Fundamentals of Engineering Reference Handbook



UNITS

ThL, handbaools uses the meiric system of units. Ultimateiy, the FE examination will be entirely metric. However, currently sorne
the problems use both metric and U.S. Customary System (USCS). In the USCS system of units, both force and mass are

alled pounds, Therefore, one must distinguish the pound-force (1bf) from the pound-mass (lbm)
.
Thus, 1 Ibf = 32.174 Ibin-fi/s”. The expression

The pound-force is tnal fore

32,174 Tbm-ft/(1bf=s ) 1s designated as g. and is used to resolve expressions mvolvimg botl mass and force expressed as pounds.

For ingtance, In writing Newton's second law, the equation would be written as /= malg,, where F 15 In 1bL, m in lbm, and ¢ is
N 9

in 1t/s”

Similar expressions ex

yith PE in (fi-Ibf); Fluid Pressure: p = pghlg,, with p (Ibf/f*); Specific Weight: SW
2. - 4 i ?
in (Ibf£%). In all these examples, g shouid be regarded as a unit conversion factor. It is

e which accelerates one pound-mass at 32.174 fifs?.

1st for other quantities. Kinetic Energy: KE = my *12g, with KE'i (filbf); Potential E Eneigy: PE = mghlg,,
= pglg., in (Ibf/f°); Shear Stress: 1 =

Wee)(dv/dy), with shear siresg
requentnf not written explicitly in enginesering equations. However, its use 1s required to produce a consistent set of units
Jote thai the convc1s1ou factor g, [Iom-ft/(1bi=s*)] should not be coufus d with the local acceleration of gravity g, which has
ifferent units {m/s )and may be either its standard value (9.807 m/s ) or some other local value.
ecessary to use the constant g. In the equation to have a consistent set of

f the problem 1s presented i USCS units, it may be nece

1is.

1 galion of water weighs

1 cubic foot of water welghs Ibf
1 cubic mch of mercury weighs 0.491 Ibf
The mass of ane cubic meter of water 15 1,000 kilograms

i o ’ K =°C+273.15
10 msga M
10° giga G
10" era i}
10° peta P
10" exa E
J
FUNDAMENTAL CONSTANTS
Uty Svmbol Value Units
TOD charge e 1.6022 % 1677 C (coulombs)
day constant F 96,485 coulombs/(mo!)
sonstant malric 3 8,314 J{kmol-K)
sonstant metric R §.314 kPa-m?/(lcmol- K
Jonstant cs R 1,545 f-Ibf/(1b mole-"R)
R 0.08206 L-atm/mole-K
itation - newionian constant G 6.673 % 107" m/(kgs?)
ifation - newtonian constant G 6.673 » 107" N-m/cg’
ty acceleration (standard metric g 9.807 m/sﬂ2
ty acceleration (standard} USCS g 32.174 f/s”
r volume (ideal gas), T=273.15K, p = 101.3 kPa A 22,414 L/kmol
299,752,000 m/s

(9]

