Big Stream Data Analytics: Current & Future Trends

Latifur Khan Professor, Department of Computer Science

The University of Texas at Dallas

www.utdallas.edu/~lkhan

This material is based upon work supported by

Agenda

- Data Streams
- □ Challenges
- □ Shortcomings of Current Solutions
- Dynamic Chunk Management
- Limited Labeled Learning
- **D** Experiments
- Applications
- Future Direction

Data Streams

> Data Stream:

- is continuous flow of data.
- very common in today's connected digital world.

Network Traffic

- important source of knowledge that enables to take extremely important decisions in (near) real time.
- > Hence, data stream mining is very important.

Data Stream Classification

- Uses past data to build classification model.
- Predicts the labels of future instances using the model.
- Helps decision making.

Challenge: Infinite Length

- Impractical to store and use all historical data
 - requires infinite storage

and running time

U

()

FE

TOO

Challenge: Concept Drift

Challenge: Concept Evolution

Classification rules:

R1. if $(x > x_1 \text{ and } y < y_2)$ or $(x < x_1 \text{ and } y < y_1)$ then class = + R2. if $(x > x_1 \text{ and } y > y_2)$ or $(x < x_1 \text{ and } y > y_1)$ then class = -Existing classification models misclassify novel class instances

Existing Techniques: Ensemble based Approaches

Masud et al. [1][2]

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934

[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)

Existing Techniques: Ensemble Techniques

Divide the data stream into equal sized chunks

- Train a classifier from each data chunk
- Keep the best *t* such classifier-ensemble
- Example: for t = 3

Note: D_i may contain data points from different classes

Novel Class Detection

Masud et al. [1][2], Khateeb et al. [3]

> Non parametric

- does not assume any underlying model of existing classes

Steps:

- 1. Creating and saving decision boundary during training
- 2. Detecting and filtering outliers
- 3. Measuring cohesion and separation among test and training instances

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Ashok N. Srivastava, Nikunj C. Oza: Classification and Adaptive Novel Class Detection of Feature-Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 25(7): 1484-1497 (2013)

[2] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

[3] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40

Training with Semi-Supervised Clustering

Impurity based Clustering

Legend:

Black dots: unlabeled instances

Colored dots: labeled instances

Semi Supervised Clustering

Masud et al. [1][2]

Objective function (dual minimization problem)

$$\mathcal{O}_{MCIKmeans} = \sum_{i=1}^{K} \sum_{\boldsymbol{x} \in \mathcal{X}_i} ||\boldsymbol{x} - \boldsymbol{u}_i||^2 + \sum_{\boldsymbol{x} \in \mathcal{L}_i} ||\boldsymbol{x} - \boldsymbol{u}_i||^2 * Imp_i)$$

Intra-cluster dispersion Cluster impurity

 $Imp_{i} = Aggregated \ dissimilarity \ count_{i}^{*} \ Entropy_{i} = ADC_{i}^{*} \ Ent_{i}$ Aggregated dissimilarity count (ADC): $ADC_{i} = \sum_{x \in \mathcal{L}_{i}} DC_{i}(x, y)$. $\mathcal{DC}_{i}(x, y) = \begin{cases} 0 & \text{if } x \text{ is unlabeled (i.e., } y = \phi) \\ |\mathcal{L}_{i}| - |\mathcal{L}_{i}(c)| & \text{if } x \text{ is labeled and its label } y = c \end{cases}$

Entropy (*Ent*):
$$Ent_i = \sum_{c=1}^{C} (-p_c^i * log(p_c^i))$$

The minimization problem is solved using the Expectation-Maximization (E-M) framework

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934

[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)

Outlier Detection and Filtering

Foutliers may appear as a result of novel class, concept-drift, or noise. Therefore, they are filtered to reduce noise as much as possible.

Novel Class Detection

Computing Cohesion & Separation

λ_c(x) is the
 set of nearest neighbors
 of x belonging to class c
 λ_o(x) is the
 set of nearest Foutliers of x

- a(x) = mean distance from an *Foutlier x* to the instances in $\lambda_{o,q}(x)$
- $b_{min}(x)$ = minimum among all $b_c(x)$ (e.g. $b_+(x)$ in figure)
- *q*-Neighborhood Silhouette Coefficient (*q*-NSC):

$$q - NSC(x) = \frac{(b_{\min}(x) - a(x))}{\max(b_{\min}(x), a(x))}$$

If q-NSC(x) is positive, it means x is closer to Foutliers than any other class.

