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Abstract

In this paper we establish conditions that imply the conditional full support (CFS) property,
introduced by Guasoni et al. (2008), for the processes St = Rt +

∫ t
0
φsdB

H
s , where BH is a

Fractional Brownian motion, R is a continuous process, and the processes R and φ are either
progressive or independent of BH . Moreover we build the absence of arbitrage opportunities
without calculating the risk-neutral probability.
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1. Introduction

Condition full support (CFS) is a straightforward condition on asset prices stating that from any
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time, the asset price path can continue arbitrarily close to any given path with positive conditional
probability. The CFS’s notion was introduced by Guasoni et al. (2008), where it was proved that
the fractional Brownian motion with arbitrary Hurst parameter has a desired property. Then,
this later was generalized by Cherny (2008), who showed that any Brownian moving average
satisfies the CFS. After that, this property was established for Gaussian processes with stationary
increments by Gasbarra (2011).

Let’s note that, by the main result of Guasoni et al. (2008), the CFS generates the consistent
price systems which admits a martingale measure.

Pakkanan (2009) established conditions that imply the conditional full support for the process
Z := R + φ ∗W , where W is a Brownian motion and R is a continuous process.

In this paper, we enjoy this property by thinking of the problems of no arbitrage for asset prices
driven by a fractional Brownian motion process.

The layout of the paper is as follows. Section 2 contains results on consistent price system and
conditions that imply the conditional full support. In Section 3 we present some useful basic
concepts on fractional Brownian motion needed for our main resul. In Section 4 we provide our
main result on conditional full support for the process St = Rt +

∫ t
0
φsdB

H
s , where BH is a

fractional Brownian motion and build the absence of arbitrage opportunities without calculating
the risk-neutral probability by the existence of the consistent price systems. Finally, in Section
5 we finish the paper by a small conclusion.

2. Basic Definitions and Results on Stochastic Integral and Conditional Full Support

2.1. Conditional Full Support

2.1.1. Definitions

Recall first that when E is separable metric space and µ : B(E) → [0, 1] is a Borel probability
measure, the support of µ, denoted by supp(µ), is the unique minimal closed set A ⊂ E such that
µ(A) = 1. Let (Xt)t∈[0,T ] be a continuous stochastic process taking values in an open interval
I ⊂ R, defined on a complete probability space (Ω,F ,P), and let F = (Ft)t∈[0,T ] be a filtration
on this space. Moreover, let Cx([u, v], I) be the space of function f ∈ C([u, v], I) such that
f(u) = x ∈ I. As usual, we equip the space C([u, v], I) and Cx([u, v], I), x ∈ I, with the uniform
topologies.

The two next definitions given in Guasoni et al. (2008) present the notion of Conditional Full
Support (CFS) as well as that of consistent price system.

Definition.

We say that the process X has Conditional Full Support (CFS) with respect to the filtration F,
or briefly F-CFS, if

• X is adapted to F,
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• for all t ∈ [0, T ) and P-almost all ω ∈ Ω,
supp(law[(Xu)u∈[t,T ]|Ft](ω)) = CXt(ω)([t, T ], I).

Definition.

Let ε > 0. An ε-consistent price system to X is a pair (X̃,Q), where Q is a probability measure
equivalent to P and X̃ is a Q-martingale in the filtration F , such that

1

1 + ε
≤ X̃i(t)

Xi(t)
≤ 1 + ε, almost surely for all t ∈ [0, T ] and i = 1, . . . , n.

2.1.2. Stochastic integral and Conditional Full Support

Recall the results about CFS for processes of the form

Zt := Rt +

∫ t

0

φsdWs, t ∈ [0, T ],

where R is a continuous process, the integrator W is a Brownian motion, and the integrand φ

satisfies some varying assumptions. We focus on two cases.

(1) Independent integrands and Brownian integrators

Theorem 2.1. (Pakkanan, 2009)

Let us define

Zt := Rt +

∫ t

0

φsdWs, t ∈ [0, T ].

