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Abstract

In this paper, we consider an extension of the tribonacci polynomial, which we will refer to as
the generalized (p, q, r)-tribonacci polynomial, denoted by Tn,m(x). We find an explicit formula for
Tn,m(x), which we use to introduce the incomplete generalized (p, q, r)-tribonacci polynomials and
derive several properties. An explicit formula for the generating function of the incomplete gen-
eralized polynomials is determined and a combinatorial interpretation is provided yielding further
identities.
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1. Introduction

The tribonacci numbers are defined by the recurrence relation

Tn = Tn−1 + Tn−2 + Tn−3, n ≥ 3, (1)

with initial conditions T0 = 0 and T1 = T2 = 1. Alladi and Hoggatt (1977) defined the tribonacci
triangle (see Table 1) to obtain several properties of tribonacci numbers.
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Table 1. Tribonacci triangle.

n/i 0 1 2 3 4 5 6 7 · · ·
0 1
1 1 1
2 1 3 1
3 1 5 5 1
4 1 7 13 7 1
5 1 9 25 25 9 1
6 1 11 41 63 41 11 1
7 1 13 61 129 129 61 13 1
...

...

The sum of the elements along a rising diagonal of this triangle is given by the tribonacci number,
that is,

Tn+1 =

bn

2 c∑
i=0

B (n− i, i) , (2)

where B (n, i) is the n-th row and i-th column entry of the tribonacci triangle. In Barry (2006), an
explicit representation of the tribonacci numbers is given by

Tn =

bn−1

2 c∑
i=0

i∑
j=0

(
i

j

)(
n− 1− i− j

i

)
. (3)

Several generalizations of the tribonacci numbers have been considered. The tribonacci p-numbers
where p ≥ 1 were studied by Kuhapatanakul (2012) and are defined by the recurrence

Tp(n+ 2) = Tp(n+ 1) + Tp(n) + Tp(n− p), n ≥ 0, (4)

with initial conditions Tp (1) = 1 and Tp (i) = 0 for −p ≤ i ≤ 0. The tribonacci numbers are
obtained by taking p = 1. Similar to the tribonacci triangle, Kuhapatanakul (2012) constructed the
tribonacci p-triangle whose sum of elements along a rising diagonal is the tribonacci p-number.

A different generalization was considered by Hoggatt and Bicknell (1973) who defined the tri-
bonacci polynomials Tn (x) by the recurrence relation

Tn (x) = x2Tn−1 (x) + xTn−2 (x) + Tn−3 (x) , n ≥ 3, (5)

with initial conditions T0 (x) = 0, T1 (x) = 1 and T2 (x) = x2. Ramírez and Sirvent (2014) found an
explicit formula for the tribonacci polynomials by constructing the tribonacci polynomial triangle.
Then they introduced the incomplete tribonacci polynomials as

T (s)
n (x) =

s∑
i=0

i∑
j=0

(
i

j

)(
n− 1− j − i

i

)
x2n−2−3(i+j), 0 ≤ s ≤

⌊
n− 1

2

⌋
, (6)
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and established several properties of these polynomials. In Shattuck (2015), a combinatorial in-
terpretation for T (s)

n (x) was provided in obtaining an explicit formula for the generating function
of T (s)

n (x), which had been requested earlier in Ramírez and Sirvent (2014). Ramírez and Sirvent
(2015) later generalized the tribonacci triangle to the k-bonacci by using a family of Riordan arrays.
For other generalizations of the tribonacci and incomplete tribonacci polynomials, see Djordjevic
and Djordjevic (2016). Finally, we refer the reader to such works as Belbachir and Belkhir (2014),
Djordjevic (2004), Filipponi (1996), Pinter and Srivastava (1999), Tan (2018), and Tan and Ekin
(2015) for related results involving incomplete Fibonacci (and Lucas) numbers and polynomials.

Here, we first define the generalized (p, q, r)-tribonacci polynomials, which extend both the tri-
bonacci p-numbers and the classical tribonacci polynomials. (See Wang and Wang (2017), where
generalized (p, q)-Fibonacci polynomials are defined analogously.) We then construct the general-
ized tribonacci polynomial triangle and find a formula for the entries of this triangle. Using the
explicit formula for the generalized (p, q, r)-tribonacci polynomials, we introduce an incomplete
version of these polynomials and establish several properties. A formula for the generating func-
tion of the incomplete generalized polynomials is determined and a combinatorial interpretation is
provided which leads to some further identities.

2. Generalized (p, q, r)-tribonacci polynomials

Let p (x), q (x) and r (x) be non-zero polynomials with real coefficients, where at times we will
suppress the x argument.