Detection of Concurrent Novel Classes

Masud et al. [1], Faria et al. [2]

- Challenges
 - High false positive (FP) (existing classes detected as novel) and false negative (FN) (missed novel classes) rates
 - Two or more novel classes arrive at a time

- Solutions
 - Dynamic decision boundary based on previous mistakes
 - Inflate the decision boundary if high FP, deflate if high FN
 - Build statistical model to filter out noise data and concept drift from the outliers.
 - Multiple novel classes are detected by
 - Constructing a graph where outlier cluster is a vertex
 - Merging the vertices based on silhouette coefficient
 - Counting the number of connected components in the resultant (i.e., merged) graph

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Bhavani M. Thuraisingham: Addressing Concept-Evolution in Concept-Drifting Data Streams. ICDM 2010: 929-934

[2] Elaine R. Faria, João Gama, André C. P. L. F. Carvalho: Novelty detection algorithm for data streams multi-class problems. SAC 2013: 795-800

Novel and Recurrence

Khateeb et al. [1]

[1] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40

Challenges: Fixed Chunk Size/ Decay Rate

Masud et al. [1], Parker et al. [2], Aggarwal et al. [3], Klinkenberg[4], Cohen et al. [5]

- Fixed chunk size
 - requires a priori knowledge about the time-scale of change.
 - delayed reaction if the chunk size is too large.
 - unnecessary frequent training during stable period if chunk size is too small.

Fixed decay rate

- assigns weight to data instances based on their age.
- decay constant must match the unknown rate of change.

[2] Brandon Shane Parker, Latifur Khan: Detecting and Tracking Concept Class Drift and Emergence in Non-Stationary Fast Data Streams. AAAI 2015: 2908-2913

[3] Charu C. Aggarwal, Philip S. Yu: On Classification of High-Cardinality Data Streams. SDM 2010: 802-813

[4] Ralf Klinkenberg: Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal. 8(3): 281-300 (2004)

^[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

^[5] Edith Cohen, Martin J. Strauss: Maintaining time-decaying stream aggregates. J. Algorithms 59(1): 19-36 (2006)

Challenges: Fixed Chunk Size

Solution: Adaptive Chunk Size

Adaptive Chunk - Sliding Window

Gamma et al. [1], Bifet et al. [2], Harel et al. [3]

Existing dynamic sliding window techniques

- monitor error rate of the classifier.
- Update classifier if starts to show bad performance.
- fully supervised, which is not feasible in case of real-world data streams.

[1] João Gama, Gladys Castillo: Learning with Local Drift Detection. ADMA 2006: 42-55

- [2] Albert Bifet, Ricard Gavaldà: Learning from Time-Changing Data with Adaptive Windowing. SDM 2007: 443-448
- [3] Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer: Concept Drift Detection Through Resampling. ICML 2014: 1009-1017

Adaptive Chunk - Unsupervised

[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data. ICDE 2016: 481-492.
 [2] Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658.

22

Adaptive Chunk - Unsupervised

[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data. ICDE 2016: 481-492

[2] Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658.

23

Confidence of a model

\succ For each testing instance *x*:

- Confidence for i^{th} model, $c_i^{\chi} = h_i^{\chi} \cdot z_i$
 - $h_i^x = (a_i^x, p_i^x)$ is a vector of estimator values on test instance x.
 - \mathbf{z}_i = vector containing weights of the estimators for i^{th} model.
- To estimate confidence of the entire ensemble, we take the average confidence of the models towards the predicted class.

Confidence Estimators

- Let h be the closest cluster from data instance x in model M_i, confidence of M_i in classifying instance x is calculated based on the following estimators:
 - Association: $a_i^x = R_h D_i(x)$, where R_h is the radius of h and $D_i(x)$ is the distance of x from h.
 - ➤ Purity: $p_i^x = N_m / N_s$, where N_s is the number of labeled instances in *h*, and N_m is the number of instances from the majority class in *h*.

Big Stream Data: Current & Future

- Stream Mining*
 - IOT Big Stream Mining—Real Time
 - Security:
 - -Encrypted Stream Traffic Analysis
 - Website Fingerprinting

*Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In Proc. Of Twenty-Ninth AAAI Conference on Artificial Intelligence. (Jan 2015).

Application (1): Detecting Zero-day attacks

UTD

Results Detecting Zero-day attacks

	FP%		FN%		Err%	
	Dxminer ¹	Dxminer+DAE features ²	Dxminer	Dxminer + DAE features	Dxminer	Dxminer + DAE features
BiDi Packets:	26.988	0.0	24.869	15.635	42.037	4.396
N-grams SysCalls:	31.87	19.33	21.414	4.761	46.754	17.66

- Dxminer¹ = novel class detection method
- DAE² = Denoising Autoencoders features
- Tahseen Al-Khateeb et. al., Recurring and Novel Class Detection Using Class-Based Ensemble for Evolving Data Stream. *IEEE Trans. Knowl. Data Eng. 28(10):* 2752-2764 (2016)
- 2. Pascal Vincent et. al., Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11: 3371-3408 (2010)

M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and S.E. Seker, "Online anomaly detection for multi-source VMware using a distributed streaming framework." Software: Practice and Experience (2016).

FEARLESS engineering

Statistical Technique for Online Anomaly Detection Using Spark: Framework

Stream Data Mining Module

Number of windows

Experimental Result

Component	Number of parallelism						
Worker for emitting tuples		05					
Worker for statistical analysis	08						
Statistical Model							
Number of data point	Dataset 1	Dataset 2					
Number of windows	800	800					
Total Number of points	80, 000	80, 000					

Testin

a				
Method	TPR	FNR	TNR	FPR
Chi-square based Online model	90.00 %	10.00 %	98.80 %	1.2%
Base-line offline method	8.24%	91.76 %	99.16 %	0.84%

uıD

M. Solaimani, M. Iftekhar, L. Khan, and B. Thuraisingham, "Statistical Technique for Online Anomaly Detection Using Spark Over Heterogeneous Data from Multi-source VMware Performance Data," in proceedings of the IEEE International Conference on Big Data 2014 (IEEE BigData 2014), Washington DC, USA.

