
Fresh Breeze 
A Radical Approach to 

Massively Parallel 
Architecture and Programming


Jack	Dennis	
MIT-CSAIL	

Computer	Science	and	Ar:ficial	Intelligence	Laboratory	



The Multi Core Challenge 

• Many processing cores provides for high 
potential performance. 

• Goal: Achieve high core utilization 

• Goal: With highest Energy Efficiency. 

• Goal: Support Modular Construction of 
Software for Parallel Computation. 

• Goal: Unify Memory with the File System. 



 Typical Processor Chip 

Network 

L2 Cache 

Off-Chip Memory System  

L1 Cache 

Core 

L1 Cache 

Core 

(DRAM and Disk)  



The Popular Approach 

• Overhead 
• No satisfactory notion of Program 
Module 

• Difficult sharing of data objects 

MPI: Message Passing Interface 
Issues: 



Message Passing System 

Core	
Interconnec:on	
Network	

Core	
0	

Core	
N	-	1	

Basic	Commands:	
Send	m	to	p	
Receive	m	from	p	



The Fresh Breeze Project 

• Co-design of Programming Model and 
System Architecture. 

• Goal: Support Fine-Grain Dynamic 
Resource Management. 

• Goal: Support Modular Construction of 
Software for Parallel Computation. 



What is a Program Execu?on Model?

 
§  Application Code 
§  Software Packages 
§  Program Libraries 
§  Compilers 
§  Utility Applications  

(API) PXM 

User Code 

§  Hardware 
§  Runtime Code 
§  Operating System 

System 



Features a User Program Depends On


§  Procedures; call/return 
§  Access to parameters and 

 variables 
§  Use of data structures (static 

 and dynamic) 

Features expressed 
within a Programming 
language 

§  File creation, naming and 
 access 

§  Object directories 
§  Communication: networks 

 and peripherals 
§  Concurrency: coordination; 

 scheduling 

Features expressed 
Outside a (typical) 
programming language 

But that’s not all !! 



Today’s Conven?onal SoHware Stack


§  Application Code, Etc. User Code 

§  Runtime Code 

System 

(API) PXM 

(API) PXM 
§  Operating System 

§  Hardware 

(API) PXM 

Each system layer compensates for 
inadequacies of the layers below, leading to 
an inefficient whole. 



Fresh Breeze Characteristics 

•  			Use	of	fixed	size	 to	represent	
all	data	objects,	simplifying	dynamic	memory	
management.	Write	once	data	eliminates	cache	
consistency	problems.	

•  			Use	of	 	executed	according	to	
principles	yields	a	fine-grain	tasking	model.	

•  	Hardware	task	scheduler	and	load	balancer	
provide	highly	effec:ve	dynamic	management	of	
processing	load.	



Project Components 
•  			The	funJava	Programming	Language	for	func:onal	
programming	to	support	parallel	execu:on.	

•  			The	Fresh	Breeze	architecture	for	parallel	
compu:ng	with	fine-grain	execu:on	of	many	
codelets.	

• The	Kiva	system	simulator	capable	of	cycle	accurate	
simula:on	of	systems	with	large	numbers	of	
components.	

•  			The	Fresh	Breeze	compiler	for	genera:ng	codelets	
for	highly	parallel	computa:on	from	funJava	
programs.	



A Functional 
Programming Language 

•  			A	language	in	which	all	forms	of	parallelism	are	
readily	expressed:	Expression	Parallel,	Data	
Parallel,	Producer-Consumer	and	Transac:on	
Processing.	

•  			A	high	level	programming	language	in	which	
data	streams	are	first	class	data	objects		

•  			Retains	the	type	secure	features	of	the	Java	
language.	

funJava 
 



Flexibility of resource management 
requires choice of a unit of exchange for 
memory and for processing  

•  Unit of Memory – Fixed Size Memory Chunk 

•  Unit of Processing – Execution of a Codelet 



A chunk holds sixteen data items that may be 
data values or pointers to other memory chunks 

What is a Memory Chunk ? 