Definition 2.1.

Let m ≥ 3 be a fixed positive integer. The generalized (p, q, r)-tribonacci polynomials Tn,m(x) are
defined by the recurrence relation

Tn,m(x) = p (x)Tn−1,m(x) + q (x)Tn−2,m(x) + r (x)Tn−m,m(x), n ≥ m, (7)

with initial conditions T0,m (x) = 0 and Ti,m (x) = Fp,q,i (x) for i = 1, . . . ,m− 1, where Fp,q,n (x) is
the (p, q)-Fibonacci polynomial (Lee and Asci (2012)) defined by

Fp,q,n (x) = p (x)Fp,q,n−1 (x) + q (x)Fp,q,n−2 (x) , n ≥ 2, (8)

with Fp,q,0 (x) = 0 and Fp,q,1 (x) = 1.

The m = 3, 4, 5 cases of Tn,m(x) for the first few n are given in the following tables.

We note the following special cases of Tn,m(x):

(1) When m = 3 in (7), then we get the generalized tribonacci polynomials from Ramìrez and
Sirvent (2015), the p = x2, q = x, r = 1 case of which corresponds to the original tribonacci
polynomials from Hoggatt and Bicknell (1973).

(2) The p = q = r = 1 case of (7) corresponds to the tribonacci p-numbers from Kuhapatanakul
(2012) where p+ 2 is equivalent to our m. Note that the m = 4 and m = 5 cases correspond to
sequences A060945 and A079971 in Sloane (2010), respectively.
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Table 2. The terms of Tn,3(x)

n Tn,3(x)

0 0

1 1

2 p

3 p2 + q

4 p3 + 2pq + r

5 p4 + 3p2q + q2 + 2pr

6 p5 + 4p3q + 3pq2 + 3p2r + 2qr

7 p6 + 5p4q + 6p2q2 + q3 + 4p3r + 6pqr + r2

...
...

Table 3. The terms of Tn,4(x)

n Tn,4(x)

0 0

1 1

2 p

3 p2 + q

4 p3 + 2pq

5 p4 + 3p2q + q2 + r

6 p5 + 4p3q + 3pq2 + 2pr

7 p6 + 5p4q + 6p2q2 + q3 + 3p2r + 2qr

8 p7 + 6p5q + 10p3q2 + 4pq3 + 4p3r + 6pqr
...

...

Now we define the generalized (p, q, r)-tribonacci polynomial triangle. Let the entry in the n-th
row and i-th column of this array be denoted by Bm (n, i) (x).

We define the Bm(n, i)(x) as follows. For integers i and n with 1 ≤ i < n, let

Bm (n, i) (x) = pBm (n− 1, i) (x) + qBm (n− 1, i− 1) (x) + rBm (n−m+ 1, i− 1) (x) , (9)

where Bm (n, 0) (x) = pn, Bm (n, n) (x) = qn and Bm (n, i) (x) = 0 for i > n.

The generalized (p, q, r)-tribonacci polynomial triangles for m = 3, 4, 5 are given in the tables
below.

Note that if p (x) = q (x) = r (x) = 1, then we get the tribonacci p-triangle (Kuhapatanakul (2012)),
while if m = 3 with p (x) = x2, q (x) = x and r (x) = 1, we get the tribonacci polynomial triangle
(Ramírez and Sirvent (2014)).
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Table 4. The terms ofTn,5(x)

n Tn,5(x)

0 0

1 1

2 p

3 p2 + q

4 p3 + 2pq

5 p4 + 3p2q + q2

6 p5 + 4p3q + 3pq2 + r

7 p6 + 5p4q + 6p2q2 + q3 + 2pr

8 p7 + 6p5q + 10p3q2 + 4pq3 + 3p2r + 2qr
...

...

Table 5. The generalized (p, q, r)-tribonacci polynomial triangle.

n/i 0 1 2 3 4 · · ·
0 Bm (0, 0) (x)

1 Bm (1, 0) (x) Bm (1, 1) (x)

2 Bm (2, 0) (x) Bm (2, 1) (x) Bm (2, 2) (x)

3 Bm (3, 0) (x) Bm (3, 1) (x) Bm (3, 2) (x) Bm (3, 3) (x)

4 Bm (4, 0) (x) Bm (4, 1) (x) Bm (4, 2) (x) Bm (4, 3) (x) Bm (4, 4) (x)
...

...
...

