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Data Streams

» Data Stream:
— 1s continuous flow of data.
— very common in today’s connected digital world.

Sensor Data Network Traffic

— important source of knowledge that enables to take extremely
important decisions in (near) real time.

» Hence, data stream mining Is very important.
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Data Stream Classification

» Uses past data to build classification model.
» Predicts the labels of future instances using the model.

» Helps decision making.
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Challenge: Infinite Length

» Impractical to store and use all historical
data Gl

— requires infinite storage

— and running time
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Challenge: Concept Drift

Current hyperplane

Previous hyperplane

A data chunk

Negative instance ®

Positive instance o Instances victim of concept-drift e
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Challenge: Concept Evolution
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Existing Techniques: Ensemble based

Approaches

Masud et al. [1][2]

M, <

M, —O—-0—C
input M, C-D

. Individual voting  Ensemble
Classifier

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited

Amount of Labeled Data. ICDM 2008: 929-934
[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with

scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)
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Existing Techniques: Ensemble Techniques

» Divide the data stream into equal sized chunks
— Train a classifier from each data chunk
— Keep the best t such classifier-ensemble
— Example: fort =3

Note: D, may contain data points from different classes

l Labeled chunk
Data Ds
chunks Unlabeled chunk
Addresses infinite length
Models and concept-drift
Ensemble M4IM5J »O——» Prediction
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Novel Class Detection

Masud et al. [1][2], Khateeb et al. [3]

» Non parametric
— does not assume any underlying model of existing classes

»> Steps:

1. Creating and saving decision boundary during training
2. Detecting and filtering outliers

3. Measuring cohesion and separation among test and
training instances

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Ashok N. Srivastava, Nikunj C. Oza: Classification and
Adaptive Novel Class Detection of Feature-Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 25(7): 1484-1497 (2013)

[2] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting
Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

[3] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with
Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40
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Training with Semi-Supervised Clustering

| i

Impurity based Clustering

Legend:
Black dots: unlabeled instances

Colored dots: labeled instances
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Semi Supervised Clustering

Masud et al. [1][2]

» Objective function (dual minimization problem)

OMcIKmeans = |2 — wsi||® * Trmp;)

Intra-cluster dispersion Cluster impurity
Imp;: = Aggregated dissimilarity count; * Entropy, = ADC, * Ent,
Aggregated dissimilarity count (ADC): ADC; = > DC;(x. y).

e
0 if & is unlabeled (i.e., y = @)

DCZ' €T y) =
() {|£i| — |Li(c)| if x is labeled and its label y=c

(&
Entropy (Ent): Ent; = > (—pL + log(pl))
e=1

The minimization problem is solved using the Expectation-
Maximization (E-M) framework

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited

Amount of Labeled Data. ICDM 2008: 929-934
[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with

scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)
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Outlier Detection and Filtering

Test instance inside
decision boundary
(not outlier)

Test instance outside .
decision boundary Test ";(Stance
Raw outlier or Routlier

/‘

yu \
Y
@ D\ § Ensemble of L models
. GO -
A ¢ Routli - -
outlier Routlier Routlier
/
®—' X is an existing
Y TrueJ] False class instance
B
@) X is a filtered outlier (Foutlier)
X, X (potential novel class instance)
Foutliers may appear as a result of novel class, concept-drift, or noise.
Therefore, they are filtered to reduce noise as much as possible.
FEARLESS engineering 13
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Novel Class Detection

Test instance

Ensemble of L models

St 1 M
(Step 1) @ AN,

for q™>q N Treat as
Foutliers existing
with all class
Step 2
(Step 2) models?

X is a filtered outlier (Foutlier)
(potential novel class instance) Compute Y
SN— g-NSC with
| all models |
and other
ol e Novel class found

(Step 3)
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Computing Cohesion & Separation

»A(X) is the
set of nearest neighbors
of x belonging to class ¢
»Ao(X) Is the
set of nearest Foutliers of x

= a(x) = mean distance from an Foutlier x to the instances in 4, ,(x)
* Db.,i(X) = minimum among all b.(x) (e.g. b.(x) in figure)
» g-Neighborhood Silhouette Coefficient (g-NSC):

g - NSC(x) = P () ~(0))
ma'X(bmin (X); a(X))

= |f g-NSC(x) is positive, it means x is closer to Foutliers than any other class.

