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Abstract

Multivariate data with mixed ordinal and continuous responses with the possibility of non-
ignorable missingness are often common in follow up social studies and their analysis need to
be promoted. One of the standard methods of analysis is based on joint modelling. In this method,
we use that simultaneously allow modelling non-ignorable mechanism and a full likelihood-based
approach is used to obtain maximum likelihood estimates of parameters of joint modelling. In this
approach, when the dimension of the vector responses are increased, includes somehow troubling
computations which are often time-consuming. Another alternative is an approximation for multi-
variate normal probabilities for higher dimensional regions, based conditional expectations in joint
modelling. A comparison between approximation method and full likelihood-based approach is
used to obtain maximum likelihood estimates of parameters of joint modelling. To illustrate the
utility of the proposed model, a large data set excerpted from the British Household Panel Survey
(BHPS) is analyzed. For these data, the simultaneous effects of some covariates on life satisfaction,
income and the amount of money spent on leisure activities per month as three mixed correlated
responses are explored.
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1. Introduction

Higher dimensional probabilities from the multivariate normal distribution have many applications
in statistics. These include the multivariate probit model (Ochi and Prentice (1984)), the multi-
variate ordinal responses model (Anderson and Pemberton (1985)), the multivariate mixed ordinal
and continuous responses model. In general, these probabilities require multidimensional integrals,
which can be evaluated by multidimensional numerical quadrature or Monte Carlo simulation, al-
ternatively, approximations can be used if they are good enough. If estimation of parameters in one
of the foregoing models is obtained using a quasi-Newton routine applied to the log-likelihood,
then the use of Monte Carlo simulation to three or four decimal place accuracy of evaluation of
integrals works poorly, because numerical derivatives of the log-likelihood with respect to param-
eters are not smooth. Numerical quadrature has computational time (and memory requirements)
exponentially increasing in the dimension of the integral, so faster approximations are useful for
parameter estimation. For example, a faster approximation method can be used to get preliminary
estimates of the parameters, then, if necessary, one used a better approximation method or numer-
ical quadrature, taking the preliminary estimate as a starting point, when computing the likelihood
more accurately. Recent approximation for special cases have been given by Solow (1990) and
Joe (1995). Earlier approximations are mentioned in the book by Tong (1990), including one by
Mendell and Elston (1974) that is mentioned later in this article.

For joint modelling of responses, one method is to use the general location model of Olkin and
Tate (1961), where the joint distribution of the continuous and categorical variables is decomposed
into a marginal multinomial distribution of the categorical variables and a conditional multivariate
normal distribution for the continuous variables, given the categorical variables (for a mixed Pois-
son and continuous responses where Olkin and Tate’s method is used see Yang et al. (2007) and
for joint modelling of mixed outcomes using latent variables see McCulloch (2007)). A second
method for joint modelling is to decompose the joint distribution as a multivariate marginal dis-
tribution of the continuous responses and a conditional distribution for categorical variables given
the continuous variables. Cox and Wermuth (1992) empirically examined the choice between these
two methods. The third method uses simultaneous modelling of categorical and continuous vari-
ables to take into account the association between the responses by the correlation between errors
in the model for responses. For more details of this approach see, for example, Heckman (1978)
in which a general model for simultaneously analyzing two mixed correlated responses is intro-
duced and Catalano and Ryan (1992) who extended and used the model for a cluster of discrete
and continuous outcomes.

Rubin (1976), Little and Rubin (2002), and Diggle and Kenward (1994) made important distinc-
tions between the various types of missing mechanisms for each of the above-mentioned patterns.
They define the missing mechanism as missing completely at random (MCAR) if missingness is
dependent neither on the observed responses nor on the missing responses, and missing at random
(MAR) if, given the observed responses, it is not dependent on the missing responses. Missingness
is defined as non-random if it depends on the unobserved responses. From a likelihood point of
view MCAR and MAR are ignorable but not missing at random (NMAR) is non-ignorable. For
mixed data with missing outcomes, Little and Schuchter (1987) and Fitzmaurice and Laird (1997)
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used the general location model of Olkin and Tate (1961) with the assumption of missingness at
random (MAR) to justify ignoring the missing data mechanism.