104	

128	

57	

12	



Data Structures as Trees of Chunks 

§  Fan-out as large as 16 
§  Arrays: Three levels yields 4096 

elements (longs or doubles) 
§  Write-Once then Read Only 

Data 
Chunks 
e.g. 128 Bytes 

Master 
Chunk 

Cycle-Free Heap Arrays as Trees of 
Chunks 

15 



Benefits of the Memory Model 

• Uniform representation scheme for all 
data objects 

• Ease of selecting components of a data 
object. 

• Simplified memory management. 
• Write-once policy eliminates coherence 

issues 



What is a Codelet ? 

§  A block of Instructions scheduled for execution when 
needed data objects are available. 
§  Results made available to successor codelets. 
§  Data objects are trees of chunks. 
   

Codelet	

Object	
A	

Object	
B	



Work and Continuation Codelets 
(Data Parallel Computation) 

18 

Master Codelet 

Work Codelet 

Continuation Codelet 

TaskSpawn (work, sync, 0) TaskSpawn (work, sync, n-1) 

SyncCreate (cont, n) -> sync 

SyncUpdate (sync, 0, data) 

Work Codelet 
SyncUpdate (sync, n-1, data) 

TaskQuit () 



Example: The Dot Product 
A  

B  

 * Sum  

A  B  

5 levels: 
Vector length = 
165 = 1,048,576 

 * 

 + 

scalar result  

 *  * 

Each of 65536  Leaf Tasks: 
  Dot Product of two 
  16-element vectors: 
  16 multiplies; 15 adds 



ForAllSpawn 

Codelets for the Dot Product 

  Compute 

  
Traverse  
Vectors 

  
Combine 

Sums Update Update 

TaskSpawn 

ForAllSpawn 

Update 



 Fresh Breeze Multicore Chip 

Network 

L2 Cache 

AB  -  AutoBuffer  

P  -  Processor Core  

Off-Chip Memory System  

S  -  Scheduler Load Balancer 

AB 

P 

S 

AB 

P 

S 

AB 

P 

S 

AB 

P 

S 

Innovations: 

AutoBuffer - AB  

Load Balancer 



Linear Algebra: Three Algorithms 

• Dot Product 
• Matrix Multiply 
• Fast Fourier Transform 
 
 

22 

Let’s	consider	the	special	characteris:cs	of	each.	



Dot Product 

16 
 

23 

Segment	
A	

15 
 

Multiplies 
 Adds 
 

31 
 

Operations 
 

•  No data reuse 
•  No intermediate data 
•  Large volume of input data 
 

Leaf Task: Dot Product of 16-element segments A and B 
 

Segment	
B	

+ 
 

* 
 



Matrix Multiply 

64 
 

24 

48 
 

112 
 

Multiplies 
 Adds 
 
Operations 
 

•  Each input chunk used many times 
•  Result chunks written to memory 
•  No intermediate data 
•  Relatively small input data 
 

Leaf Task: Product of two 4-by-4 matrices 
16 dot products of four-element vectors 

 

+ 
 

* 
 



Fast Fourier Transform 

4 
 

Eight	
Data	

Samples	

Four	
Twiddle	
Factors	

6 
 

Multiplies 
 Adds 
 

10 
 

Operations 
 

•  Log2 (n) stages 
•  Intermediate data 
•  Chunks  written and read 
 

Leaf Task: Group of Four Butterfly Computations 

BFLY	

Eight	
Results	BFLY	

BFLY	

BFLY	

16 
 

40 
 

One Butterfly 
 

Four Butterflies 
 

24 
 



Register	File	

AutoBuffer	

Chunk	Buffers	

registers	 valid	
flag	

buffer	
index	

0	

tags	

Principle of the Auto Buffer 

Auxiliary	Fields	

Memory	
System	

1	

3	

2	

3	

Codelets	access	chunks	using	chunk	handles	held	in	processor	
registers.	Once	a	chunk	is	assigned	a	buffer,	its	index	is	held	by	
the	register	containing	the	handle,	providing	direct	access	to	the	
chunk.	



 Dynamic Load Balancing 

Load Balancer 

Local Task 
Queue LTQ LTQ LTQ 

Task Transfer Network 

Load 
Measure 

Send a 
Task To 

The	load	Balancer	monitors	the	number	of	tasks	queued	at	
each	processor	and	instructs	local	schedulers	to	send	tasks	
from		processors	with	high	load	to	processors	with	low	load.	