1 ~fiioht im vacuum



CONVERSION FACTORS
_ “Multiply By To Qbtain | Multiply By To Obuain
acre 43,560 square feet (7) Joule (1 9478410~ SN
ampere-hr (A-r) 3,600 coulomb (C) 1 0.7376 h-1b1r
ingstrim (A) i meter (m) 1 ] newton-m (Nemy
atmosphere (atm) 76.0 em, mercury (Hg) Its ) wall (W)
aun, sid 3493 i, merctry (Hg)
am, std 14.76 Ibffin” abs (psia) kilogram (ig; 2.205 pound (lbim)
at, sld 33.90 ft, water ket 9.8066 newton (N)
am, st b.013%10° pascal (Pa) kilometer (ki) 3,281 leet (fiy
lan/hr 0.62! mph
bar ix10* Py kilopascal (kP 0.145 IbZin? (psi)
basreis—oi 42 pallons—ail kilowati (KW} 1341 harszpower (hp3)
B L,u5s Jjaule (I} W 3413 Buwi/iir
Buw 2.928%107 ldlowati-hr (W) LW 737.6 (fi-IbFyisec
Bu 778 fi-lbl W-hour (kWh) 3413 B
Buw/hr 3.930107" horsepower (hp} cWh i.341 hp-iar
Bu/br 0.293 wat( (W) kWh 3.6x16° joule (1)
Bu/hr U216 fi-lbf/sec ldp () 1,000 bl
K 4,448 newlan (N)
caloric (g-cal) 1.968x107° Buw
cal 1.560x10~ ip-hr liter (L} 61.02 in?
cu 4.186 Jjoule (1) L 0.264 gal (US Liq)
calfsec 4.186 watt { W) i, 167 n?
centimeter (em) 3.281x1072 foot (%) Lésecond (L5} 2.119 £/min (cfm)
cm 0.394 nch (in) /s 15.85 gal (US)/min (gpo)
centipoise (cP) 0.00! pascal-sec (Pa-s)
centistokss (cSt} <107 m¥ses (m/e) meter (m) 3.281 Teet (i)
cubic feet/second (cfs) 0.646317 million galions/day m 1.0%4 yard
(mgd)
cubic fool (£%) 7.481 gallon m/secand (my/s} 196.8 feet/imin (f/min)
cubic meters (m°) 1,000 Liters mile (statute) 5,280 faet (1)
electronvoli {gV) 1.602x107"* jouie (J) mile (staate) 1.609 ldlometer (km)
mile/hour (mph} 88.0 fr/moin (fpm)
foat (ft) 30.48 cm mph 1.608 lem/ls
i 0.3048 meter (m) mm of Heg 1316x107 aumn
| fi-pound (£-Ibf 1.285%x107 Bu mm of H,0 9.678%167° atm
fa-lbf 3.766x107 Kijowati-ar (kWi
fi-lbof 0.324 calori¢ (g-cal) newton (I} 0.225 Ibf
fi-lbf 1.356 joule (7 Tm 0.7376 f-lbf
Nem 1 Jjaule (T)

fi-Ibffsec

galion (US Liq)
galion (US Lig)
gallons of water
gamma £y, T
gauss

j aram (g}

hectare
hectare
horsepower (hp}

fp

hp
i
| p-hr
Itp-hr
) hp-hre

’hp-m‘_ ) .

“ineh (in}
'[in of Hy
| n of Hg

1.818107

3.785
0.134
£.3453
%167
g™
22052107

1x10"
247104
42.4
745.7
33,000
550
2,544
1.98>10°
2.68x10°
G.746

2.540
0.0334
13.60

horsepower (hp)

liter (L)

7

pounds of waler
tesla (T}

T

pound {fom}

square meters (m?)
acres

Bu/min

watl (W}

{fi-Ibf)/imn

(fi-Ibf)/sec
Btu

fi-1bf”
joule (7
KWh . ..

cenumeter (e}
aum
in of 1.0

pascal {Pa)

Pa

Pasec (Pas)
pound (lbm,avdp)
Ibf

lbi-ft

Ibffin” (psi)

psi

psi

psi

radian
stakss
therm

watt (W)

“7
W
weber/m® { Wb/ml)

9.869%167
]

10

0.454
4.448
1.350
0.068
2.307
2.036
6,895

180/

a4
g

atmospilers (atmj
newtan/m’ (N/m?)
poise (P}
Icilogram (kg

N

Nem

ks

m/s
Bw

Bru/hr
horsepower (hp)
Jjouleisec (1/s;

zauss



MATHEMATICS

STRAIGHT LINE
The general form of the equation is
Ax+ By +C =0
The standard form of the equation is
y = mx+6h,
which is also Imown as the slope-intercept form.
The point-siope form is y-y, = mx-x,)
Given two points: slope, m = (y,—y,)(,—%,)
The angle between lines with slopes m, and m, is
¢ = arctan [(m,-m)/(1 + mym,)]

Two lines are perpendicular if m, = —1/m,

The distance between two points is
d = V(y-y)" + (a;-%)"
QUADRATIC EQUATION

axl+bx+c =20

-b =+ Vb’ _4ac

Hoots = %
2a

CONIC SECTIONS

¢ = eccentricity = cos F/(cos @)
[Note: X' and V', in the following cases, are trans-
lated axes.]