The aim of this paper is to use and extend an approach similar to that of Joe (1995), for an ap-
proximation of the conditional probabilities in the joint model for mixed correlated continuous
and ordinal responses with missing data. The model is described in terms of a correlated multi-
variate normal distribution for the underlying latent variables of ordinal responses and continuous
responses. We compare an approximation method and full likelihood-based approach is used to
obtain maximum likelihood estimates of parameters of our model.

In Section 2, we introduce briefly the model and the likelihood. In Section 3, an approximation
conditional probabilities based on the moment-generating function of a truncated multivariate nor-
mal distribution is given. In Section 4, the proposed methodology is applied on the BHPS data.
Finally, concluding remarks are given.

2. Model and Likelihood

We use Yij to denote jth ordinal response for the ith individual with cj levels defined as,

Yij =


1, Y ∗ij < θ1,j ,

k + 1, θk,j ≤ Y ∗ij < θk+1,j , k = 1, ..., cj − 2,

cj , Y ∗ij ≥ θcj−1,j ,

where i = 1, ..., n, j = 1, ...,M1. θ1j , ..., θcj−1,j are the cut-point parameters and Y ∗ij denotes the
underlying latent variable for Yij .

The ordinal response vector for the ith individual and the continuous response vector for the ith in-
dividual are denoted by Yi = (Yi1, ..., YiM1

)′ and Zi = (Zi(M1+1), ..., ZiM )′. Typically, when missing
data occur in an outcome, assume Ryi = (Ryi1 , ..., RyiM1

)′ as the indicator vector of corresponding
to Yi and Ryij is defined as

Ryij =

{
1, R∗yij > 0,

0, otherwise,

Rzi = (Rzi(M1+1)
, ..., RziM )′ is the indicator vector for corresponding to Zi and Rzij is defined as,

Rzij =

{
1, R∗zij > 0,

0, otherwise,

where R∗yij and R∗zij denote the underlying latent variable of the non-response mechanism respec-
tively, for the ordinal and continuous variables.

The joint model takes the form:

Y ∗ij = β′jXi + ε
(1)
ij , j = 1, ...,M1,

Zij = β′jXi + ε
(2)
ij , j = M1 + 1, ...,M,

R∗yij = α′jXi + ε
(3)
ij , j = 1, ...,M1,

R∗zij = α′jXi + ε
(4)
ij , j = M1 + 1, ...,M,
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where Xi is the design matrix for the ith individual. In the above presented model, the vector of
parameters βj for j = 1, ...,M , the parameters θ1j , ..., θcj−1,j for j = 1, ...,M , should be estimated.
The vector, βj for j = M1 + 1, ...,M , includes an intercept parameter but βj , for j = 1, ...,M1, due
to having cutpoint parameters, are assumed not to include any intercept.

Let

εi = (ε
(1)′

i , ε
(2)′

i , ε
(3)′

i , ε
(4)′

i )′
iid∼MVN(0,Σε),

where ε(u)i = (ε
(u)
i1 , ..., ε

(u)
iM1

)′, for u = 1, 3, ε(u)i = (ε
(u)
i(M1+1), ..., ε

(u)
iM )′, for u = 2, 4 and

Σε =


Σε
11 Σε

12 Σε
13 Σε

14

Σε
21 Σε

22 Σε
23 Σε

24

Σε
31 Σε

32 Σε
33 Σε

34

Σε
41 Σε

42 Σε
43 Σε

44

 ,

where Σε
uu = V ar(ε

(u)
i ), for u = 1, 2, 3, 4 and Σε

uv = Cov(ε
(u)
i , ε

(v)
i ), u < v, u, v = 1, 2, 3, 4 and Σε

uv =

Σε
vu
′. Because of identifiability problem we have to assume V ar(Y ∗ij) = V ar(R∗yij ) = V ar(R∗yij ) = 1,

so Σε
jj = I for j = 1, 3, 4.