FEARLESS engineering 15 \UT|D]




Detection of Concurrent Novel Classes

Masud et al. [1], Faria et al. [2]

» Challenges

— High false positive (FP) (existing classes detected as novel) and false negative (FN)
(missed novel classes) rates

— Two or more novel classes arrive at a time

Marginal

Pseudopoint false-
limit JJ///HOVd
Marginal

false-
existing

OUTTH
limit

Slack
space

» Solutions

— Dynamic decision boundary — based on previous mistakes

* Inflate the decision boundary if high FP, deflate if high FN
— Build statistical model to filter out noise data and concept drift from the outliers.
— Multiple novel classes are detected by

» Constructing a graph where outlier cluster is a vertex

» Merging the vertices based on silhouette coefficient

» Counting the number of connected components in the resultant (i.e., merged) graph

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Bhavani M. Thuraisingham: Addressing Concept-Evolution in Concept-
Drifting Data Streams. ICDM 2010: 929-934
[2] Elaine R. Faria, Jodo Gama, André C. P. L. F. Carvalho: Novelty detection algorithm for data streams multi-class problems. SAC 2013: 795-800
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Novel and Recurrence

Khateeb et al. [1]
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[1] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and
Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40
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Challenges: Fixed Chunk Size/ Decay Rate

Masud et al. [1], Parker et al. [2], Aggarwal et al. [3], Klinkenberg[4], Cohen et al. [5]

SR IEIEIRIDIEIEIC)

T Chunk 1 T Chunk 2 T

» Fixed chunk size
— requires a priori knowledge about the time-scale of change.
— delayed reaction if the chunk size is too large.
— unnecessary frequent training during stable period if chunk size is too small.

» Fixed decay rate
— assigns weight to data instances based on their age.
— decay constant must match the unknown rate of change.

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams
under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

[2] Brandon Shane Parker, Latifur Khan: Detecting and Tracking Concept Class Drift and Emergence in Non-Stationary Fast Data Streams. AAAI 2015: 2908-2913
[3] Charu C. Aggarwal, Philip S. Yu: On Classification of High-Cardinality Data Streams. SDM 2010: 802-813

[4] Ralf Klinkenberg: Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal. 8(3): 281-300 (2004)

[5] Edith Cohen, Martin J. Strauss: Maintaining time-decaying stream aggregates. J. Algorithms 59(1): 19-36 (2006)
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Challenges: Fixed Chunk Size

Concept Drifts

Chunk size too large — Delayed reaction

Chunk size too small — Performance issue

[ ] correct [ 1 wrong
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Solution: Adaptive Chunk Size

Concept Drifts

Adaptive Chunk Size

[ ] correct [ 1 wrong
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Adaptive Chunk - Sliding Window

Gamma et al. [1], Bifet et al. [2], Harel et al. [3]

@O Ve e | e e ®:

» Existing dynamic sliding window techniques
— monitor error rate of the classifier.
— Update classifier if starts to show bad performance.
— fully supervised, which is not feasible in case of real-world data streams.

[1] Jodo Gama, Gladys Castillo: Learning with Local Drift Detection. ADMA 2006: 42-55
[2] Albert Bifet, Ricard Gavalda: Learning from Time-Changing Data with Adaptive Windowing. SDM 2007: 443-448
[3] Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer: Concept Drift Detection Through Resampling. ICML 2014: 1009-1017
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Adaptive Chunk - Unsupervised

Haque et al. [1][2]

Input Prediction .
: Predicted
> Hsing Class

Ensemble

~~

Classifier
Confidence
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©® @ © e
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®® e e
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[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data. ICDE 2016: 481-492.
[2] Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658.
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Adaptive Chunk - Unsupervised

Haque et al. [1][2]

Input Prediction -
| > ts Predicted
Ensemble Class

|
—
( A<( Association \ ( Association \

Purity

Purity

\ Model 2 Model t
Co Confidence Confidence
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~~

Classifier
Confidence
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Classifier & Grow
Shrink Window Window

[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data.
ICDE 2016: 481-492
[2] Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658.
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Confidence of a model

» For each testing instance x:

— Confidence for #* model, ci* = hf.z,
e hi = (a, py) is a vector of estimator values on test instance x.
 z = vector containing weights of the estimators for i"" model.

» To estimate confidence of the entire ensemble, we take
the average confidence of the models towards the
predicted class.
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Confidence Estimators

» Let h be the closest cluster from data instance x in
model M., confidence of M; in classifying instance X is
calculated based on the following estimators:

» Association: a; =R, - Di(x),
where R;, is the radius of h and
D.(X) is the distance of x from h.