Table 6. The case of m = 3.

n/i 0 1 2 3 4 · · ·
0 1

1 p q

2 p2 2pq + r q2

3 p3 3p2q + 2pr 3pq2 + 2qr q3

4 p4 4p3q + 3p2r 6p2q2 + 6pqr + r2 4pq3 + 3q2r q4

...
...

...

By induction on n and the definition of Bm (n, i) (x) , we have

Bm (n, i) (x) =

i∑
j=0

(
i

j

)(
n− (m− 2) j

i

)
pn−i−(m−2)jqi−jrj , (10)

where the second binomial coefficient is taken to be zero if n < (m− 2)j.
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Table 7. The case of m = 4.

n/i 0 1 2 3 4 5 · · ·
0 1

1 p q

2 p2 2pq q2

3 p3 3p2q + r 3pq2 q3

4 p4 4p3q + 2pr 6p2q2 + 2qr 4pq3 q4

5 p5 5p4q + 3p2r 10p3q2 + 6pqr 10p2q3 + 3q2r 5pq4 q5

...
...

...

Table 8. The case of m = 5.

n/i 0 1 2 3 4 5 · · ·
0 1

1 p q

2 p2 2pq q2

3 p3 3p2q 3pq2 q3

4 p4 4p3q + r 6p2q2 4pq3 q4

5 p5 5p4q + 2pr 10p3q2 + 2qr 10p2q3 5pq4 q5

...
...

...

Upon computing the generating function formulas of both quantities and comparing (which works
out to 1

1−px−qx2−rxm in each case), we see that rising diagonal sums of the generalized (p, q, r)-
tribonacci polynomial triangle are given by generalized (p, q, r)-tribonacci polynomials, i.e.,

Tn,m (x) =

bn−1

2 c∑
i=0

Bm (n− 1− i, i) (x) . (11)

Thus, the explicit formula for Tn,m(x) is given by

Tn,m(x) =

bn−1

2 c∑
i=0

i∑
j=0

(
i

j

)(
n− 1− i− (m− 2) j

i

)
pn−1−2i−(m−2)jqi−jrj , n ≥ 1. (12)

Remark.

Note that the (p, q, r)-tribonacci polynomial triangle corresponds to the Riordan matrix given by

[Bm(n, i)]n,i≥0 =

(
1

1− px
,
qx+ rxm−1

1− px

)
,

where we refer the reader to Shapiro et al. (1991) for the definition. Therefore, by the summation



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 7

property of Riordan matrices, the generating function for the row sum equals

1

1− px
· 1

1− qx+rxm−1

1−px
=

1

1− (p+ q)x− rxm−1
,

the m = 3 and m = 4 cases of which when p = q = r = 1 correspond to the Pell number sequence
and to sequence A008998 in Sloane (2010), respectively.

3. Incomplete generalized (p, q, r)-tribonacci polynomials

Let m ≥ 3. We define the incomplete generalized (p, q, r)-tribonacci polynomials using the explicit
formula for Tn,m(x) as follows.

Definition 3.1.

Let T (s)
n,m(x) be defined by

T (s)
n,m(x) =

s∑
i=0

Bm (n− 1− i, i) (x)

=

s∑
i=0

i∑
j=0

(
i

j

)(
n− 1− i− (m− 2) j

i

)
pn−1−2i−(m−2)jqi−jrj , (13)

where n ≥ 1 and 0 ≤ s ≤
⌊
n−1
2

⌋
. We will refer to T (s)

n,m(x) as the incomplete generalized (p, q, r)-
tribonacci polynomial.

We have the following special cases of T (s)
n,m(x):

(1) T
(0)
n,m (x) = pn−1, n ≥ 1,

(2) T
(1)
n,m (x) = pn−1 + (n− 2) pn−3q + (n−m) pn−m−1r, n ≥ m,

(3) T
(bn−1

2 c)
n,m (x) = Tn,m (x) , n ≥ 1,

(4) T
(bn−3

2 c)
n,m (x) =

{
Tn,m (x)− n

2 pq
n−2

2 − δm,3
(
n−2
2

)
q

n−4

2 r, if n is even;
Tn,m (x)− q

n−1

2 , if n is odd.

The terms of T (s)
n,m(x) for 1 ≤ n ≤ 6 are given in the following table.

The first few terms of the T (s)
n,m(x) for m = 3 and m = 4 are given in the tables below.

Proposition 3.2.