Note, if one of the matrices Σε
13,Σ

ε
14,Σ

ε
23,Σ

ε
24 is not zero, then the missing mechanism of response

is not at random.

We start with some notation. Let

Jyobs = {j : yij is observed}, JyMis = (Jyobs)
C ,

Jzobs = {j : zij is observed}, JzMis = (Jzobs)
C ,

Zi,obs = {Zij ,∀j ∈ Jzobs}, Yi,obs = {Yij , ∀j ∈ Jyobs},
Y ∗i,obs = {θyij−1 ≤ Y ∗ij ≤ θyij ,∀j ∈ J

y
obs}, Rz

i,obs
= {Rzij = 1,∀j ∈ Jzobs},

Ry
i,obs

= {Ryij = 1,∀j ∈ Jyobs}, R∗z
i,obs

= {R∗zij > 0,∀j ∈ Jzobs},

R∗zi,Mis = (R∗zi,obs)
C , R∗y

i,obs
= {R∗yij > 0,∀j ∈ Jyobs},

R∗yi,Mis = (R∗yi,obs)
C , Ryi = (Ryi1 , ..., RyiM1

)′,

Rzi = (Rzi(M1+1)
, ..., RziM )′, C∗Mis = {Ryij = 0; ∀j ∈ JyMis, Rzij = 0; ∀j ∈ JzMis}.

The likelihood for this model is

L =

n∏
i=1

P (Y ∗i,obs, R
∗
yi,obs , R

∗
zi,obs , C

∗
Mis|Zi,obs, Xi) f(Zi,obs|Xi),

where

P (Y ∗i,obs, R
∗
yi,obs , R

∗
zi,obs , C

∗
Mis|Zi,obs, Xi) = γ∗i − Γ∗yi − Γ∗zi + Γ∗yizi ,
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and

γ∗i = P (Y ∗i,obs, C
∗
Mis|Zi,obs, Xi),

Γ∗zi = P (Y ∗i,obs, C
∗
Mis, R

∗
zi,Mis |Zi,obs, Xi),

Γ∗yi = P (Y ∗i,obs, C
∗
Mis, R

∗
yi,Mis |Zi,obs, Xi),

Γ∗yizi = P (Y ∗i,obs, C
∗
Mis, R

∗
yi,Mis , R

∗
zi,Mis |Zi,obs, Xi).

We use the following definition and theorem for multivariate distributions to obtain the form of the
likelihood.

Definition 2.1.

If F (w1, · · · , wM1
) = P (W ∗1 ≤ w1, ...,W

∗
M1

≤ wM1
) is a distribution function, operator

∆bjajF (w1, · · · , wM1
) is defined as, (aj ≤ bj),

F (w1, · · · , w(j−1), bj , w(j+1), ..., wM1
)− F (w1, · · · , w(j−1), aj , w(j+1), ..., wM1

).

Theorem 2.2.

If for j = 1, ...,M1, aj ≤ bj , then

P (a1 < W ∗1 ≤ b1, ..., aM1
< W ∗M1

≤ bM1
) = ∆b1a1

· · ·∆bM1aM1
F (w1, · · · , wM1

),

where

∆b1a1
· · ·∆bM1

aM1
F (w1, · · · , wM1

) = F0 − F1 + F2 − ...+ (−1)M1FM1
,

and Fj is the sum of all

(
M1

j

)
terms of the from F (g1, ..., gM1

) with gk = ak for exactly j integers

in {1, ...,M1}, and gk = bk for the remaining M1 − j integers.