FEARLESS engineering

Application (3): Encrypted Traffic Fingerprinting

Al-Naami et al. [1][2]

- Traffic Fingerprinting (TFP) is a Traffic Analysis (TA) attack that threatens web/app navigation privacy.
- TFP allows attackers to learn information about a website/app accessed by the user, by recognizing patterns in traffic.
- Examples: Website Fingerprinting

Attacker

K. Al-Naami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan and B. Thuraisingham, "P2V: Effective Website Fingerprinting Using Vector Space Representations," Computational Intelligence, 2015 IEEE Symposium Series on, Cape Town, 2015, pp. 59-66.
 K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen, and B. Thuraisingham. 2016. Adaptive encrypted traffic fingerprinting with bi-directional dependence. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC '16), Los Angeles, CA.

A Framework To Recommend New Political Actors With Role In Real-time (4)

Dictionary (CAMEO) development requires

- Human involvement
- ➢ Not up-to-date
- ➤ Higher Cost
- Processing large number of articles

Our Goal:

Reduce human effort and cost
 Recommending news actor real-time
 Update dictionary

BARACK_OBAMA +MR_OBAMA_ +MR._OBAMA_ +PRESIDENT_OBAMA_ +OBAMA +PRESIDENT_BARACK_OBAM A +US_PRESIDENT_BARACK_O BAMA +AMERICAN_PRESIDENT_BAR ACK_OBAMA

+OBAMA_ADMINISTRATION [USAELI 780101-000101] [USAGOV >090120]

A Framework To Recommend New

Political with multiple alias names, >e.g., Barack Hussein Obama', 'Barack Obama', etc.

 Role of a political actor changes over time.
 >e.g., 'Shimon Peres' has multiple political roles in Israel

□Processing a large volume of news articles
>demands scalable, distributed computing

A Framework To Recommend New Political Actors With Role In Real-time

- A real-time framework for recommendation
 Possible new actors with their roles
 Grouping actor aliases
- □ Frequency-based actor ranking algorithm
- □ A graph-based technique to recommend roles
 - A new actor
 - Existing actor whose role varies over time
 - Integrating external knowledge base (e.g., Wikipedia)

Time window-based recommendation system.

Real-time Political Actor Detection Over Textual Political Stream

Real-time new political actor recommendation framework.

M. Solaimani, R. Gopalan, L. Khan, P. T. Brandt , and B. Thuraisingham, "Spark-based political event coding." 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), pp. 14-23. IEEE, 2016, Oxford, UK.

Future Direction

- Adversarial active learning
 - Traditional algorithms are vulnerable to adversarial manipulation.
 - Instances should be selected carefully.
- Efficient online change detection
- Deep Learning Guided Stream Mining
- Multi-stream Analytics

References

- Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: *Efficient handling of concept drift and concept evolution over Stream Data*. ICDE 2016: 481-492
- Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658
- Swarup Chandra, Ahsanul Haque, Latifur Khan, Charu C. Aggarwal: An Adaptive Framework for Multistream Classification. CIKM 2016: 1181-1190
- Khaled Al-Naami, Swarup Chandra, Ahmad M. Mustafa, Latifur Khan, Zhiqiang Lin, Kevin W. Hamlen, Bhavani M. Thuraisingham: Adaptive encrypted traffic fingerprinting with bi-directional dependence. ACSAC 2016: 177-188
- Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In: Twenty-Ninth AAAI Conference on Articial Intelligence. (Jan 2015).
- Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40
- Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Ashok N. Srivastava, Nikunj C. Oza: Classification and Adaptive Novel Class Detection of Feature-Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 25(7): 1484-1497 (2013)
- Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)
- Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934
- Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)
- João Gama, Gladys Castillo: Learning with Local Drift Detection. ADMA 2006: 42-55
- Albert Bifet, Ricard Gavaldà: Learning from Time-Changing Data with Adaptive Windowing. SDM 2007: 443-448
- Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer: Concept Drift Detection Through Resampling. ICML 2014: 1009-1017
- Charu C. Aggarwal, Philip S. Yu: On Classification of High-Cardinality Data Streams. SDM 2010: 802-813
- Wei Fan, Yi-an Huang, Haixun Wang, Philip S. Yu: Active Mining of Data Streams. SDM 2004: 457-461
- Xingquan Zhu, Peng Zhang, Xiaodong Lin, Yong Shi: Active Learning from Data Streams. ICDM 2007: 757-762
- Ralf Klinkenberg: Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal. 8(3): 281-300 (2004)
- Edith Cohen, Martin J. Strauss: *Maintaining time-decaying stream aggregates*. J. Algorithms 59(1): 19-36 (2006)