The incomplete generalized (p, q, r)-tribonacci polynomials T (s)
n,m(x) satisfy the non-linear recur-

rence

T (s+1)
n,m (x) = p (x)T

(s+1)
n−1,m (x) + q (x)T

(s)
n−2,m (x) + r (x)T

(s)
n−m,m (x) (14)
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Table 9. The polynomials T (s)
n,m(x).

n/s 0 1 2
1 Bm (0, 0)

2 Bm (1, 0)

3 Bm (2, 0) Bm (2, 0) +Bm (1, 1)

4 Bm (3, 0) Bm (3, 0) +Bm (2, 1)

5 Bm (4, 0) Bm (4, 0) +Bm (3, 1) Bm (4, 0) +Bm (3, 1) +Bm (2, 2)

6 Bm (5, 0) Bm (5, 0) +Bm (4, 1) Bm (5, 0) +Bm (4, 1) +Bm (3, 2)

Table 10. The polynomials T (s)
n,3(x).

n/s 0 1 2
1 1

2 p

3 p2 p2 + q

4 p3 p3 + 2pq + r

5 p4 p4 + 3p2q + 2pr p4 + 3p2q + 2pr + q2

6 p5 p5 + 4p3q + 3p2r p5 + 4p3q + 3p2r + 3pq2 + 2qr

Table 11. The polynomials T (s)
n,4(x).

n/s 0 1 2
1 1

2 p

3 p2 p2 + q

4 p3 p3 + 2pq

5 p4 p4 + 3p2q + r p4 + 3p2q + r + q2

6 p5 p5 + 4p3q + 2pr p5 + 4p3q + 2pr + 3pq2

and the non-homogeneous linear recurrence

T (s)
n,m (x) = p (x)T

(s)
n−1,m (x) + q (x)T

(s)
n−2,m (x) + r (x)T

(s)
n−m,m (x)

−q (x)Bm (n− 3− s, s) (x)− r (x)Bm (n−m− 1− s, s) (x) ,
(15)

where n ≥ m+ 1 and 0 ≤ s ≤
⌊
n−1
2

⌋
.
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Proof:

In showing (14), one may assume s ≤
⌊
n−3
2

⌋
, for it is clear if s =

⌊
n−1
2

⌋
. By (13) and (9), we have

pT
(s+1)
n−1,m + qT

(s)
n−2,m + rT

(s)
n−m,m

= p

s+1∑
i=0

Bm (n− 2− i, i) + q

s∑
i=0

Bm (n− 3− i, i) + r

s∑
i=0

Bm (n−m− 1− i, i)

= p

s+1∑
i=0

Bm (n− 2− i, i) + q

s+1∑
i=1

Bm (n− 2− i, i− 1)

+r

s+1∑
i=1

Bm (n−m− i, i− 1)

=

s+1∑
i=0

(pBm (n− 2− i, i) + qBm (n− 2− i, i− 1) + rBm (n−m− i, i− 1))

−qBm (n− 2,−1)− rBm (n−m,−1)

=

s+1∑
i=0

Bm (n− 1− i, i) (x) = T (s+1)
n,m (x) ,

which gives (14). To show (15), first note that by (13) and (14), we have

s∑
i=0

Bm (n− 1− i, i) = p

s∑
i=0

Bm (n− 2− i, i) + q

s−1∑
i=0

Bm (n− 3− i, i)

+r

s−1∑
i=0

Bm (n−m− 1− i, i) .

The preceding equation may be rewritten as
s∑
i=0

Bm (n− 1− i, i) = p

s∑
i=0

Bm (n− 2− i, i) + q

s∑
i=0

Bm (n− 3− i, i)

+r

s∑
i=0

Bm (n−m− 1− i, i)

−qBm (n− 3− s, s)− rBm (n−m− 1− s, s) ,

which implies

T (s)
n,m (x) = pT

(s)
n−1,m (x) + qT

(s)
n−2,m (x) + rT

(s)
n−m,m (x)

−qBm (n− 3− s, s)− rBm (n−m− 1− s, s) . �
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Corollary 3.3.

If s ≥ 0, then

T
(s)
n+1,m(x) =

s∑
i=0

(
pqiT

(s−i)
n−2i,m(x) + rqiT

(s−i−1)
n−2i−m+1,m(x)

)
, n ≥ 2s+ 1. (16)

Proof:

Induct on s, the s = 0 case clear since T (s)
n+1,m(x) = pn for n ≥ 0. If s ≥ 0 and n ≥ 2s + 3, then by

(14), we have

T
(s+1)
n+1,m(x) = pT (s+1)

n,m (x) + rT
(s)
n−m+1,m(x) + qT

(s)
n−1,m(x)

= pT (s+1)
n,m (x) + rT

(s)
n−m+1,m(x) + q

s∑
i=0

(
pqiT

(s−i)
n−2i−2,m(x) + rqiT

(s−i−1)
n−2i−m−1,m(x)

)

= pT (s+1)
n,m (x) + rT

(s)
n−m+1,m(x) +

s+1∑
i=1

(
pqiT

(s−i+1)
n−2i,m (x) + rqiT

(s−i)
n−2i−m+1,m(x)

)

=

s+1∑
i=0

(
pqiT

(s−i+1)
n−2i,m (x) + rqiT

(s−i)
n−2i−m+1,m(x)

)
,

which completes the induction. �

Theorem 3.4.