Case 1. Paragbola e = 1:

7

P

!

s PeY
(R, k) F(h+p/2,r)
D

(y -k = 2p(x-h); Center at (h,k)

is the standard form of the equation. Then, when
h=FkFk=0,
Focus: (p/2,0); Directrix: z = —p/2

Case 2. Ellipse e < 1:

.
’

Y

a
b
. X’
\ - C \<h+a,k)

7 3\2 _ 2
(";2’” + bzk) =.1; Center at (k k)

is the standard form of the equation. When

h=F=0,
Eccentricity: ¢ = V1 - &% = cla

b =avi-é&*;
Focus: (= ae,Q); Directrix: = = *gfe
Case 3. Hyperbola e> 1:
’ v
TEINNGEN T

—-R)?  (y-FR)*
(x a;’z) _ bzk) = 1; Center at (&,k)

is the standard form of the equation. When
h =k = 0,
Eccentricity: e = V1 + (%a?) = cla

b =aveh-1;
Focus: (*+ce,0); Directrix: = = = gfe

Case 4. Circie ¢ = U:
x-R)?+ (y-R)? = r*; Center at (k,k)
is the general form of the equation with radius

r=VJYa-hf+ (y-k*

oBrink, R.W., A First Year of College Mathematica, Copyright © 1987 by D. Applston-
Century Co., Inc. Reprinted by permiasion of Prentics-Fall, Inc., Engiewood Clifls, NJ.



Plx,y)

X

0

Length of the tangent from a point. Using the gen-
eral form of the equation of & circle, the length of the
tangent ie found from

= @ -h)?+(y -2 r?
by substituting the coordinates of a paint P’y
and the coordinates of the center of the circle into the
equation and computing.

' ¥

|
Conic Section Enuation
The general form of the conic section equation 1s
Ax2+ZBxy+Cy2+2Dx+2Ey+F =0
where not both A and C are zerc.
If B* - AC <0, an ellipse is defined.
If B* - AC > 0, akyperbola is defined.
If B* — AC =0, the conic is & parabole.
If A=C and B =0, acrcle is defined.
If A=B=C=0, astraight line is defined.
x2+y2+2a,x+2by+c =0
1s the normal form of the conic section equation, if
that conic section has a principal axis parallel to a
coordinate axis. '
h=—-a; kF=-p
ro= Vel r et
fa? + 62 _ ¢ positive, a circle, center (~a,~b).
Ifa® + 8% - ¢ equais zero, & point at (~a,~b).
Ife® + &% - cisnegative, locus is imaginary .
QUADRIC SURFACE ( SPHERE)
The general form of the equation is
@=hP+ (y-FEP+ (z—m)? = 2
with center at (&, %k, m).
In a three-dimensional space, the distance between

two points is
d = ‘/(xz_xl)ﬂ + (¥ ~-y.)° + (=, _Zl)_z_

LOGARITHMS
The logarithm of % to the Base & is defined by

(4 =

log, (x) = ¢, where &
Special definitions for 4 = ¢ or b = 10 are:
Inx, Base = ¢
logz, Base = 10
To change from one Base to another:

log,x = (log, x)/(og, b)

eg,lnz = (log,x)/(log,,e) = 2.302585 (log,, %)

Identities log, 8" = n

logz® = clogx; =z = antilog (c log x)

logxy = logx + logy
log,6 =1; logl =0
logz/y = logx-logy

TRIGONOMETRY

Trigonometric functions are defined using a right
triangle.

