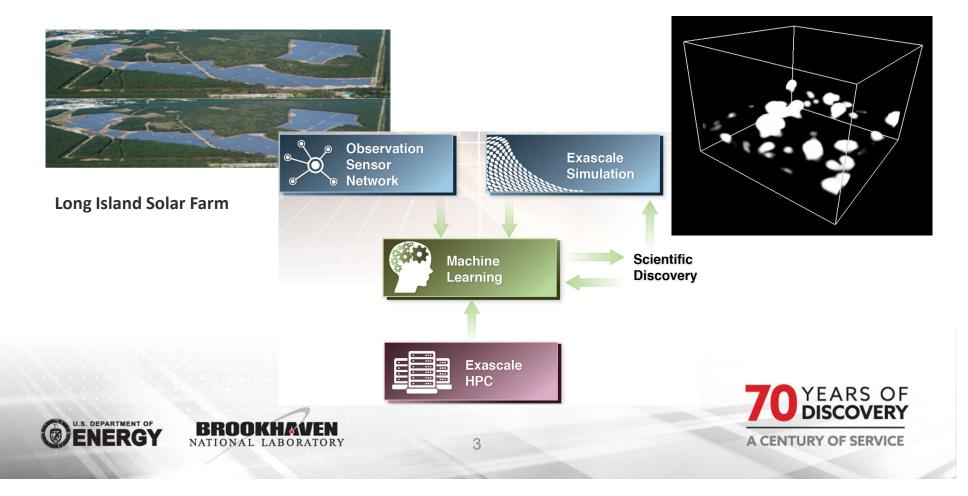
Efficient Krylov Approximation for Manifold Learning

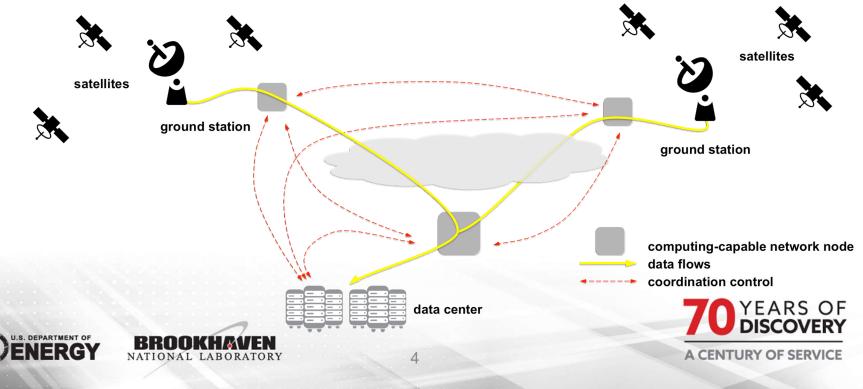
Shinjae Yoo Computational Science Initiative