Let a, b ≥ 0. Then the incomplete generalized (p, q, r)-tribonacci polynomials T (s)
n,m(x) satisfy

a∑
s=0

(
s

b

)
T (s)
n,m (x) =

(
a+ 1

b+ 1

)
T (a)
n,m (x)

−
a∑
i=0

i∑
j=0

(
i

b+ 1

)(
i

j

)(
n− 1− i− (m− 2) j

i

)
pn−1−2i−(m−2)jqi−jrj .

(17)

Proof:

From the definition T (s)
n,m (x) =

∑s
i=0Bm (n− 1− i, i) (x), we have

a∑
s=0

(
s

b

)
T (s)
n,m (x) =

(
0

b

)
T (0)
n,m (x) +

(
1

b

)
T (1)
n,m (x) +

(
2

b

)
T (2)
n,m (x) + · · ·+

(
a

b

)
T (a)
n,m (x)

=

(
0

b

)
Bm (n− 1, 0) (x) +

((
1

b

)
Bm (n− 1, 0) (x) +

(
1

b

)
Bm (n− 2, 1) (x)

)

+

((
2

b

)
Bm (n− 1, 0) (x) +

(
2

b

)
Bm (n− 2, 1) (x) +

(
2

b

)
Bm (n− 3, 2) (x)

)
...
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+

((
a

b

)
Bm (n− 1, 0) (x) +

(
a

b

)
Bm (n− 2, 1) (x) + · · ·+

(
a

b

)
Bm (n− 1− a, a) (x)

)

=

[(
a+ 1

b+ 1

)
−
(

0

b+ 1

)]
Bm (n− 1, 0) (x) +

[(
a+ 1

b+ 1

)
−
(

1

b+ 1

)]
Bm (n− 2, 1) (x)

+ · · ·+
[(
a+ 1

b+ 1

)
−
(

a

b+ 1

)]
Bm (n− 1− a, a) (x) ,

where we have used Identity 5.9 from Graham et al. (1994) in the last equality. Thus, we obtain

a∑
s=0

(
s

b

)
T (s)
n,m (x) =

a∑
i=0

[(
a+ 1

b+ 1

)
−
(

i

b+ 1

)]
Bm (n− 1− i, i) (x)

=

a∑
i=0

(
a+ 1

b+ 1

)
Bm (n− 1− i, i) (x)−

a∑
i=0

(
i

b+ 1

)
Bm (n− 1− i, i) (x)

=

(
a+ 1

b+ 1

)
T (a)
n,m (x)−

a∑
i=0

(
i

b+ 1

)
Bm (n− 1− i, i) (x) ,

which implies (17). �

Remark.

Formula (17) generalizes Proposition 5 in Ramírez and Sirvent (2014), reducing to it when m = 3,
a = bn−1

2 c, b = 0, p = x2, q = x and r = 1. Formula (14) reduces to Proposition 2 in Ramírez and
Sirvent (2014), upon taking the same values for m, p, q and r.

4. Generating function formula for T (s)
n,m(x)

In order to determine a generating function formula for T (s)
n,m(x), we will proceed in a combina-

torial manner. Given m ≥ 3, let Tn = Tn,m denote the set of tilings of length n consisting of
squares, dominos and m-inos, where an m-ino is a 1 ×m rectangular piece. When m = 3, mem-
bers of Tn correspond to the tribonacci tilings (see, e.g., Benjamin and Quinn (2003)). In what
follows, a longer piece will refer to either a domino or an m-ino. Define the weight of λ ∈ Tn
by wght(λ) = pu1(λ)qu2(λ)ru3(λ), where u1, u2 and u3 record the number of squares, dominos and
m-inos, respectively, of λ.

Given s ≥ 0, let `n,m = `
(s)
n,m(p, q, r) denote the sum of the weights of all members of Tn+2s con-

taining exactly s+ 1 longer pieces and ending in a longer piece. There is the following generating
function formula for `n,m.
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Lemma 4.1.