> Purity: p# =N../ N, where N, is the
number of labeled instances in h, and .
N, is the number of instances from the = Ny=15N,=14 |
majority class in h. " =145 '

_________________________________
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Big Stream Data: Current & Future

e Stream Mining*
10T Big Stream Mining—Real Time Any Do
e Security: &

Anyone
Any Context

—Encrypted Stream Traffic Analysis
 Website Fingerprinting

The
INTERNET
Any Place Oi:TH I NGS

Anywhere

Any Path
Any Network

Attacker

*Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in non-stationary fast data
streams. In Proc. Of Twenty-Ninth AAAI Conference on Atrtificial Intelligence. (Jan 2015).

FEARLESS engineering
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Application (1): Detecting Zero-day attacks

The Distribution of attacks through time

25} —— ———— ———

241 —— e — —

17} e e =

16| —— ——— ——

| P ——

==

| e s cmvo e s =

1000 2000 3000
time

Chunk contains 1 new attack
and 5 existing classes.

o 28 classes
« Each class has 200 data points
 Chunk size =100
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Results Detecting Zero-day attacks

Dxminer+DAE features 2

_

Dxminer 1

Dxminer + DAE features

BiDi Packets: 26.988 0.0
N-grams SysCalls: 31.87 19.33

Dxminer|Dxminer + DAE features |[Dxminer
24.869 15.635 42.037
21.414 4.761 46.754

« Dxminer! =novel class detection method
« DAE? = Denoising Autoencoders features

4.396

17.66

1. Tahseen Al-Khateeb et. al., Recurring and Novel Class Detection Using Class-Based
Ensemble for Evolving Data Stream. IEEE Trans. Knowl. Data Eng. 28(10): 2752-

2764 (2016)

2. Pascal Vincent et. al., Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion. J. Mach.

Learn. Res. 11: 3371-3408 (2010)
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Processing latency {millisecond)

Spark-based Real-time Anomaly Detection:

data o

Framework (Application 2

Q Stream Data Mining Module ' Experimental Resuba s

= Dataset2 - Performance data for
Cluster Yahoo Cloud Service Benchmark

Environment database operation.
-
Worker for emitting tuples 05
S‘t,ream Data = B
<D H
‘ _ : Worker for clusterin 08
‘-"'ﬁ‘] | » 3 ( Data Mining On Input g
S R N Worker for prediction 08
— Message Broker : — mﬂ;g%; 3 -
;B] m——>Dstream~, " H° Training
Pt DStream
VMwares 4
. Number of data points 10, 000 10, 000
Technical Approach Spark Cluster P
Number of clusters 63 134
—a— D1 (Storm) —e— D {Storm) .
—w— D2 (Storm) e D2 isiom | 1ESTIN
- #- DI (Spark) - 8- DI (Spark) g
- »= D2 (Spark) -+~ D2 (Spark)
§ T T T
& . . . E 08 T D1 98.00% 2.00% 99.83% 0.17%
A h h ?;_ 0.6 |- .
i . -; D2 99.20% 0.80% 99.06% 0.94%
= 0.2 BB Clustering time
ol 'jl::::f:::::ﬁ::::'::==-l.——_:'j' i i BE Prediction time
S B R Lt Ll .
0 000 4000 600D BOD0 10000 2 op 7 1 . 0.6 ]
1] (L] 000 R L] 3500

Number of training instances

MNumber of testing instances 0.4

Time (milhsecond )

IvM 2V

M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and S.E. Seker, “Online anomaly detection for m
VVMware using a distributed streaming framework." Software: Practice and Experience (2016).
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Statistical Technique for Online Anomaly

O Stream Data Mining Module 0 Experimental Result

Current Dstream

‘E] dist'ribuliun Cl u Stel’
Performance Stream Data m _’m 1_} [‘ o E n Vi ronm ent
] Eﬁ»-.-b /mnﬂ
= i o
[ﬁ]] Apache Kafka m_’m :“:a“:'“ﬁ”f::ﬁ e Worker for emitting tuples 05
= sided tes! =l .
. Worker for statistical 08
(M e Statistical Reak-time Data Mining on Dstream using an aIySIS
Apache Spark Statistical
Technical Approach Model
—a— Chi-square base technique
~ >~ base-line offline approach Number of windows 800 800
— [ [ [ [
g X Total Number of points 80, 000 80, 000
§ 2.5 \ —
é S N | Testin
£ J
= 1.5 |- |
'z Chi-square 90.00 10.00 98.80 1.2%
§ 1 b | based Online % % %
&= model
Base-line 8.24% 91.76 99.16 0.84%
Number of windows offline method % %