Proof:

See Ash and Dolens (2000). �

Suppose the g1− elements of Yi and g2− elements of Zi are observed, so Jyobs = {o1, ..., og1} and
Jzobs = {o1, ..., og2}. Using the Theorem 2.2,

γ∗i = ∆bo1ao1
...∆bog1aog1

P (Y ∗io1 ≤ ωio1 , ..., Y
∗
iog1
≤ ωiog1 , C∗Mis|Zi,obs, Xi),

= F
(1)
i0 − F

(1)
i1 + F

(1)
i2 − ...+ (−1)g1F

(1)
ig1
,

Γ∗zi = ∆bo1ao1
...∆bog1aog1

P (Y ∗io1 ≤ ωio1 , ..., Y
∗
iog1
≤ ωiog1 , C∗Mis, R

∗
zi,Mis |Zi,obs, Xi),

= F
(2)
i0 − F

(2)
i1 + F

(2)
i2 − ...+ (−1)g1F

(2)
ig1
,

Γ∗yi = ∆bo1ao1
...∆bog1aog1

P (Y ∗io1 ≤ ωio1 , ..., Y
∗
iog1
≤ ωiog1 , C∗Mis, R

∗
yi,Mis |Zi,obs, Xi),

= F
(3)
i0 − F

(3)
i1 + F

(3)
i2 − ...+ (−1)g1F

(3)
ig1
,

Γ∗yizi = ∆bo1ao1
...∆bog1aog1

P (Y ∗io1 ≤ ωio1 , ..., Y
∗
iog1
≤ ωiog1 , C∗Mis, R

∗
yi,Mis , R

∗
zi,Mis |Zi,obs, Xi),

= F
(4)
i0 − F

(4)
i1 + F

(4)
i2 − ...+ (−1)g1F

(4)
ig1
,
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where boj = θojyioj and aoj = θoj(yioj−1) for j = 1, ..., g1 and F (1)
ij , F

(2)
ij , F

(3)
ij and F (4)

ij are the sum of

all

(
g1
j

)
terms of the form

P (Y ∗ic1 ≤ c1, ..., Y
∗
icg1
≤ cg1 , C∗Mis|Zi,obs, Xi),

P (Y ∗ic1 ≤ c1, ..., Y
∗
icg1
≤ cg1 , C∗Mis, R

∗
zi,Mis |Zi,obs, Xi),

P (Y ∗ic1 ≤ c1, ..., Y
∗
icg1
≤ cg1 , C∗Mis, R

∗
yi,Mis |Zi,obs, Xi),

P (Y ∗ic1 ≤ c1, ..., Y
∗
icg1
≤ cg1 , C∗Mis, R

∗
yi,Mis , R

∗
zi,Mis |Zi,obs, Xi),

with ck = ak for exactly j integers in {1, ..., g1}, and ck = bk for the remaining g1 − j integers.

3. Approximation

Suppose the g1− elements of Yi and g2− elements of Zi are observed, so
Jyobs = {y1, ..., yg1}, J

y
Mis = {q1, ..., qM1−g1}, Jzobs = {z1, ..., zg2}, JzMis = {p1, ..., pM−g2−M1−1}

and Iijl = I{θj,yij−1≤Y ∗ij≤θj,yij ,Ryij=1,Rzil=1|zi,obs}, i = 1, ..., n, j ∈ Jyobs and l ∈ Jzobs, and Jijl =

J{Ryij=0,Rzil=0|zi,obs},i = 1, ..., n, j ∈ JyMis and l ∈ JzMis, where I(A) and J(B) denotes the indi-
cator of the even A and B.

For an approximation of the likelihood function, we are interested in the probability

P (Y ∗i,obs, R
∗
yi,obs , R

∗
zi,obs , C

∗
Mis|Zi,obs, Xi),

which can be decomposed as the product of conditional probabilities,

E(Iiy1z1)E(Jiq1p1 |Iiy1z1 = 1,..., Ii,yg1 ,zg2 = 1)

×
yg1∏
j=y2

zg2∏
l=z2

E[Iijl |Iiy1z1 = 1, ..., Ii,j−1,l−1 = 1]

×
Q∏

j′=q2

P∏
l′=p2

E[Jijl
∣∣Iiy1z1 = 1, ..., Ii,yg1 ,zg2 = 1 ,

Jiq1p1 = 1, ..., Ji,j′−1,l′−1 = 1],

where Q = qM1−g1 and P = pM−g1−M1−1. Now, the expectations in the right hand can be, approxi-
mated as (vide Joe (1995)), we have

E(Jiq1p1 |Iiy1z1 = 1,..., Ii,yg1 ,zg2 = 1) '