If s ≥ 0, then ∑
n≥0

`n,mz
n = z2

(
q + rzm−2

1− pz

)s+1

. (18)

Proof:

To find an expression for `n,m, let S denote the subset of Tn+2s enumerated by `n,m. We first count
π ∈ S ending in a domino. Suppose π contains j m-inos and s− j +1 dominos for some 0 ≤ j ≤ s,
and hence n + 2s −mj − 2(s − j + 1) = n − (m − 2)j − 2 squares. Upon selecting the positions
for the squares and the dominos, it is seen that there are

(
s
j

)(
n+s−(m−2)j−2

s

)
possible tilings, each of

weight pn−(m−2)j−2qs−j+1rj . Considering all possible j gives a total weight of
s∑
j=0

(
s

j

)(
n+ s− (m− 2)j − 2

s

)
pn−(m−2)j−2qs−j+1rj

for all members of S ending in a domino. Upon finding a similar expression for the weight of all
members of S ending in an m-ino, we get

`n,m =

s∑
j=0

(
s

j

)(
n+ s− (m− 2)j − 2

s

)
pn−(m−2)j−2qs−j+1rj

+

s∑
j=0

(
s

j

)(
n+ s− (m− 2)j −m

s

)
pn−(m−2)j−mqs−jrj+1, n ≥ 0, (19)

where binomial coefficients with negative upper indices are taken here to be zero. Multiplying both
sides of (19) by zn, summing over n ≥ 0 and interchanging summation implies∑

n≥0

`n,mz
n =

qz2(q + rzm−2)s

(1− pz)s+1
+
rzm(q + rzm−2)s

(1− pz)s+1
,

which gives (18). �

For m ≥ 3, note that Tn,m = Tn,m(x) is also given recursively by

Tn,m = pTn−1,m + qTn−2,m + rTn−m,m, n ≥ 2,

with T1,m = 1 and T0,m = T−1,m = · · · = T−(m−2),m = 0. Define the generating function R(s)
m (z) by

R(s)
m (z) =

∑
n≥2s+1

T (s)
n,m(x)z

n, s ≥ 0.

Note that by the definitions, Tn,m(x) is the sum of the weights of all members of Tn−1, while
T
(s)
n,m(x) is the restriction of Tn,m(x) to those members of Tn−1 containing at most s longer pieces,

where 0 ≤ s ≤ b(n− 1)/2c.

We have the following generating function formula for R(s)
m (z).
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Theorem 4.2.

If s ≥ 0, then

R
(s)
m (z)

z2s+1
=
T2s+1,m + (qz + rzm−1)T2s,m + r

∑m−2
j=1 T2s−j,mz

m−j−1 − z2
(
q+rzm−2

1−pz

)s+1

1− pz − qz2 − rzm
. (20)

Proof:

First note that the product `i,mTn−2s−i,m gives the total weight of all members of Tn−1 containing
at least s+1 longer pieces where the (s+1)-st longer piece ends at position i+2s. Considering all
possible i gives the weight of all members of Tn−1 containing strictly more than s longer pieces.
Thus, by subtraction, we have

T (s)
n,m(x) = Tn,m −

n−2s−1∑
i=0

`i,mTn−2s−i,m, n ≥ 2s+ 1. (21)

To find an appropriate recurrence for Tn = Tn,m, consider whether or not there is a piece covering
the boundary between positions 2s and 2s + 1 within a member of Tn−1, and if so, whether or not
that piece is a domino or an m-ino. Note that in the latter case, the leftmost position covered by
the m-ino would be 2s − j for some 0 ≤ j ≤ m − 2. This leads to the following recurrence for
m ≤ 2s+ 1:

Tn = Tn−2sT2s+1 + qTn−2s−1T2s + r

m−2∑
j=0

T2s−jTn−m−2s+j+1, n ≥ 2s+ 1. (22)

By the values of Tn when n < 0, formula (22) is seen also to hold for m > 2s+1. Multiplying both
sides of (22) by zn, and summing over n ≥ 2s+ 1, gives∑

n≥2s+1

Tnz
n = T2s+1

∑
n≥2s+1

Tn−2sz
n + qT2s

∑
n≥2s+1

Tn−2s−1z
n

+ r

m−2∑
j=0

T2s−j
∑

n≥2s+1

Tn−m−2s+j+1z
n

=

T2s+1z
2s + (qz2s+1 + rzm+2s−1)T2s + rzm−1

m−2∑
j=1

T2s−jz
2s−j

Tm(z),

where Tm(z) =
∑

n≥0 Tn,mz
n = z

1−pz−qz2−rzm . Let L(s)
m (z) denote the generating function in (18).