A CENTURY OF SERVICE

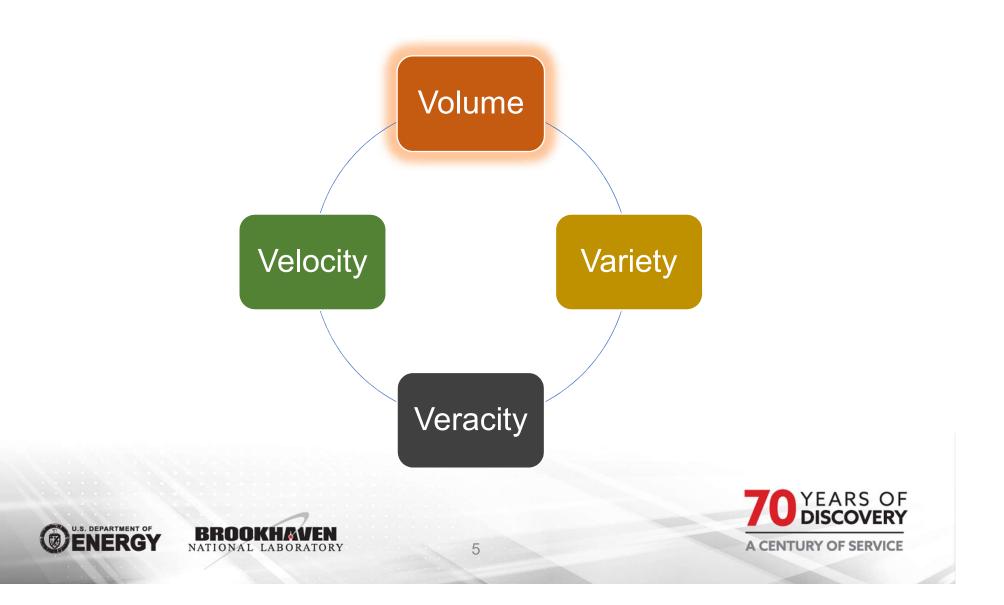
Outline

- Projects at BNL
- Big data and unsupervised learning
- Challenges of manifold learning in Big data
- Diverse Power Iteration Embedding
- Streaming version




Extreme Scale Spatio-Temporal Learning

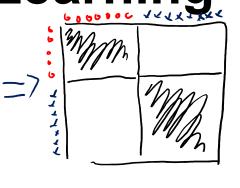
- Fusing theory, simulation, experiments, and ML
 - Interplay of simulation, observation and ML



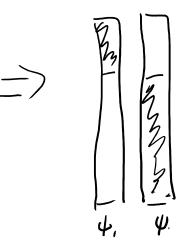
Analysis on the Wire

- Selectively and transparently perform generic computations on data while in transit in the network fabric.
 - Process streaming data (e.g., imagery) for early decision-making and reduced downstream bandwidth requirements
 - Extract data analytics, perform generic computations, use distributed computing capabilities
 - Examples: Forecasting, deep learning, pattern recognition (e.g., cyber security, automation)

Big Data



Research Facilities Brookhaven National Laboratory RHIC NSRL **Computing Facility** Interdisciplinary Energy **Science Building Computational Science** Initiative CFN **NSLS-II** Long Island Solar Farm Unsupervised Learning Tasks