E(Jiq1p1) + Ω21Ω
−1
11 (1− E(Iiy1z1), ..., 1− E(Ii,yg1 ,zg2 ))′,

E[Iijl |Iiy1z1 = 1,..., Ii,j−1,l−1 = 1] ,

' E(Iijl) + ∆21∆
−1
11 (1− E(Iiy1z1), ..., 1− E(Ii,j−1,l−1))

′

× E[Jijl
∣∣Iiy1z1 = 1,..., Ii,yg1 ,zg2 = 1, Jiq1p1 = 1, ..., Ji,j′−1,l′−1 = 1] ,

' E(Iijl) + Γ21Γ
−1
11 (1− E(Iiy1z1), ..., 1− E(Ii,j−1,l−1), 1− E(Jiq1p1),

, ..., 1− E(Ji,j′−1,l′−1))
′,
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where Ω21 is a row vector consisting of the entries cov(Iiy1zl, Iihk), h = y1, ..., yg1 and k = z1, ..., zg2 ,
∆21 is a row vector consisting of the entries cov(Iiy1zl, Iihk), h = y1, ..., j−1 and k = z1, ..., l−1 and
Γ12 is a row vector consisting of the entries (cov(Iiy1zl, Iihk), cov(Jiq1pl, Jih′k′))

′ , h = y1, ..., j − 1,
k = z1, ..., l − 1 and h′ = q1, ..., j

′ − 1, k′ = p1, ..., l
′ − 1.

Ω11 is a (yg1 +zg2)×(yg1 +zg2) matrix with (j, l) element cov(Iijl, Iihk), h = y1, ..., yg1 , k = z1, ..., zg2 ,
∆11 is a a×a, a = j+ l−2, matrix with (j, l) element cov(Iijl, Iihk), h = y1, ..., j−1, k = z1, ..., l−1

and Γ11 is a b× b, b = j+ l+ j′+ l′− 4, matrix with (j, l) element (cov(Iijl, Iihk), cov(Jiq1pl, Jih′k′))
′,

h = y1, ..., j − 1, k = z1, ..., l − 1 and h′ = q1, ..., j
′ − 1, k′ = p1, ..., l

′ − 1.

So

L '
n∏
i=1

f(Zi,obs|Xi)E(Iiy1z1)[E(Jiq1p1)

+Ω21Ω
−1
11 (1− E(Iiy1z1), ..., 1− E(Ii,yg1 ,zg2 ))′)]

×
yg1∏
j=y2

zg1∏
l=z2

[E(Iijl) + ∆21∆
−1
11 (1− E(Iiy1z1), ...,

1− E(Ii,j−1,l−1))
′]×

Q∏
j′=q2

P∏
l′=p2

[E(Iijl) + Γ21Γ
−1
11

×(1− E(Iiy1z1), ..., 1− E(Ii,j−1,l−1), 1− E(Jiq1p1))
′].

4. Application

4.1. Data

The data used in this paper is excerpted from the 15th wave (2005) of the British Household Panel
Survey (BHPS); a longitudinal survey of adult Britons, being carried out annually since 1991 by
the ESRC UK Longitudinal Studies Center with the Institute for Social and Economic Research
at the University of Essex. These data are recorded for 11251 individuals. The selected variables
which will be used in this application are explained in the following. One of the responses is the
life Satisfaction (LS), which is measured by directly asking the level of an individual’s satisfaction
with life overall, resulting in three categories ordinal variable [1: Not satisfied at all (10.300%).
2: Not satisfied/dissent (45.400%) and 3: Completely satisfied (44.300 %)]. In our application, the
percentage of missing values of LS is 5.000%. The amount of money spent on leisure activities per
month including money spent on entertainment and hobbies (AM) is also measured as an ordinal
response with three categories, [0: Nothing (17.515 %). 1: Under 50 Pound (53.449%) and 2: 50
Pound or over (29.036%.)]. Moreover, the exact amount of individuals annual income (INC) in
the past year in thousand pounds, considered here in the logarithmic scale, is also excerpted as a
continuous response variable (mean: 4.068). As some values of annual income of thousand pounds
is between 0 and 1, some of the logarithms of incomes are less than 0. These three responses, LS,
AM and the logarithm of income are endogenous correlated variables and should be modelled as a
multivariate vector of responses.