Multiplying both sides of (21) by zn, and summing over n ≥ 2s+ 1, then implies

R(s)
m (z) =

∑
n≥2s+1

Tn,mz
n −

∑
n≥2s+1

zn
n−2s−1∑
i=0

`i,mTn−2s−i,m

= z2s

T2s+1 + (qz + rzm−1)T2s + r

m−2∑
j=1

T2s−jz
m−j−1

Tm(z)− z2sL(s)
m (z)Tm(z),

from which (20) follows from (18). �
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Remark.

Letting m = 3 and p = x2, q = x, r = 1 in formula (20) gives Theorem 0.9 in Shattuck (2015),
while letting m = 3 and p = q = r = 1 gives Theorem 8 from Ramírez and Sirvent (2014).

5. Further identities for T (s)
n,m(x)

Using the combinatorial interpretation for T (s)
n,m(x) discussed above, it is possible to find additional

identities.

Proposition 5.1.

If n ≥ 2 and s ≥ 0, then

pT
(s)
n+1,m(x) + rT

(s−1)
n−m+2,m(x) = pn+1 + q

n−1∑
i=1

piT
(s−1)
n−i,m(x) + r

n−m+1∑
i=0

piT
(s−1)
n−m−i+2,m(x). (23)

Proof:

Let T (s)
n denote the subset of Tn whose members contain at most s longer pieces. Note first that

the left-hand side of (23) is seen to enumerate all members of T (s)
n+1 ending in either a square or an

m-ino. On the other hand, if λ ∈ T (s)
n+1 ends in i squares preceded by a domino where 1 ≤ i ≤ n− 1,

then there are piqT (s−1)
n−i,m possibilities since the remaining tiles can contain at most s − 1 longer

pieces among them. Considering all i gives all members of T (s)
n+1 ending in a non-empty sequence

of squares preceded by a domino. Note that this corresponds to the first sum on the right side of
(23). Similarly, the second sum counts all members of T (s)

n+1 ending in a (possibly empty) sequence
of squares preceded by an m-ino. Finally, the pn+1 term accounts for the all-squares tiling and
combining the previous cases gives (23). �

Taking s = bn/2c in (23), and replacing n by n+ 2, and p, q, r by c1, c2, c3, respectively, gives

c1Tn+3,m + c3Tn−m+4,m = cn+3
1 + c2

n+1∑
i=1

ci1Tn−i+2,m + c3

n−m+3∑
i=0

ci1Tn−m−i+4,m

= cn+3
1 + c2

n∑
i=0

cn−i+1
1 Ti+1,m + c3

n∑
i=m−3

cn−i1 Ti−m+4,m

= cn1 (c
3
1 + c1c2 + T4−m,mc3) +

n∑
i=1

cn−i1 (c1c2Ti+1,m + c3Ti−m+4,m)− c3
m−4∑
i=0

cn−i1 Ti−m+4,m.

When m = 3 in the last equality, one gets

c1Tn+3,3 + c3Tn+1,3 = cn1 (c
3
1 + c1c2 + c3) + (c1c2 + c3)

n∑
i=1

cn−i1 Ti+1,3,
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which is equivalent to the case of Identity 77 from Benjamin and Quinn (2003) where pi = ci for
i = 1, 2, 3. Considering members of T (s)

n+1 ending in a domino or an m-ino leads in a similar manner
as above to the following formulas for n ≥ 2s and n ≥ ms, respectively:

qT (s−1)
n,m (x) + rT

(s−1)
n−m+2,m(x) = p

s∑
i=1

qiT
(s−i)
n−2i+1,m(x) + r

s−1∑
i=0

qiT
(s−i−1)
n−m−2i+2,m(x) (24)

and

qT (s−1)
n,m (x) + rT

(s−1)
n−m+2,m(x) = p

s∑
i=1

riT
(s−i)
n−mi+1,m(x) + q

s−1∑
i=0

riT
(s−i−1)
n−mi,m(x). (25)

When m = 3, we were unable to find in the literature the formulas (24) or (25), in particular in the
complete case when s = b(n+ 1)/2c.

Considering the number i of dominos and the number j of m-inos among the final s pieces of a
member of T (s)

n−1 gives

T (s)
n,m(x) =

s∑
i=0

s−i∑
j=0

ps−i−jqirj
(

s

i, j, s− i− j

)
T
(s−i−j)
n−s−i−(m−1)j(x), n ≥ ms+ 1, (26)

which generalizes Identity 0.7 in Shattuck (2015).

Let

F (s)
n (x) =

s∑
i=0

pn−1−2iqi
(
n− 1− i

i

)
, n ≥ 1,

denote a polynomial analogue of the incomplete Fibonacci numbers.

