

Multi-Domain Dynamic Targeting

Dr. Benjamin Ritz & Lt. Aron Wing

INFORMATION DIRECTORATE, 14 May 2019

DISTRIBUTION A. Approved for public release: distribution unlimited.

Targeting

Definitions

- Targeting:
 - The process of selecting and prioritizing targets and matching appropriate responses to them.
- Target:
 - An entity considered for possible engagement or action to alter or neutralize the function it performs for the adversary
- FIVE-O:
 - Facility
 - Individual
 - Virtual
 - Equipment
 - Organization

The Targeting Problem

Deliberate vs. Dynamic, Kinetic vs. Non-kinetic

- Targeting is ideally a deliberate process
 - Time intensive, not time-critical
- Dynamic targets are time-critical
 - Estimate 1-3 hours spent developing dynamic targets
 - May miss window of opportunity
- Kinetic solutions are not universally superior
 - Cyber effects, EW may be more effective or safer
- Needs to be faster
- Needs to accommodate non-kinetic solutions

Proposed Solution

Leverage Optimization Technology

- Reduce targeteer workload for dynamic targeting
- Create tool that suggests targeting solutions
 - Processes current battlespace
 - Provides recommendations
- Targeteers select most appropriate recommendation
 - Full override power
- Adjust based on mission necessity and commander's intent

Pros and Cons of Optimization

• Pros:

- Higher accuracy than humans
- Faster than human decision-making
- Theory-driven; can (potentially) guarantee solution
- Statistical methods can grant insight even with synthetic data
- Cons:
 - Verification/validation can be difficult
 - Only as robust as designed to be
 - Complicated decision space leads to longer solution times

Optimization

Overview of Components

- Requirements: decision variables, objective function, constraints, data
- Objective function: what we're trying to minimize or maximize
- Constraints: boundaries physical, financial, legal, self-imposed, etc.
- Data
 - Information targeteers currently use
 - Do we need additional data to facilitate a machine?
 - Can we process enough data quickly?

Classical Problem: Weapon-Target Assignment

A Simple Starting Point

- Commander has N weapons, M targets
- Each weapon has a likelihood of destroying each target
- Assign a weapon to each target, maximizing number of targets destroyed
- Can be solved exactly using branch-and-bound with relaxation (classical optimization method)
- Many heuristics can solve in polynomial time

AFRL

Adaptation to Platform-Weapon-Target Problem

Adapt to Our Needs

- Platforms
 - Mobile entities carrying weapons to perform tasks
- Weapons
 - Notional constructs for affecting targets; kinetic or non-kinetic as appropriate
 - Deceive, Degrade, Deny, Disrupt, Destroy
 - Target/Commander's objective determine weapon effectiveness
- Constraints
 - Flight pathing/flight time
 - Platforms must travel to targets
 - Airspace may be denied
 - Weapon capacity
 - Target vulnerability window

Objective Function

What We Are Solving

maximize $f(A) = \sum_{i=1}^{n} p \sum_{j=1}^{n} w \sum_{k=1}^{n} t \sum_{i=1}^{n} A_{ijk}$ Where $p \in P$ denotes a platform, weW denotes a weapon, tεT denotes a target, and $A \in P \times W \times T$ with $A \downarrow ijk = \{\blacksquare 1, \text{ platform } i \text{ carries weapon } j \text{ targeting } k0, \}$ otherwise subject to constraints $\mathcal{C} \geq 0$

Assumptions

Defining the Design Space

- Commander desires maximum mission throughput
- Commander (or other entity) sets maximum allowable collateral damage
- Disruption to the ATO and the JIPTL should be avoided if possible
- Platforms carry up to 2 total weapons
 - Missile salvos, Cyber capabilities, EW capabilities, etc.
- Platforms move in simulation-time, while the optimizer runs (may affect results)
- Platforms cannot and will not enter restricted airspace
- Target vulnerability is known *a priori*
- Deliberate targeting has been performed, and targets are being prosecuted accordingly

Example Problem Configuration

Starting small

- Randomly generate weapons and targets
- Allocate platforms to prosecute 10 targets
 - Determine 7 beforehand, and add 3 during mission execution
- Solution time: ~2.5 seconds
- 8 targets successfully prosecuted
 - 1 in no-fly area, 1 weapon failed to affect target (no generated weapons could)
- Dynamic targets required re-tasking of 2 platforms for optimal effect

Simulation

Creating a Scenario

- Developing a scenario using AFSIM
- Enables platform, weapon, target creation
- Enhances realism, handles physics and location tracking
- Allows airspace restriction
- Runs in real time while querying optimizer
 - Implements results, outputs new information
- Developing plugin to interface autonomously between AFSIM and optimizer

Future Plans

Looking Forward

- Complete AFSIM integration
- Realistic Weapons, Targets, Platforms
 - AFSIM models exist
- Evaluation of trade-off spaces
 - Minimal disruption is ideal, but some may be required
 - Combinations of weapons may be a better solution, but require more platforms allocated
- Larger scenario
 - Orders of magnitude more platforms, targets
 - Simulate full air-tasking cycle (72 hrs)
- Perform deliberate targeting using optimizer first
 - Shorten the gap between deliberate and dynamic targeting