Suppose that

• (Rt)t∈[0,T ] is a continuous process,
• (φt)t∈[0,T ] is a measurable process s.t.

∫ T
0
φ2
sds <∞ a.s,

• (Wt)t∈[0,T ] is a standard Brownian motion independent of R and φ.

If we have

meas(t ∈ [0, T ] : φt = 0) = 0 P− a.s, (meas: Lebesgue measure),

then Z has CFS.

As an application of this theorem, several popular stochastic volatility models which have the
CFS property can be presented.

Application to stochastic volatility model

Let us consider the price process (Pt)t∈[0,T ] in R+ given by:

dPt = Pt(f(t, Vt)dt+ ρg(t, Vt)dBt +
√

1− ρ2g(t, Vt)dWt,

P0 = p0 ∈ R+, where

(1) f, g ∈ C([0, T ]× Rd,R),

(2) (B,W) is a planar Brownian motion,
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(3) ρ ∈ (−1, 1),
(4) V is a (measurable) process in Rd s.t. g(t, Vt) 6= 0 a.s. for all t ∈ [0, T ],
(5) (B, V ) is independent of W.

Using Itôs formula, we have

logPt = logP0 +

∫ t

0

(f(s, Vs)−
1

2
g(s, Vs)

2)ds+ ρ

∫ t

0

g(s, Vs)dBs︸ ︷︷ ︸
=Rt

.

+
√

1− ρ2

∫ t

0

g(s, Vs)dWs︸ ︷︷ ︸
=φs

.

Since W is independent of B and V, the previous theorem implies that logP has CFS and from
the next remark which entails that P has CFS.

Recall that if I ⊂ R is an open interval and f : R −→ I is a homeomorphism, then g 7−→ f ◦ g
is a homeomorphism between Cx([0, T ]) and Cf(x)([0, T ], I). Hence, for f(X), understood as a
process in I, we have

f(X) has F− CFS ⇐⇒ X has F− CFS. (1)

Next, we relax the assumption about independence, and consider the second case:

(2) Progressive integrands and Brownian integrators

Let’s note that the assumption about independence between W and (R,φ) cannot be dispensed
with in general without imposing additional conditions. Namely, if,

Rt = 1;φt := eWt− 1
2
t; t ∈ [0, T ],

then Z = φ = ξ(W ), the Doléans exponential of W , which is strictly positive does not have
CFS, if the process is considered in R.

Theorem 2.2. (Pakkanan, 2009)

Suppose that

• (Xt)t∈[0,T ] is a continuous process,
• R and φ are progressive [0, T ]× C([0, T ])2 −→ R,
• ε is a random variable,
• and Ft = σ{ε,Xs,Ws : s ∈ [0, t]}, t ∈ [0, T ].

If W is an Ft∈[0,T ]−Brownian motion and

• E[eλ
∫ T
0 φ−2

s ds] <∞ for all λ > 0,

• E[e2
∫ T
0 φ−2

s h2sds] <∞, and
•
∫ T

0
φ2
sds ≤ K a.s for some constant K ∈ (0,∞),
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then the process

Zt = ε+

∫ t

0

Rsds+

∫ t

0

φsdWs, t ∈ [0, T ]

has CFS.

3. Fractional Brownian Motion

In this part of paper, we give some definitions and existing results on fractional Brownian motion
presented in Nahmani (2009). First let’s note that the name fractional Brownian motion (fBm)
was given by Mandelbrot and Van Ness (1968). However, Kolmogorov studied it first within the
Hilbert Space framework.

The fBm is a H-sssi process (self-similar process with stationary increments) that has stationary
increments. It is the unique Gaussian H-sssi process. It has very important and powerful properties
for many applications. One of them is its memory. It has many applications in telecommunications
as well as in finance.

Definition.