sin & = yfr,cos @ = =x/r =

tan § = y/x,cot & = =zfy

esc € = rly,sec § = rix

Law of Sines
a _ b ¢

sinA  sin B sin C

R

e Law of Cosines
a® = b2 +c?—2bc cos A
b° = a®+ c¢? - 2ac cos B
¢ = a*+6%-2abcos C

Identities

cec & = 1/gin &; tan ¢ = sin Glcos &
sec @ = 1/cos G cot & = 1/tan &
sin’d + cos’f = 1; tan®fd + 1 = gzeclf

cot?’F+ 1 = cac?6
sin (¢ + f) = sin @ cos f + cos e sin B

cos(a+ f) = cos ¢ cos f—sin @ sin g

sin 2 = 25 acos &

cos 22 = coste ~sin®a =1 -2sin?e = 2 cogls -
tan 2e¢ = (2tan a)/(1 -tan?a)

cot 2a¢ = (cotle - 1)/(2 cot a)

tan (¢ + ) = (tan o + tan A)/{1 - tan @ tan f)
cot (e + f) = (cot & cot f— 1)/(cot @ + cot f)

sin (@~ ) Sin @ cos f —cos & sin J

Il

oBrink, RW., A First Year of College Mathematics, Copyright © 1937 by D. Appietan- 1
Caniury Ca., Inc Reprinted by permission of Prentice-Hall, Inc, Englewoed Cliffs, NJ.



cos (@ — B) = cos & cos B +sin & sin B

tan (¢ ~ ) = (tan « —tan B)/(1 + tan e tan B)
cot (¢ —f) = (cot & cot f + 1)/(cot B~ cot )
sin (&/2) = = V{1 “cos 0)/?

cos (/2) = = V(I + cos ¢)/2

tan (¢/2) = * V{1 =cos x)/{I + cos o)

cot (e/2) = = V{1 + cos a)/[1- cos )

sin a stn B = (1/2)(cos (& — B) ~ cos (e + P)]

cos & cos 3 (1/2){cos (x — ) + cos (e + B)]

sin @ cos B (1/2)(sin (& + ) + sin (ax - B)]

sin @ +sin B = 2sin (1/2)(x + P) cos (1/2)(c - B)
sin @ —sin B = 2cos (1/2)(x + B) sin (1/2)(x - B)
cos & + cos p = 2cos (1/2)(e + [B) cos (1/2)(z - B)
cos @ — cos B =—2sin (1/2)(¢ + B) sin (1/2)(e - B)

COMPLEX NUMEERS

Definition I = V.1

(a+ib)+(c+id) = (a+c)+i(d+d)

(@+ib)—-c+id) = (@-c)+i(d-d)

(@ +10)(c+1id) = (ac-bd) +ilad + bc)

g+ _ (a+ib)c—id) _ lac + bd) + i(bc—ad)

c+id (c+id)(c-id) ct+d

(@+ib) +(@a—-16) = 2¢

(@ +1b) - (@—1b) = 2ib

(@ +ib)(a-ib) = of + &>

Polar Coordicates

x =rcosf; y = rsinf; 6 = arctan (yix)

relatiy] = VIS

z+ty = r(cosB +ism0O) = re

{r;(cos B8, + z sin B)1[ry(cos 8, + ¢sin By)] =
riralcos (8; + 8y) + ¢ sin (8, + 6,)]

B

(x+iy)® = [r(cos 8 + i sin §)]
= r™(cos nB + { sin nd)

n(cos B, +isin @) g L :
'2(005 82 T isin 82} - rZ[CUS(el . 82) T i sm(91 - 82)1
cos @ +isin 6

iuler's Identity e’ =
e = cos 6 ~isin B
gzﬂ e e—z(‘) GLB_ G—LO

cos@ = ", sinh = -

2 ’ ’ 2t
loots
f % is any positive integer, any complex number
sther than zero) has % distinct roots, The % roots of
(cos 8 + i sin 8) can be found by substituting succes-
vely n = 0,1,2, ..., (k-1) in the formula

- e[S 220 e 20 25

MATRICES

A matrix is an ordered rectangular array of numbers
with m rows and n columns. The element Gy refers
to row ¢ and column .