M. Solaimani, M. Iftekhar, L. Khan, and B. Thuraisingham, “Statistical Technique for Online Anomaly Detection Using Spark Over
Heterogeneous Data from Multi-source VMware Performance Data,” in proceedings of the IEEE International Co
Data 2014 (IEEE BigData 2014). Washington DC. USA.
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Application (3): Encrypted Traffic Fingerprinting

Al-Naami et al. [1][2]
« Traffic Fingerprinting (TFP) is a Traffic Analysis (TA) attack that threatens
web/app navigation privacy.

 TFP allows attackers to learn information about a website/app accessed
by the user, by recognizing patterns in traffic.

 Examples: Website Fingerprinting

100 I . II I

and Destination.

80

Acc (%)

Website
Server

60

Client (User)

Packet Analyzer

20 40 o0 80 100 120 140 160 180

Time (day) \ Machine Learning
QTO reveal destination ~Sli———
h—

Figure 9: Adaptive Learning.
Attacker

[1] K. Al-Naami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan and B. Thuraisingham, "P2V: Effective Website Fingerprinting Using
Vector Space Representations,* Computational Intelligence, 2015 IEEE Symposium Series on, Cape Town, 2015, pp. 59-66.

[2] K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen, and B. Thuraisingham. 2016. Adaptive encrypted traffic
fingerprinting with bi-directional dependence. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (ACSAC '16), Los Angeles, CA.
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A Framework To Recommend New Political

dDictionary (CAMEQO) development \w&/—\
requ”-es Dictionary
> Human involvement T
> Not Up-tO-date II\PARRE_S?SEAIFJATA_BBAMA_
. +OBAMA
> ngher COSt +PRESIDENT_BARACK_OBAM
. . A
» Processing large number of articles YU [ARESOENT EARACK.
+AMERICAN_PRESIDENT BAR
ACK_OBAMA
dOur Goal:
»Reduce human effort and cost Usaeioy - e A

»Recommending news actor real-time
»Update dictionary
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A Framework To Recommend New

1 Political with multiple alhlas names,
»e.|., Baiack Hussein Obama’, ‘Barack Obama’, etc.

"

'F

 Role of a political actor changes over time.
»e.g., 'Shimon Peres’ has multiple political roles in

Israel

Processing a large volume of news articles
»demands scalable, distributed computing

FEARLESS engineering e U T |J:|



A Framework To Recommend New Political

Actors With Role In Real-time

1 A real-time framework for recommendation
»Possible new actors with their roles
»Grouping actor aliases

d Frequency-based actor ranking algorithm

A graph-based technique to recommend roles
» A new actor
» Existing actor whose role varies over time
» Integrating external knowledge base (e.g., Wikipedia)

dTime window-based recommendation system.

uT D
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Real-time Political Actor Detection Over Textual

Political Stream

m.. Not Found
Observe L time Most probable role for
A windows Donald Trump will be
USAELI
Actor Dictionary i
RUSELI
. ’;L".\. 11 l ‘
Window 1 Window 2 RUSELI
l RUSGOV
Recommend as new political actor
time
S
L
Challenges

indow1 Window 2

Window N

v'Same actor with
multiple alias names

Web
Scraper

v'ldentify novel actor
along with roles

[ ocw, < CoreNLP

Window M

{Parse, NER} v Existing political actor’s
SPARK role changes over time
PETRARCH ® L, High Vol
. Processing high volume
New Act ith rol .
|_) New Actor e ‘.V. of news articles across
Recommendation Human Feedback the world

Real-time new political actor recommendation framework.
M. Solaimani, R. Gopalan, L. Khan, P. T. Brandt , and B. Thuraisingham, "Spark-based political event coding.” 2016 IEEE Secondl International Conference on Big
Data Computing Service and Applications (BigDataService), pp. 14-23. IEEE, 2016, Oxford, UK.




Future Direction

e Adversarial active learning

— Traditional algorithms are vulnerable to adversarial
manipulation.

— Instances should be selected carefully.
« Efficient online change detection
 Deep Learning Guided Stream Mining
o Multi-stream Analytics
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