Manifold Learning

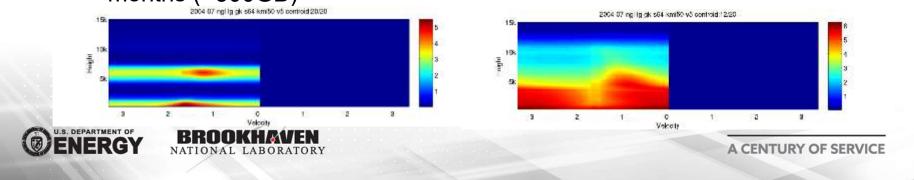
Х

 Λ

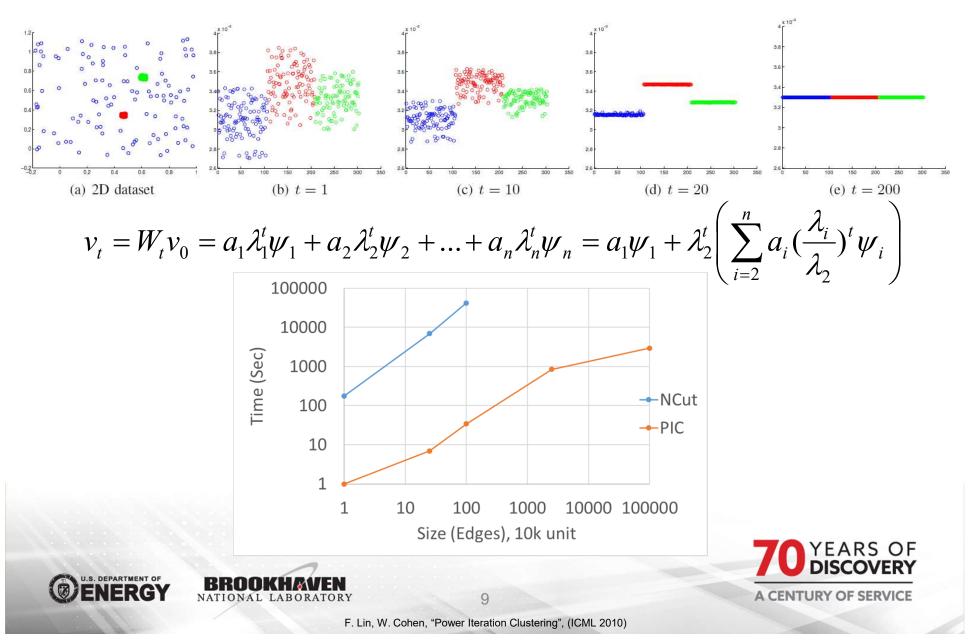
 $O(n^2)$

= EVD(w) $G(n^3)$

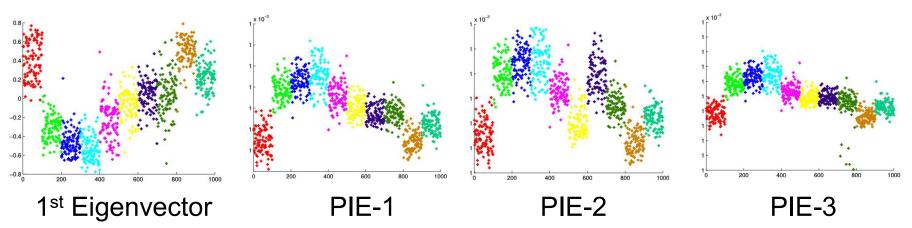
 $W\psi = \chi\psi$



MapReduce: Not Complete Solution in 2010


- Task: Find cluster patterns in Doppler Radar Spectra
- **Data**: 1hr≈130MB, 1yr ≈1TB, 2004~2008 ≈ 5TB
- MapReduce (K-Means)
 - Map: Find closest centroids
 - Reduce: Update centroids
- MapReduce (Spectral Clustering)
 - Distributed Affinity Matrix Computation : O(n²)
 - Distributed Lanczos Methods to compute EVD
- Scalability Analysis

- 12 cores (1 node) Spectral clustering took 1 week for one month data
- 616 cores (77 nodes) Spectral Clustering took less than 2 hours for three months (~300GB)

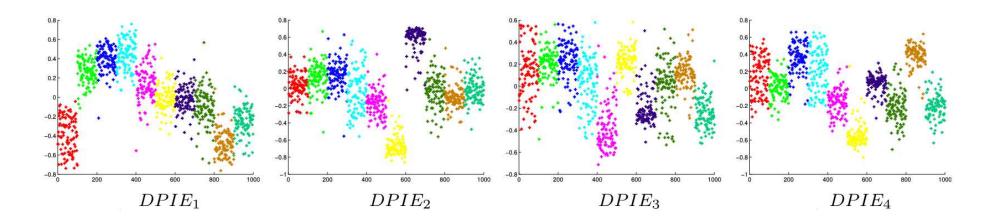


Power-iteration-based Method

Power-iteration-based Method

Limitations

- Large number of cluster application
- Limited use of manifolds
 - Anomaly detection, feature selection, dimensionality reduction



Huang et al. ICDM '14 and TKDE '16

10

Diverse Power Iteration Embedding (DPIE)

$$\arg\min_{f} = \left\| v_{i}^{t} - \psi_{1:k-1}^{t} f \right\| \qquad \qquad \psi_{k}^{t} = \frac{v_{i}^{t} - \psi_{1:k-1}^{t} f}{\left\| v_{i}^{t} - \psi_{1:k-1}^{t} f \right\|_{1}}$$

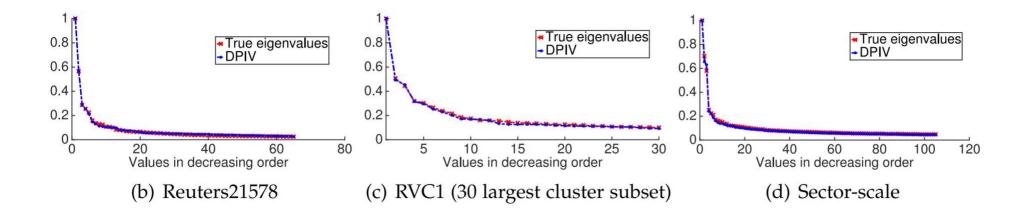
 $O(n^3) \implies O(nmT + ne\sqrt{\kappa})$