For H ∈ (0, 1), a standard fractional Brownian motion of Hurst parameter H is a centered and
continuous Gaussian process, denoted by (B

(H)
t )t∈T , with covariance function

E(B
(H)
t B(H)

s ) =
1

2
(| t |2H + | s |2H − | t− s |2H := RH(t, s).

There is another classic definition of the fBm using self-similar properties, which is given in the
following theorem.

Theorem 3.1. (Nahmani, 2009)

For H ∈ (0, 1), the fBm (B
(H)
t )t∈R+ is a Gaussian H-sssi process.

Next, we present two different representations of fBm given in Nahmani (2009); representions
of fBm on a finite interval and Lévy-Hida representation.

A. Representions of fBm on a finite interval

The fBm can be presented as a Wiener integral but defined on an interval, e.g. commonly taken
as [0, T ]. We shall still use fractional analysis.

For a one-sided fBm (B
(H)
t )0≤t≤T , a general formula is given as

B
(H)
t =

∫ t

0

KH(t, s)dBs, t ∈ [0, T ], (2)

where (Bt)0≤t≤T is a one-sided standard Brownian motion.
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B. Lévy-Hida Representation

Note that the fractional Brownian motion is a particular case of Volterra processes. Following
Decreusfond and Üstünel (1999) we have this kernel

KH(t, s) =
(t− s)H−

1
2

+

Γ(H + 1
2
)
F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
, 0 < s < t <∞,

where F is the Gauss hypergeometric function. Remark that, generally, the covariance RH(t, s)

of BH is given by

RH(t, s) =

∫ t∧s

0

KH(t, u)KH(s, u)du.

Indeed, by (2), it follows that

RH(t, s) = E(B
(H)
t B(H)

s ) = E

(∫ t∧s

0

KH(t, u)KH(s, u)dBu

)
=

∫ t∧s

0

KH(t, u)KH(s, u)du.

• Case H ∈
(

1
2
, 1

)
.

Proposition 3.1. (Nahmani, 2009)

For the case H ∈
(

1
2
, 1

)
, the kernel KH can be written as

KH(t, s) = cHs
1
2
−H
∫ t

s

| u− s |H−
3
2 uH−

1
2du, t > s,

where

cH =

(
H(2H − 1)

B(2− 2H,H − 1
2
)

) 1
2

,

and

B the Beta function, i.e. B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

Corollary 3.1. (Nahmani, 2009)

Besides, we have

RH(t, s) = ($1(H))2

∫ T

0

(
r

1
2
−H(I

H− 1
2

T− uH−
1
2 1[0,t)(u))(r)

)(
r

1
2
−H(I

H− 1
2

T− uH−
1
2 1[0,s)(u))(r)

)
dr,

with $1(H) =

(
Γ(H− 1

2
)2H(2H−1)

B(2−2H,H6 1
2

)

) 1
2

.

Theorem 3.2. (Nahmani, 2009)

The representation of a fBm for H ∈
(

1

2
, 1

)
over a finite interval is

B
(H)
t =

∫ t

0

KH(t, s)dWs, s, t ∈ [0, T ],
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where (Wt)t∈[0,T ] is a particular Wiener process.

• Case H ∈
(

0, 1
2

)
.

Corollary 3.2. (Nahmani, 2009)

For the case H ∈
(
0, 1

2

)
we have that the kernel is given by

KH(t, s) = bH

((
t

s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
s

1
2
−H
∫ t

s

(u− s)H−
1
2uH−

1
2du

)
,

where

bH =

(
2H

(1− 2H)B(1− 2H,H + 1
2
)

) 1
2

.

4. Main Result

The main aim of this part of paper is to enjoy the CFS property by thinking of the problems of
no arbitrage for stochastic integral in which the fractional Brownian motion is the integrator.

So, in this paper we extend the work of Guasoni et al. (2008) by incorporating an application
using the concept of fractional Brownain motion which is the integrator. The presentation of the
process for which we shall study the Wiener integration with respect to it is based on Embrechts
et al. (2002), Samorodnitsky et al. (1994), and Mandelbrot and Van Ness (1968).