Multiplication

If A={(qg,) isan m X rn matrix and B = (b,;) is an
n X s matrix, the matrix product AB isan m x s
matrix =

C = (C,_'j} el (lgl ai{bgj)

where n is the common integer representing the
number of columns of A and the number of rows of
B (landk=1,2,.., n).

Addition

If A=(a;) and B =(5;) are two matrices of the
same size m X n,thesum A + B isthe m X n ma-
trix C = (¢;;) where ¢; =a;; + b;;.

Identity

The matrix [ = (q;;) is a square n X n identity ma-
trix where a;; =1 for t =1, 2, ..., n and a;; =0 for
L+J.

Transpose

The matrix B 1s the transpose of the matrix A if each
entry b;, in B is the same as the entry @; in A and
conversely. In equation form, the transpose is

B = 4T
Inverse
The inverse B of a square n X n matrix 4 is
_ adj(4)
B =AY === where
[A]

adj(4) = adjoint of A (obtained by replacing AT
elements with their cofactors, see DE-
TERMINANTS) and
|A| = determinantof 4.

DETERMINANTS

A determinant of order n comsists of n
called the elements of the determinant, arranged in n
rows and n columns and enclosed by two vertical
Lines. In any determinant, the minor of a given ele-
ment is the determinant that remains after all of the
elements are struck out that lie in the same row and in
the same column as the given element. Consider an
element which lies in the hth column and the kth
row. The cofactor of this element is the value of the
minor of the element (if & + % is even), and it is the
negative of the value of the minor of the element GGf £
+ k is odd).

If n is greater than 1, the vaiue of a determinant of
order n is the sum of the n products formed by mul-
tiplying each element of some specified row (or col-
umn) by its cofactor. This sum is called the expansion
of the determinani (according to the elements of the
specified row (or columazn)].

numbers,



For a second-order determinant:

’ = a0y ~a,b,

a; Qg
by by

For a third-order determinant:

,al Ty Qg
{ by by bg | = a;bgeg + apbae, + agbc,
€1 €2 ¢ —agbye) —aybcy ~a,bge,

VECTORS

¥

A=qgi+ aJ + ak

Addition and subtraction:

A+B=(c +b)i+(a,+6)i+(+b)k
A-B=(a,-b)i+(-b)j+@-bk

The dot product is a scalar product and represents the
projection of B onto A times |4 . It is given by

A'B = ab, + a,b, +a,b,
= |A||B] cos 8 = B-A

The cross product is a vector product of magnitude
|B||A| sin 8 which is perpendicular to the plane
containing A and B. The product is

ijk
AXB =|c. gl =-BxA
b, b, b,

AXxB = |A||B|nsin8, where
unit vector perpendicular to the plane of A
and B.

Gradient, Divergence, and Curl

vp = (£ i+ i+Z K e

ay o0z
vV =(£i+éy@j+afk)-(vli+vzj + Vy k)
Vv =(did; +-Qk)><(Vli+V2j+V3k)
ox dy dz

The Laplacian of a scalar functiond is
2 . Fb e P

identities

A-B = BA; A(B+C) = AB+A-C

AA = (Al

i-i =3 =kk =1

i-j =3k =ki =0

If A-B =0,theneither A =0, B =0, or A is per-
pendicular to B.

AXB =-BxA

AxXxB+0) =AxB+AxC
(B+C)xA=BxA+CxA

ixi =jxj=kxk=20

ixj =k =-jxi iXkE=1i=-kxj
Exi=j =-ixk
IfoB=O,theneitherA=O,B=O,orAispar-

allel to B.
V‘Zdl =v - (vh) = (vo)d

v X vp =0

v-(v x4 =0
v X (v X 4) - v(v:A) - A

PROGRESSIONS AND SERIES

Arithmetic Progression

To determine whether a given finite sequence of num-
bers is an arithmetic progression, subtract each num-
ber from the following number. If the differences are
equal, the series is arithmetic.