NATIONAL LABORATORY

Huang et al. ICDM '14 and TKDE '16

11

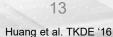
DPIE: Efficient Space Learning


Space Efficiency:

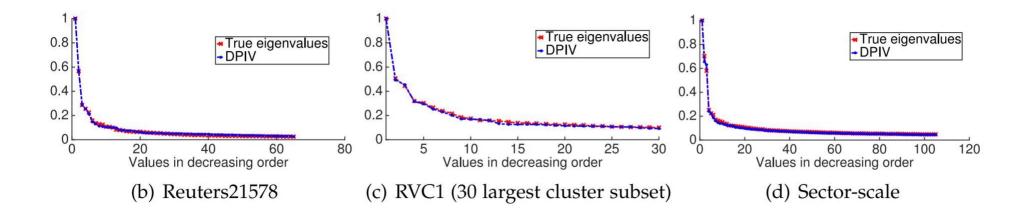
Cosine Similarity Gaussian Similarity $W_{(COS)}(i,j) = \frac{X(i) \cdot X(j)}{\|X(i)\|_2 \cdot \|X(j)\|_2}.$ Approximation $W_{(GAU)}(i,j) = exp(\frac{- \| X(i) - X(j) \|^2}{2\sigma^2}),$ $N_{ii} = 1/\sqrt{X(i)X(i)^T}$ Affinity matrix W and degree matrix 1) Draw d i.i.d. samples $\varpi(1), \ldots, \varpi(d)$ from $p(\varpi \sim$ D can be calculated with: $\frac{1}{\sigma^2}\mathcal{N}(0,1)$) where p(*) is fast Fourier transform; 2) Ďraw d i,i,d. samples (offsets) $b(1), \ldots, b(d)$ from uni- $W = N \times X \times X^T \times N,$ form distribution on $[0, 2\pi]$; $D = N \times X \times X^T \times N \times \mathbf{1}.$ 3) Compute R where $R(i, j) = \sqrt{2/d} [\cos(\varpi(j)^T x(i) + b)];$ Using the equations listed in where **1** is a constant vector of all 1's, cosine similarity, by replacing and X^T denotes the transpose of X. X with R $Wv^{t} = D^{-1} \times (N \times (X \times (X^{T} \times (N \times v^{t}))) - v^{t}).$

> 12 Huang et al. ICDM '14 and TKDE '16

Diverse Power Iteration Value (DPIV)

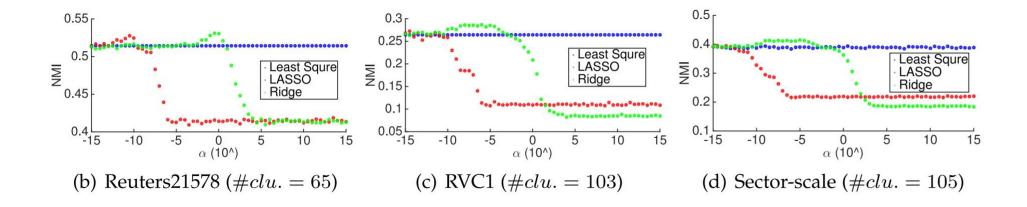


$$W\psi'_i = \lambda'_i \psi'_i \qquad \lambda'_i = (W\psi'_i) {\psi'_i}^{-1}$$



Diverse Power Iteration Value (DPIV)

$$W\psi'_i = \lambda'_i \psi'_i \qquad \lambda'_i = (W\psi'_i) {\psi'_i}^{-1}$$



14 Huang et al. TKDE '16

DPIE: Choice of regression types

$$f^* = argmin_f = \|v_i^t - \Psi'_{1:k-1}f\| + \alpha \sum_j |f_j|^p$$

DPIE: Orthogonalization

Algorithm 4. DPIE-Orthogonalization(Ψ', Λ')

Input: $\Psi' \in R^{n \times k}$ where *n* is #instances and *k* is #DPIE, $\Lambda' \in R^{k \times k}$ is the diagonal matrix of DPIV. **output:** Orthogonal DPIE $\hat{\Psi} \in R^{n \times k}$ and the corresponding DPIV $\hat{\Lambda} \in R^{k \times k}$.