Socio-demographic characteristics, namely: Gender (male: 44.200% and female: 55.800%), Mari-
tal Status (MS)[married or living as a couple: 68.500%, widowed: 8.300%, divorced or separated:
8.400% and never married: 14.800%], Age (mean: 49.180) and Highest Educational Qualification
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(HEQ) [higher or first degree: 15.100%, other higher QF: 64.600%, other QF: 2.000% and no
qualification: 18.300%] are also included in the model as covariates. The vector of explanatory
variables is

X = (Gender,Age,MS1,MS2,MS3, HEQ1, HEQ2, HEQ3),

where MS1, MS2 and MS3 are dummy variables for married or living as a couple, widowed and
divorced or separated, respectively, and HEQ1, HEQ2, HEQ3 are dummy variables for higher or
first degree, other higher QF, and other QF, respectively.

4.2. Models for BHPS Data

We apply the model described in section 2 to evaluate the effect of Age, Gender, HEQ and MS
simultaneously on LS, AM and Income. The model is

LS∗ = β11 MS1 + β12 MS2 + β13 MS3 + β14 HEQ1 + β15 HEQ2 + β16 HEQ3

+β17Gender + β18AGE + ε1,

AM∗ = β21 MS1 + β22 MS2 + β23 MS3 + β24 HEQ1 + β25 HEQ2 + β26 HEQ3

+β27Gender + β28AGE + ε2,

log(INC) = β30 + β31 MS1 + β32 MS2 + β33 MS3 + β34 HEQ1 + β35 HEQ2

+β36 HEQ3 + β37Gender + β38AGE + ε3,

R∗LS = α11 MS1 + α12 MS2 + α13 MS3 + α14 HEQ1 + α15 HEQ2 + α16 HEQ3

+α17Gender + α18AGE + ε4.

For this model the covariance matrix takes the form,

Σ =


1 ρ12 σρ13 ρ14
ρ21 1 σρ23 ρ24
σρ31 σρ32 σ2 σρ34
ρ14 ρ24 σρ34 1

 .

Here, a multivariate normal distribution with correlation parameters ρ12, ρ13, ρ14, ρ23, ρ24 and ρ34 is
assumed for the errors and these parameters should be also estimated.
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4.3. Results

In the first method (full likelihood approach) and the second method (approximation) are used to
obtain maximum likelihood estimates of parameters of the model for BHPS data. In this model
show a significant effect of age (the older the individual the more the life satisfaction), MS (mar-
ried people are more satisfied than never-married people and divorced or separated people are
less satisfied than never-married people), HEQ (the higher the qualification the higher the life sat-
isfaction) and gender (males are more satisfied than females) on the life satisfaction status. All
explanatory variables have significant effect on the ordinal the response of amount of money spent
on leisure activities. Never married people spend more on leisure time activities than other peo-
ple. The higher the education the more the leisure time activities. Females spend more amount of
money than males for leisure time and older people spend less money than younger ones. Also, the
effect of all explanatory variables are significant on the logarithm of income. Parameter estimates
indicate that as the degree of educational qualification increases log(INC) increases. Never married
people have less the logarithm of income than married people and divorced or separated people.
Females have more logarithm of income than males and the older people earn less money than
younger ones. By these results, we can conclude that the two responses are correlated and also
the missing indicator for LS is not related to three responses. This leads to having an at random
missing mechanism (A missing at random mechanism for LS which means no correlation between
error terms of (LS, R∗LS), (AM , R∗LS) and (log(Income), R∗LS).

In the first method (full likelihood approach) has computational time and memory requirements
exponentially increasing in the dimension of the vector of responses (computational time: 7 days),
but the second method (approximation)is faster than the first method (full likelihood approach), a
faster approximation method can be used to get preliminary estimates of the parameters, then, if
necessary, one used a better approximation method, taking the preliminary estimate as a starting
point, when computing the likelihood more accurately (computational time: 3 days).