First let us present a theorem which will be useful to show the absence of arbitration without
calculating the risk-neutral probability.

Theorem 4.1. (Guasoni et al., 2008)

Let Xt be an Rd
+-valued, continuous adapted process satisfying CFS. Then X admits an ε-

consistent pricing system for all ε > 0.

Our main result is given in the following theorem.

Theorem 4.2.

Let us consider the process

St = Rt +

∫ t

0

φsdB
H
s ,

where

• (Rt)t∈[0,T ] is a continuous adapted process,
• (φt)t∈[0,T ] is elementary predictable s.t.

∫ T
0
φ2
sds <∞ a.s.,

• (BH
t )t∈[0,T ] is a fractional Brownian motion independent of R and φ.

If we have

meas(t ∈ [0,T] : φt = 0) = 0, P− a.s., (meas: Lebesgue measure),
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then S has CFS.

Proof :

We adapt the proof of proposition 4.2 (Guasoni et al., 2008).

Let

J(t) =

∫ t

0

φsdB
H
s .

By considering the restriction of S on an interval [v, µ], v < µ < T , it is sufficient to prove
that the conditional law P (J

[v,T ]
| Fv) has full support on CJv([v, µ],R) almost surely. And it is

enough to show this property on an interval, where φ is constant with respect to time (and thus
continuous). Thus, we can take T small enough such that φ has the form φ(t) = ξ on [v, T ],
where ξ 6= 0 and it is Fv-measurable.

So, we have to prove that

J(t) =

∫ t

v

φsKH(t, s)dBs, s ∈ [v, T ]

has full support on C0([v, T ],R).

Theorem 3 in Decreusefond and Üstünel (1999) states that the topological support of a continuous
Gaussian process is equal to the norm closure of its reproducing kernel Hilbert space.

In our case, the support of J(t) is

H :=

{
f ∈ C0([v, T ],R) : f(t) =

∫ t

v

φ(s)KH(t, s)g(s)ds, for some g ∈ L2[v, T ]

}
.

Thus, it is sufficient to show that H is norm-dense in C0([v, T ],R).

To achieve this, we need to recall the Liouville fractional integral operator for any f ∈ L1[a, b]

and α > 0,

(Iαa+g)(t) :=
1

Γ(α)

∫ t

a

g(s)(t− s)α−1ds, a ≤ t ≤ b,

and to introduce the kernel operator KH ,

(KHg)(t) :=

∫ t

0

KH(t, s)g(s)ds, f ∈ L2[0, T ], t ∈ [0, T ].

(1) We first treat the case H < 1
2
.

(KH(gφ))(t) := ξ

∫ t

v

KH(t, s)g(s)ds, g ∈ L2[0, T ], t ∈ [0, T ].

In this case, we have via Theorem 2.1 (Decreusefond and Üstünel, 1999), that

(KH(gφ)) = I2H
0+ (s

1
2
−HI

1
2
−H

0+ (sH−
1
2 (gφ)(s)))

The argument needs to be split into two steps.
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• Step 1. Via the following Lemma.

Lemma 4.1. (Guasoni et al., 2008)

If g ∈ C0[v, T ], then L1g ∈ C0([v, T ], where

(L1g)(t) = (I
1
2
−H

0+ (sH−
1
2 (g)(s)))(t).

Moreover, L1 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range (with respect to the
uniform norm).

We have ϕ ∈ C0[v, T ]. Then L1ϕφ ∈ C0([v, T ]), where

(L1ϕφ)(t) = (I
1
2
−H

0+ (sH−
1
2 (gφ)(s)))(t).