1
$$P \leftarrow \Psi'^T \Psi';$$

- 2 Perform eigen-decomposition: $P = V \Sigma V^T$;
- 3 $B \leftarrow \Sigma^{1/2} V^T \Lambda' V \Sigma^{1/2};$
- 4 Perform eigen-decomposition: $B = V' \hat{\Lambda} V'^T$;

5
$$\hat{\Psi} \leftarrow \Psi' V \Sigma^{-1/2} V';$$

Experiment

- Evaluation Metrics
 - Clustering and Feature Selection: NMI (Normalized Mutual Information)
 - Anomaly Detection: AUC

Г	Dataset		# ins.	# fea.	# clu.
	1	20Newsgroups	18846	26214	20
Clustering, _	2	Reuters21578	8293	18933	65
Feature Selection	3	RCV1	193844	47236	103
	4	USPS	9298	256	10
	5	MNIST	70000	784	10
Γ		Dataset	# ins.	# fea.	# ano.
Anomoly	6	20NG-10-11	4991	26214	100
Anomaly _	7	Reuters21578AD	6261	18933	493
Detection	8	RCV1AD	7803	29992	200
	9	magic04	19020	10	6688
	10	satellite	6435	36	2036

17

EARS OF

Experiment: Clustering

NMI	NJW	PIE	PIE-k	MatSket	DeflationPIC	DPIE
20Newsgroups	0.5326	0.2519	0.3266	0.4877	0.4847	0.5061 (1)
Reuters21578	0.5048	0.2557	0.2718	0.5322	0.5014	0.5143 (2)
RCV1	[23]0.2875	0.1022	0.1237	0.1521	0.1941	0.2644 (1)
USPS	0.6207	0.2026	0.2401	0.4667	0.5871	0.5786 (2)
MNIST	0.4433	0.0022	0.0028	0.3523	0.3788	0.4032 (1)
Average	0.4778	0.1629	0.1930	0.3982	0.4292	0.4533 (1)
Time(s)	NJW	PIE	PIE-k	MatSket	DeflationPIC	DPIE
20Newsgroups	5653.0193	0.1461	5.0816	4131.7741	35.4688	5.0834
Reuters21578	1958.5777	0.0671	2.3548	830.7118	13.7681	1.6388
RCV1	- <u></u>	5.1961	110.5477	108998.2234	923.6324	127.6903
USPS	1665.3840	0.0675	1.9807	395.9329	7.2451	0.6584
MNIST	201581.2017	4.0707	38.8645	46072.8311	196.3723	43.6582
Average	;;	1.9095	31.7659	32085.8947	235.2973	35.7458