The first term is <.
The common difference is d.
The number of terms is n.
The last or nth term is (.
The sum of n termsis S.
I = a+{n-1)
S = nla+({¥2 = ni2a + (n-1dJ/2

OV Co N0

Greometric Progression

To determine whether a given finite sequence is a geo-
metric progression, divide each number after the first
by the preceding number. If the quotients are equal,
the series is geometric.




The first term is «.

The common ratio is r.
The number of terms is n.
The last or nth term is [.

The sum of n termsis S.
l = ar’*!
S = all-ri(1-r); 7= 1
S = (@—rbftl-r); r =1

Iimit S, = al(l-r):; r < 1

A G.P. convergesif |r| <1 and it diverges if
|7 [ > 1.
Properties of Series

VR O N

*

'21 ¢ = nc¢; ¢ = counstant
f

n n

Zoex; = ¢k ox

1= =1

Sz = (n+n%2

1. A powerseriesin x, orin x —a, which is convergent
intheinterval -1 <x <1 (or-1<x-a<1), de-
fines a function of x which is cantinuous for all
values of x within the interval and is said to repre-
sent the function in that interval.

2. A power series may be differentiated term by fertn,

and the resulting series has the same interval of

canvergence as the original series (except possibly
at the end points of the interval).

A power series may be integrated term by term

provided the limits of integration are within the

interval of convergence of the series.

wa

4. Two power series may be added, subtracted, or
multiplied, and the resulting series in each case is
convergent, at least, in the interval common to the
two series.

5. Using the procsss of long division (as for polyno-
mials), two power series may be divided one by the
other,

Taylor's Series

. ’(G‘,) i '”(G\
f=) = fla) + iﬁ'(x—a) T ‘@ -a)f

(IL)(
a)
+ .. -‘r—‘—f;———— x-a)* +
Al
1s called Teylor's series. The function fix) is said to be
expanded about the point ¢ in a Taylor's series.
If @ = 0, the Taylor's series becomes a Maclaurin's

series.
PROBABILITY AND STATISTICS

Permutations and Combinations
& permutation is a particular sequence of a given set of

objects. A combination is the set itself without ref-

arence to order.

1. The number of different permutaiions of n
distinct objects taken r at a time is

n!
Pln,r) = (n-nr)!
2. The number of different combinations of n
distinct objects taken r at a tirmne is

_ Pnr) _ n!
Co.r) ==~ = Hm-nt

B The number of different permutations of n
objects taken n at ¢ fimme, given that n; are of

type 1,

where t =1,2,..,k and Zn,=n,is

nl
P(n;n,,n n,) = ———
FELLPYIERY LA
nylngl. . n!

Laws of Probability
PROPERTY 1 (General Character of Probability)
The probahility P(E) of an event E is a real number
in the range of 0 to 1. The probability of an impossi-
ble event is 0 and that of an event certain to occur is
1.

PROPERTY 2 (Law of Total Probability)

PA +B) = P4) + P(B) - P(A,B), where
P(A + B) = the probability thatf either A or B
occur alone or that both occur together,
the probability that A occurs,

P(A) .
P(B) = the probability that B occurs, and
PAB) = the probability that both A and B

occur simultaneously.

PROPERTY 3 (Law of Compound or Joint Probabil-
ity) If meither P{A) nor P(B) is zerao,

P(A,B) = PAP(B|A) = PBIPA|B),
where
P(B|A) = the probability that B occurs given the

fact that A has occurred, and
the probability that A occurs given the
fact that B has occurred.

If either P(A) or P{B) is zero, then

PAB) =0
Probability Functions
A random variable x has a probability associated with
each of its vaiues. The probability is termed a discrete
probability if x can only assume the discrete vaiues

x =X, X%, ... X, ., Xy
The discrete probability of the event X = x, occurring
is defined as P(X).
Probability Density Functions
If x is continuous, then the probability density func-
tion f(x) is defined so that
= the probability that x lies

X
2 .
[ *flxydx =
b T
1

P(A|B)



between x; and z,. The probability is determined by
defining the equation for f(x) and integrating be-
tween the values of x required.

