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Outline

• Projects at BNL

• Big data and unsupervised learning

• Challenges of manifold learning in Big data

• Diverse Power Iteration Embedding

• Streaming version
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Extreme Scale Spatio-Temporal Learning

• Fusing theory, simulation, experiments, and ML
• Interplay of simulation, observation and ML
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Long Island Solar Farm



Analysis on the Wire
• Selectively and transparently perform generic computations on data 

while in transit in the network fabric.
• Process streaming data (e.g., imagery) for early decision-making and reduced 

downstream bandwidth requirements

• Extract data analytics, perform generic computations, use distributed computing 
capabilities

• Examples: Forecasting, deep learning, pattern recognition (e.g., cyber security, 
automation)
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Big Data

Volume

Variety

Veracity

Velocity
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Brookhaven National Laboratory RHIC
NSRL

Computing Facility
Interdisciplinary Energy 
Science Building
Computational Science 
Initiative 
CFN
NSLS-II
Long Island Solar Farm
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Research Facilities

Unsupervised Learning Tasks



Manifold Learning
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MapReduce: Not Complete Solution in 2010

• Task: Find cluster patterns in Doppler Radar Spectra

• Data: 1hr≈130MB, 1yr ≈1TB, 2004~2008 ≈ 5TB

• MapReduce (K-Means)
• Map: Find closest centroids
• Reduce: Update centroids

• MapReduce (Spectral Clustering)
• Distributed Affinity Matrix Computation : O(n2)
• Distributed Lanczos Methods to compute EVD

• Scalability Analysis
• 12 cores (1 node) Spectral clustering took 1 week for one month data
• 616 cores (77 nodes) Spectral Clustering took less than 2 hours for three 

months (~300GB)



Power-iteration-based Method
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F. Lin, W. Cohen, “Power Iteration Clustering”, (ICML 2010)
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Power-iteration-based Method

• Limitations

• Large number of cluster application
• Limited use of manifolds

• Anomaly detection, feature selection, dimensionality reduction
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1st Eigenvector PIE-1 PIE-2 PIE-3

Huang et al. ICDM ‘14 and TKDE ‘16



Diverse Power Iteration Embedding 
(DPIE)
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DPIE: Efficient Space Learning 
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Space Efficiency:

Cosine Similarity

Affinity matrix W and degree matrix 
D  can be calculated with:

where 1 is a constant vector of all 1’s, 
and XT denotes the transpose of X.

Gaussian Similarity 
Approximation

Using the equations listed in 
cosine similarity, by replacing 
X with R

Huang et al. ICDM ‘14 and TKDE ‘16



Diverse Power Iteration Value 
(DPIV)
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Huang et al. TKDE ‘16



Diverse Power Iteration Value 
(DPIV)
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DPIE: Choice of regression types
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Huang et al. TKDE ‘16



DPIE: Orthogonalization
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Huang et al. TKDE ‘16



Experiment

• Evaluation Metrics
• Clustering and Feature Selection: NMI (Normalized Mutual 

Information)
• Anomaly Detection: AUC
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Clustering, 
Feature Selection

Anomaly 
Detection



Experiment: Clustering
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Experiment: Anomaly Detection
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Experiment: Feature Selection
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Summary

• Clustering: 4000 times faster and reach 95% of the best 

clustering performance. 

• Anomaly Detection: 5000 times faster and reach 103% of the 

best performance. 

• Feature Selection: 4000 times faster, and has similar 

performance of the best algorithms. 

• Provides DPIV and Orthogonalization for various applications
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Streaming Approximations
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High Dimensional Stream

Anomaly
Detection

Feature 
Selection

Clustering

Feature
Selection



Questions?
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