Receive 
a Task 

Send a 
Task 



•  Codelet – index of codelet within the codelet library. 

•  Arguments – The handle of an argument chunk 

The Task Record


  Codelet Arguments 



 Simulated Fresh Breeze System 

Network 

Memory Units 

Number of cores 
Execution Slots 
Size of AutoBuffer 
Latency of Read 
 

System Parameters Load Balancer 

AB 

P 

S 

AB 

P 

S 

AB 

P 

S 

AB 

P 

S 



Speed Up Data – Dot Product


5	 0	 2	 4	 7.9	 15.4	 30.4	 59.4	 114	 204.5	
4	 1	 2	 3.9	 7.8	 15.2	 29.4	 54.8	 96.1	 151	
3	 1	 2	 3.8	 7.3	 12.8	 19.9	 26.3	 30.3	 27.9	 26.5	 26.4	
2	 1	 1.8	 2.7	 3.3	 3.1	 3.1	 3.1	 2.7	 2.9	 2.9	 2.9	
1	 1	 1	 0.9	 0.9	 0.8	 0.8	 0.7	 0.7	 0.7	 0.6	 0.6	

1	 2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	

Processing	Cores	

Depth	



System Configuration: 64 Processing Cores 

Job DP: 4096-element Dot Product 

Job MM: 16 x 16 Matrix Multiply  

Running Two Jobs Together


Job 

DP 

MM 

DP + MM 

Cycles 

10,979	

10,409	

14,291	 

Ratio: Together / Separate :   0.67   



•  The AutoBuffer does not use a cache tag memory 

•  Absence of TLB 

•  No software cycles for task scheduling 

•  No software cycles to handle page misses 

•  No file system software 

Sources of Energy Savings




  Convert Class Files 

Transform Graphs 

Construct Code 

DFGs of Methods 

DFGs for Codelets 

Fresh Breeze 
Codelets 

Bytecode Class Files 

  javac 

funJava 

Fresh Breeze Compiler 

Processor 
Simulator 



Structured	Parallelism	

Program	modules	are	determinate	unless	
nondeterminate	behavior	is	desired	and	explicitly	
introduced	by	the	programmer.	

		

A	program	execuNon	model	must	permit	parallel	
execuNon	of	two	modules	whenever	there	is	no	
data	dependence	between	them,	that	is,	neither	
module	requires	any	result	produced	by	the	
other.	



	InformaNon	Hiding	Principle	
	

The	user	of	a	module	must	not	need	to	know	
anything	about	the	internal	mechanism	of	
the	module	to	make	effec:ve	use	of	it.	



Invariant	Behavior	Principle	
	

The	func:onal	behavior	of	a	module	must	be	
independent	of	the	site	or	context	from	
which	it	is	invoked.	



	Data	Generality	Principle	
	
	

The	interface	to	a	module	must	be	
capable	of	passing	any	data	object	an	
applicaNon	may	require.	



Secure	Arguments	Principle	
	

The	interface	to	a	module	must	not	allow	
side-effects	on	arguments	supplied	to	the	
interface.	



Recursive	ConstrucNon	Principle	
	

A	program	constructed	from	modules	must	be	
useable	as	a	component	in	building	larger	
programs	or	modules.	



System	Resource	Management	Principle	
	
	

Resource	management	for	program	modules	must	be	
performed	by	the	computer	system	and	not	by	individual	
program	modules.	



The	list	processing	language	Lisp	
	
Data	Objects:		Lists	–	binary	trees	
	
Module:	Func:on	declara:on	
	
Garbage	Collec:on:		Yes	
	
Secure	Arguments:	
		Pure	Lisp:			Yes	
		Complete	Lisp:	No	
	
Unified	Memory	and	File	System:	No	
	
Parallel	Execu:on:	Pure	Lisp:	Yes,	with	
			func:onal	behavior.	
	



The	IBM	AS/400	System	
	

Designed	to	serve	the	corporate	data	processing	
market.	
	
Data	Objects:	Files	and	segments	of	memory	iden:fied	
by	handles.	
	
Module:	Procedure	Declara:on	
	
Secure	Arguments:	Not	Known	
	
Unified	Memory	and	File	System:	Yes	
	
Garbage	Collec:on:	Yes	
	
	