Probability Distribution Functions

The probability distribution. function F(X,) of the

discrete probability function P(X,) is defined by
RX,) = X P(X) = P(X, < X,)

When x is continuous, the probability disiribution

function F(x) is defined by

Fa) = [ A dt

which implies that F(a)
ity that x < a.

The expected value g(x)

is the probabil-

of any function is

defined as
Blg®} = [ g £o) dt
BINOMIAL DISTRIBUTION

F(x) is the probability that x will occur in n
trials. If p = probability of success and ¢ =

probability of failure = 1 —p, then

_ W) F A= iz
Fx) = Clnx)p* ¢"* W}’ g™
where
x =012 ...n

Cln,x) = the number of combinations, and
n,p = parameters.
NORMAL DISTRIBUTIONGaussian Distribu-

tion)

This is a unimodal distribution, the mode

being x = u, with two points of inflection (each

located at a distance ¢ to either side of the

mode). The averages of n observations tend to

become normally distributed as n increases. The

variate x is said to be normally distributed if its

density function f(x) is given by an expression of

the form

f(XJ — 1 —(x-w)%/202

ovV2n '

22 the population mean,

o the standard deviation of the population, and

—® <% < o,

When v =0 and ¢°=1= o, the distribution is

called a untt normal distribution. Then

where

It

1 -z%2

fix) by, ol R where
V2x

—® < X £ =,

A unit normal distribution table is included in

this section. In thetable, the following notations
are utilized:

F(x) = the area under the curve from — « to x,
F(x) =the area under the curve from x to o, and
Wi(x) = the area under the curve between —x andx.
DISPERSION, MEAN, MEDIAN,AND MODE
VALUES

If X, X,, ..., X, represent the values of n items or
observations from a population, the arithmetic mearn of
these items or observations, denoted X, is deﬁnea as

= (/& + X+ ... +X) (l/nJ
X — p for sufficiently large values of n.

The weighted arithmetic mean is
Zw X,

X-w = —EE)—L—; where
X, = the weighted arithmetic mean,
X. = the values of the observations to be averaged,

and
w; = the weight applied to the X, value.

The variance of the chservations is the aritAmetic mearn
of the squared dewviations from the population mean. In
symboals, X, X,, ..., X represent the values of the 7
sample observations of a populan’on of size N. If 1 is
the arithmetic mean of the population, the population
varzl(mce is defined by
B = \1/.7\7)[(X 1)+ (X, —p)? +
= ( 1/7\7) - w)?
The standard devmnon of a population is
= V(UM Z X -w)?
The sample vartance is
= [Mn~DIZ X, - X)?
The sample standard deviation is
s =V {[Un-DIZ&X -X)F

The coeffictent of variation = CV = s/X

.+ (XN—,LL)Z]

The geometric mean = V%, %y %5 ... x,,
The root-mean-squared value = vV (1/n) % x‘_.z

The median is defined as the value of the middie item
when the data are rank-ordered and the number of
items is odd. The median is the average of the middle
two ttems when the rank-ordered data consists of an
even number of items.

The mode of a set of data is the value that occurs with

greatest frequency.

t-DISTRIBUTION
The variate ¢ is defined as the quotient of two inde-

-

pendent variates x and r where x s unit normal
and r is the root mean square of n other independens

N S L s i e i

o e e R T SN



unit normal variates; that is, ¢ = x/r. The following is
the ¢-distribution with n degrees of freedom:
I'n/2vnw (1 + tén)n*E

where —0 < ¢ < oo,
A table is available at the end of this section which
gives the values of ¢, , for values of « and n. Note

that in view of the sy}nmetry of the ¢-distribution,
~t, ,. The function for &« follows:
« = [ fode

A table showing "Pertinent Equations From Probabil-
ity and Statistics” is included in the INDUSTRIAL

ENGINEERING SECTION of this handbook.