Recall the identity for a, b > 0,∫ t

0

(t− u)a−1ub−1du = C(a, b)ta+b−1,

where C(a, b) 6= 0 is a constant. Defining, for a fixed α > 0,

ϕ(s) :=
(s− v)α

ξsH−
1
2

,

we obtain, for t ∈ [v, T ],

(L1ϕφ)(t) =
ξ

Γ(1
2
−H)

∫ t

v

(t− s)−H−
1
2ϕ(s)sH−

1
2 ds

=
1

Γ(1
2
−H)

∫ t

v

(t− s)−H−
1
2 (s− v)α ds

≤
∫ t−v

0

uα(t− v − u)−H−
1
2 du

= C
(

1

2
−H,α + 1

)
(t− v)α−H+ 1

2 .

(3)

Varying α, we find that (t−v)n ∈ Im(L1) for n ≥ 1 and the Stone-Weierstrass theorem guarantees
that Im(L1) is dense in C0[v, T ].

• Step 2. Via the following Lemma.

Lemma 4.2. (Guasoni et al., 2008)

If g ∈ C0[v, T ], then L2g ∈ C0([v, T ], where

(L2g)(t) = (I2H
O+(s

1
2
−Hg(s)))(t)

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range.

We have g ∈ C0[v, T ], then L1gφ ∈ C0([v, T ]), where

(L2gφ)(t) = (I2H
O+(s

1
2
−H(gφ)(s)))(t)

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range.
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Since the restriction of KH to C0[v, T ] is exactly L2◦L1, we may conclude that KH : C0[v, T ] −→
C0[v, T ] has dense range and, a fortiori, H is norm-dense in C0[v, T ].

(2) In the case H ≥ 1
2
, a similar representation holds as seen in Theorem 2.1 (Decreusefond

and Üstünel, 1999),

KH(gφ) = I1
0+(sH−

1
2 I

H− 1
2

0+ (s
1
2
−H(gφ))),

This argument also needs to be split into two steps.

• Step 1. We have g ∈ C0[v, T ]. Then L3gφ ∈ C0([v, T ], where

(L3(gφ))(t) = ξ(I1
0+(sH−

1
2 g(s)))(t).

Defining, for a fixed α > 0,

g(s) :=
(s− v)α

ξs
1
2
−H

,

we obtain, for t ∈ [v, T ],

(L3gφ)(t) =
ξ

Γ(H − 1
2
)

∫ t

v

(t− s)H−
3
2 g(s)s

1
2
−H ds

=
1

Γ(H − 1
2
)

∫ t

v

(t− s)H−
3
2 (s− v)α ds

≤
∫ t−v

0

uα(t− v − u)H−
3
2 du

= C(H − 1

2
, α + 1)(t− v)α+H− 1

2 .

(4)

Varying α, we find that (t−v)n ∈ Im(L3) for n ≥ 1 and the Stone-Weierstrass theorem guarantees
that Im(L3) is dense in C0[v, T ].

• Step 2. We have g ∈ C0[v, T ], then L4gφ ∈ C0([v, T ], where

(L4(gφ))(t) = ξ(I1
0+(sH−

1
2 (gφ)(s)))(t)

and Im(L4) is dense in C0[v, T ].

Since the restriction of KH to C0[v, T ] is exactly L4◦L3, we may conclude that KH : C0[v, T ] −→
C0[v, T ] has dense range and, a fortiori, H is norm-dense in C0[v, T ].

As a result, the (St) has the property of CFS and there is the consistent price systems which can
be seen as generalization of equivalent martingale measures.

Fundamentally on this observation we conclude that this price process doesn’t admit arbitrage
opportunities under arbitrary small transaction. With it we ensure no-arbitrage without calculating
the risk-neutral probability. In this paper we have investigated the conditional full support by the
process when the fractional Brownian motion is the integrator, and we have also built the absence
of arbitrage opportunities without calculating the risk-neutral probability by the existence of the
consistent price systems which admits a martingale measure.
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5. Conclusion

In this paper we have investigated the conditional full support by the process when the fractional
Brownian motion is the integrator, and we have also built the absence of arbitrage opportunities
without calculating the risk-neutral probability by the existence of the consistent price systems
which admits a martingale measure.
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