[(1 + r1)E(B1) + θE(V )],

Lq =
1

2[1− λE(I)((1 + r1)E(B1) + θE(V ))]{
λ2(E(I))2[(1 + r1)E(B2

1) + θE(V 2)] + λE(I(I − 1))

× [(1 + r1)E(B1) + θE(V )] + 2λ2(E(I))2r1(E(B1))2

}
.
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7.3. Case 3

If there is no second type of service, re-service, no first type reservice, no vacation and C(z) = z.

i.e., p2 = 0, r1 = 0 and θ = 0, E(I) = 1 and E(I(I−1)) = 0. Then, our model reduces M/G/1

queueing system.

Using this in the main result of (88), (89) and (90), we can find the idle probability Q, utilization
factor ρ and the mean queue size Lq can be simplified to the following expressions

Q = 1− λE(B1),

ρ = λE(B1),

Lq =
λ2E(B2

1)

2(1− λE(B1))
.

We note that the above results coincide with the results given by Kashyap and Chaudhry (1988).

8. Numerical results

The most common distributions which are frequently used in the real time systems are the
exponential and Poisson distributions. In-fact, the exponential distribution is widely accepted
because the queueing models having exponential distribution are of practical utility and very easy
to be handled. The main target of selecting a proper distribution and estimating their parameters
is to provide a tractable analytical model giving a close approximation to the real life system
under consideration.

To numerically illustrate the results obtained in this work, we consider that the service times and
vacation times are exponentially distributed with rates µ1, µ2 and γ.

In order to see the effect of various parameters on server’s idle time Q, utilization factor ρ and
various other queue characteristics such as Lq, L,Wq,W .

We base our numerical example on the result found in case 1. For this purpose in Table I,
we choose the following arbitrary values: E(I) = 0.3, E(I(I − 1)) = 0.04, r1 = 0.4,

r2 = 0.5, µ1 = 6, µ2 = 4 and p1 = 0.4, p2 = 0.6 while λ varies from 0.1 to 1.0 such that the
stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time decreases while the
utilization factor, the average queue size, system size of our queueing model are all increases.

We base our numerical example on the result found in case 2. For this purpose in Table II we
choose the following arbitrary values: E(I) = 0.3, E(I(I − 1)) = 0.04, r1 = 0.3, µ1 = 4,
θ = 0.6, λ = 2 while γ varies from 1 to 10 such that the stability condition is satisfied.

It clearly shows as long as increasing the vacation rate, the server’s idle time increases while the
utilization factor, average queue size, system size of our queueing model are all decreases.

For the effect of the parameters λ, γ,Wq,W on the system performance measures, two dimen-
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Table I: Computed values of various queue characteristics
λ Q ρ Lq L

0.1 0.990450 0.009550 0.000729 0.010279

0.2 0.980900 0.019100 0.001647 0.020747

0.3 0.971350 0.028650 0.002759 0.031409

0.4 0.961800 0.038200 0.004070 0.042270

0.5 0.952250 0.047750 0.005588 0.053338

0.6 0.942700 0.057300 0.007317 0.064617

0.7 0.933150 0.066850 0.009266 0.076116

0.8 0.923600 0.076400 0.011439 0.087839

0.9 0.914050 0.085950 0.013846 0.099796

1.0 0.904500 0.095500 0.016492 0.111992

Table II: Computed values of various queue characteristics
γ Q ρ Lq L

1 0.445000 0.555000 0.537798 1.092798
2 0.625000 0.375000 0.207760 0.582760
3 0.685000 0.315000 0.141372 0.450372
4 0.715000 0.285000 0.114969 0.399969
5 0.733000 0.267000 0.101191 0.368191
6 0.745000 0.255000 0.092846 0.347846
7 0.753570 0.246430 0.087290 0.333718
8 0.760000 0.240000 0.083342 0.323342
9 0.765000 0.235000 0.080401 0.315401

10 0.769000 0.231000 0.078129 0.309129

sional graphs are drawn.

Figure 1 shows that the increasing arrival rate λ waiting time in the queue and system also
increases. Figure 2 shows that when vacation rate γ increases then waiting time in the queue and
system decreases.

9. Conclusion

In this paper, we investigated a single server, batch arrival queueing systems with phase service
and Bernoulli vacation. The probability generating functions of the number of customers in
the queue and system, waiting time in the queue and system on Bernoulli vacation is found by
using the supplementary variable technique. The phase service queueing models have found wide
applications in the modeling and analysis of day-to-day as well as several industrial systems. The
main aim of the present survey is to suggest a unified framework for analyzing the phase service
models via queue theoretic approach. The phase service queueing models with the combination
of different concepts have been reviewed. Queueing models with phase service are helpful for
resolving the problem of congestion and can be treated as an effective tool, for reducing the
blocking and delay of the concerned system and are preferred by the system analysts, engineers,
and managers for depicting the more realistic scenario of congestion problems. Simulation of the
given phenomenon has been done with the help of a real life situation. The numerical illustrations
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given provide an insight regarding computational tractability of the analytical results established
for the concerned model.
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