Proposition 5.2.

If n ≥ m, then

T
(s)
n+1,m(x) = F

(s)
n+1(x) + r

n−m∑
i=0

α∑
j=0

pi−2jqj
(
i− j
j

)
T
(s−j−1)
n−i−m+1,m(x), (27)

where α = min{s− 1, bi/2c}, and

T
(s)
n+1,m(x) =

n∑
i=0

γ∑
j=β

mj≡i (mod 2)

q
i−mj

2 rj
(
j + i−mj

2

j

)(
pT

((2s−i+(m−2)j)/2)
n−i,m (x) + δn,i

)
, (28)

where β = max{0, d i−2s
m−2e} and γ = min{s, bi/mc}.

Proof:

To show (27), consider the leftmost position i + 1 covered by the first m-ino piece (if it exists)
and the number j of dominos to the left of the first m-ino within λ ∈ T (s)

n . There are pi−2jqj
(
i−j
j

)
possibilities for the pieces to the left of the first m-ino which itself contributes a factor of r towards
the weight. There are then T (s−j−1)

n−m−i+1,m(x) ways in which to tile the remaining n−m− i positions
of λ. Note that 0 ≤ j ≤ α in order for λ to exist. Summing over all possible i and j gives the weight
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of all members of T (s)
n containing at least one m-ino. From its definition, it is seen that there are

F
(s)
n+1(x) possible tilings which do not contain an m-ino, from which formula (27) follows.

For (28), consider now the position i+ 1 of the first square (if it exists) of λ ∈ T (s)
n , where 0 ≤ i ≤

n − 1, and the number j of m-inos to the left of the first square. Observe that j ≤ s and mj ≤ i,
whence j ≤ γ. Also, we must have mj ≡ i (mod 2), in which case there are i−mj

2 dominos to the
left of the first square. Since j + i−mj

2 ≤ s, we have j ≥ β. The square in the (i + 1)-st position
contributes p towards the weight and the tiles beyond this position constitute a member of T (u)

n−i−1,m,
where u = 2s−i+(m−2)j

2 (note that j ≥ β and mj ≡ i (mod 2) implies u is a non-negative integer).
Considering all possible i and j then gives the first part of the sum on the right-hand side of (28).
On the other hand, if λ contains no squares, then it is seen that there are

γ∑
j=β

mj≡n (mod 2)

q
n−mj

2 rj
(
j + n−mj

2

j

)

possibilities. Combining this case with the previous completes the proof of (28). �

The identities in the preceding proposition seem to be new also in the case m = 3. For example,
taking p = q = r = 1 and m = 3 in (27) and (28) gives

T
(s)
n+1 = F

(s)
n+1 +

n−3∑
i=0

α∑
j=0

(
i− j
j

)
T
(s−j−1)
n−i−2 , n ≥ 2,

and

T
(s)
n+1 =

n∑
i=0

γ∑
j=β

j≡i (mod 2)

( i−j
2

j

)(
T
((2s−i+j)/2)
n−i + δn,i

)
, n ≥ 2,

where T (s)
n denotes the incomplete tribonacci number (see, e.g., Ramírez and Sirvent (2014)).

6. Conclusion

In this paper, we have considered a class of generalized tribonacci polynomials Tn,m(x) which
reduces to the usual tribonacci polynomials when m = 3 with p(x) = x2, q(x) = x and r(x) = 1.
We derive an explicit formula for Tn,m(x) as a doubly-indexed sum which allows one to define
and ascertain several properties of the incomplete generalized tribonacci polynomials T (s)

n,m(x). A
combinatorial approach is employed to determine a formula for the generating function of T (s)

n,m(x)

for a fixed m and s, which extends earlier formulas from Ramírez and Sirvent (2014) and Shattuck
(2015). The combinatorial interpretation for T (s)

n,m(x) is then used to prove further identities, several
of which appear to be new also in the case m = 3 (see, for example, formulas (24)-(28) above).
Perhaps it would be interesting to investigate incomplete versions of the generalized tribonacci
polynomials where the terms corresponding to the complete case do not satisfy a linear recurrence.
For example, one could replace q(x) with say qn−2 or r(x) with rn−m in the defining recurrence (7)
and consider properties of the incomplete tribonacci polynomials that result. Finally, one might try
to find a combinatorial interpretation for the unsigned inverse matrix [Bm(n, i)]

−1
n,i≥0 (see remark
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above for notation) when p = q = r = 1, the m = 3 case of which has been studied by Yang et al.
(2013) and Ramírez and Sirvent (2018).
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