Experiment: Anomaly Detection

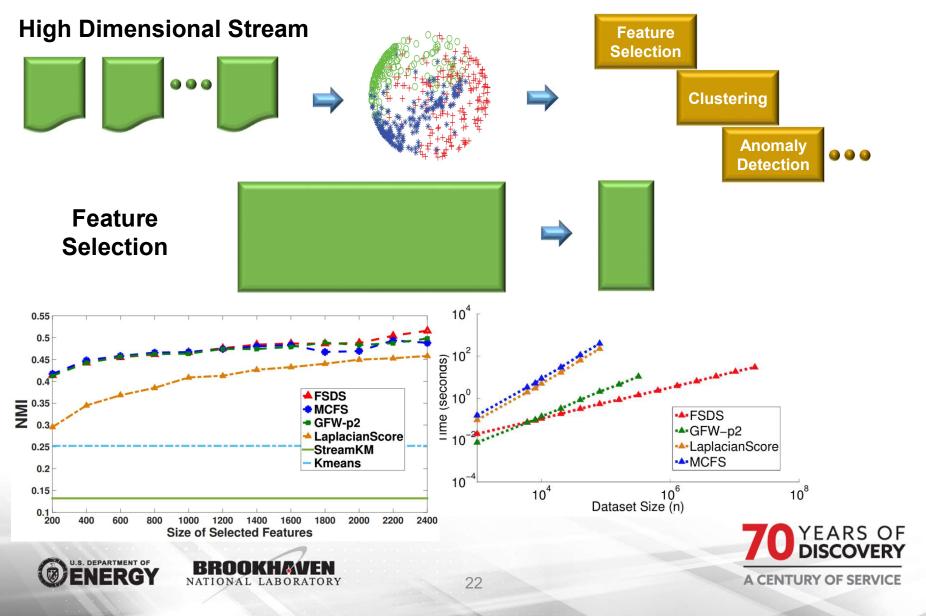
AUC	HKS-SE	HKS-PIE	HKS-PIEK	HKS-MatSket	HKS-DFL	IForest	HKS-DPIE
20NG-10-11	0.9042	0.3294	0.4858	0.6331	0.2318	0.6176	0.8844 (1)
Reuters21578AD	0.7845	0.3034	0.5131	0.4824	0.7863	0.6048	0.9271 (1)
RCV1AD	0.5428	0.4403	0.5049	0.4619	0.5925	0.4879	0.5547 (2)
magic04	0.7286	0.5757	0.5757	0.5799	0.4205	0.7506	0.7179 (3)
satellite	0.7078	0.3378	0.3378	0.5062	0.5416	0.7173	0.7193 (1)
Average	0.7336	0.3973	0.4835	0.5327	0.5145	0.6356	0.7607 (1)
Time(s)	HKS-SE	HKS-PIE	HKS-PIEK	HKS-MatSket	HKS-DFL	IForest	HKS-DPIE
20NG-10-11	876.9247	0.0297	0.8683	181.7283	5.7138	7.6199	0.8193
Reuters21578AD	4141.9718	0.0528	1.1995	170.0181	7.3392	8.2016	1.0608
RCV1AD	4199.1405	0.0476	1.3253	475.9983	10.6519	5.5944	1.1128
magic04	14732.0387	0.1252	0.3402	3241.6766	20.3112	53.8751	2.2759
satellite	779.7334	0.0145	0.1121	152.7320	8.9713	49.3959	0.5889
Average	49 <mark>4</mark> 5.9618	0.0540	<mark>0.7691</mark>	844.4307	10.5975	24.9374	1.1715

Experiment: Feature Selection

20Newsgroups	MCFS-SE	MCFS-PIE	MCFS-PIEK	MCFS-MatSket	MCFS-DFL	MCFS-DPIE
50	0.2971	0.1691	0.1590	0.2691	0.2552	0.3446 (1)
200	0.3361	0.3089	0.3181	0.3603	0.3274	0.3834 (1)
800	0.4118	0.3899	0.4115	0.4061	0.4256	0.4372 (1)
1200	0.4256	0.4696	0.4498	0.4692	0.4335	0.4819 (1)
1800	0.4865	0.4671	0.4587	0.4340	0.4748	0.4993 (1)
Reuters21578	MCFS-SE	MCFS-PIE	MCFS-PIEK	MCFS-MatSket	MCFS-DFL	MCFS-DPIE
50	0.3957	0.3959	0.3889	0.4399	0.3973	0.4366 (2)
200	0.4607	0.4539	0.4598	0.4745	0.4677	0.4814 (1)
800	0.5125	0.5021	0.5183	0.5113	0.4993	0.5176 (2)
1200	0.5125	0.4783	0.4882	0.4971	0.5122	0.5297 (1)
1800	0.5081	0.5104	0.5078	0.4980	0.5200	0.5308 (1)
Average	0.4347	0.4145	0.4160	0.4360	0.4313	0.4646 (1)

U.S. DEPARTMENT OF

Summary


- Clustering: 4000 times faster and reach 95% of the best clustering performance.
- Anomaly Detection: 5000 times faster and reach 103% of the best performance.
- Feature Selection: 4000 times faster, and has similar performance of the best algorithms.
- Provides DPIV and Orthogonalization for various applications

Streaming Approximations

Questions?