5. Conclusion

In this paper an approximation for multivariate latent variable model is presented for simultane-
ously modelling of ordinal and continuous correlated responses. We assume a multivariate normal
distribution of errors in the model. However, any other multivariate distribution such as t or logis-
tic can also be used. Binary responses are a special case of ordinal responses. So, our the model
can also be used for mixed binary and continuous responses. For correlated nominal, ordinal and
continuous responses Deleon and Carriere (2007) have developed a model by extending general
location model. However, the kind of scientific question they can answer is different with what our
model can do (vide Section 1). Generalization of our model for nominal, ordinal and continuous
responses is an ongoing research on our part.
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Table 1. Results of using two models for BHPS data (FL: Full likelihood approach and Appro.: Approximation, param-
eter estimates highlighted in bold are significant at 5 % level.)

method(computational time) Appro. FL
[3ex] parameter Est. S.D. Est. S.D.

[3ex] Response:LS
[3ex] MS (baseline: Never married)

Married or Living as Couple 0.203 0.030 0.202 0.029

Widowed 0.031 0.041 0.032 0.039

Divorced or Separated -0.334 0.046 -0.358 0.044

HEQ (baseline: No QF)

Higher or First Degree - 0.060 0.097 -0.061 0.096

Other higher QF -0.206 0.373 -0.131 0.096

Other QF - 0.212 0.110 -0.210 0.100

Gender (baseline: Female)

Male 0.042 0.027 0.040 0.021
AGE 0.009 0.002 0.008 0.001

cutpoint 1 -1.000 0.113 -0.987 0.102

cutpoint 2 0.466 0.131 0.450 0.119
[3ex] Response:AM

[3ex] Married or Living as Couple -0.190 0.030 -0.185 0.032

Widowed -0.236 0.057 -0.235 0.055
Divorced or Separated -0.262 0.042 -0.259 0.047

Higher or First Degree 0.582 0.085 0.578 0.095
Other higher QF 0.290 0.084 0.288 0.091

Other QF -0.082 0.089 -0.079 0.088
Gender (baseline: Female)

Male -0.462 0.020 -0.449 0.022

AGE -0.015 0.003 -0.014 0.001

cutpoint 1 -2.353 0.125 -2.331 0.105

cutpoint 2 -0.701 0.124 -0.690 0.122
[3ex] Response: log(INC)

Constant 4.246 0.038 4.245 0.039

Married or Living as Couple 0.114 0.011 0.113 0.011

Widowed 0.217 0.019 0.216 0.019
Divorced or Separated 0.215 0.077 0.216 0.016

Higher or First Degree 0.391 0.037 0.393 0.036

Other higher QF 0.177 0.038 0.178 0.035

Other QF 0.032 0.037 0.033 0.035

Male -0.227 0.007 -0.225 0.007

AGE -0.002 0.001 -0.003 0.001

σ2 0.154 0.002 0.155 0.002

[3ex] Response:R∗LS

Cutpoint 0.958 0.028 1.458 0.010

Married or Living as Couple 0.017 0.004 0.016 0.003

Widowed -0.003 0.008 -0.004 0.007

Divorced or Separated 0.0020 0.007 0.002 0.016

Higher or First Degree 0.056 0.027 0.054 0.018

Other higher QF 0.051 0.020 0.051 0.017

Other QF 0.024 0.027 0.023 0.018

Male -0.005 0.003 -0.004 0.018

AGE -0.008 0.001 -0.008 0.002
[3ex] Corr(LS∗ ,AM∗ ) 0.137 0.014 0.136 0.012

Corr (LS ∗ ,INC) 0.001 0.002 0.001 0.001
Corr(AM ∗ ,INC) 0.139 0.012 0.138 0.010

Corr(R∗LS ,LS) -0.008 0.019 -0.008 0.020

Corr(R∗LS ,AM) -0.018 0.011 -0.019 0.015

Corr(R∗LS ,INC) -0.048 0.041 -0.048 0.040

-Loglike 34109.030 34107.030