tl—a,n. =

CONFIDENCE INTERVALS
Confidence Interval for the Mean 1 of a Normal Distiri-

bution

(a) Standard deviation o is known
;—Zﬂzj—s;z.s:?+Zn/i
n Vn

(b) Standard deviation o is not known
g

s _
x'fu/z_sl“‘x*tamF
i

Jn

where f_,, corresponds to n-1 degrees of freedom

Confidence Interval for the Difference Between two

Means u; and u,
(a) Standard deviations o ; and ¢ , known

(b) Standard deviations o ;=0 ;=0 are not
known

2

( + D, -187 - (my- 1S

o — nl nz
Xy T Xy T T = N P
1 v M T
il 1
(= +=)ny - DS + (n,-1)S.2
=i . nl nz
- =,

Sy T My X
n1+n2—2

2 /2 .\

where t_, corresponds to n; + n, - 2 degrees of

freedom.



UNIT NORMAL DISTRIBUTION

: é\ é\

z k4 -Xx =

x Flx) F(z) R(x) 2R(x) W(x)
0.0 .3989 .5000 .5000 1.0000 0.0000
0.1 3970 .5398 4602 9203 0797
0.2 .3910 .5793 4207 8415 1585
0.3 3814 .6179 .3821 .7642 .2358
0.4 .3683 6554 .34486 .6892 .3108
0.5 3521 6915 .3085 6171 .3829
0.6 .3332 1257 2743 .5485 4515
0.7 .3123 .7580 2420 -4839 5161
0.8 2897 .7881 2119 4237 5763
0.9 2661 8159 1841 .3681 .6319
1.0 .2420 8413 1587 .3173 .6827
il 2179 .8643 1357 L2713 7287
1.2 .1942 .8849 1151 .2301 .7699
1.3 1714 .9032 .0968 .1936 .8064
14 .1497 .9192 .0808 .15615 .8385
1.5 .1295 .9332 0668 71336 :8664
1.6 1109 9452 .0548 .1086 .8804
1.7 .0940 .9554 .0446 .0891 9109
1.8 .0790 9641 .0359 0718 .9281
1.9 .0656 9713 0287 .0574 .9426
2.0 .0640 9772 .0228 0455 9545
2.1 .0440 .9821 .01L79 .0357 9643
2.2 0355 .9861 .0139 .0278 9722
2.3 .0283 .9893 0107 .0214 89786
2.4 .0224 .8918 0082 .0164 9836
2.5 0175 .9938 0062 .0124 9876
2.6 0136 .9853 0047 .0093 .9907
2.7 0104 .9965 .0035 .0069 9831
2.8 .0079 8974 .0026 .0051 .9949
2.5 .00860 .9981 .001 .0037 9963
3.0 0044 2987 0013 0027 89973

Fractiles

1.2816 1735 .900C 1000 .2000 .8000
1.644S 1031 .9500 .0500 .1600 .8000
1.9600 0584 9750 0250 .0500 .8500
2.0537 0484 .9800 0206 .04.00 9600
2.3283 .0267 2900 .0106 .0200 .9800
2.5758 0145 .9950 .0050 .0100 .9900

[ e



t-DISTRIBUTION

Z-(Z,I"-

VALUES OF £,

r n a =010 a=0.05 a = 0.025 = 0.01 a = 0.005 n
1 3.078 6.31 12.706 31.821 63.657 ik
2 1.886 2.920 4.303 6.985 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.01 2.57L 3.385 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.489 7
8 1.397 1.880 2.306 2.896 3.355 8
9 1.383 1.83 2.262 2.821 3.250 S

10 1.372 1.812 2.228 2.764 3.16% 10
11 1.383 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 L.771 2.160 2.650 3.012 13
i4 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.13 2.602 2.947 15
16 1.337 1.748 2.120 2.583 2.921 186
17 1.333 1.740 2.110 2.567 2.888 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.725 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20
21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1717 2.074 2.508 2.819 22
23 1.318 1.714 2.069 2.500 2.807 23
24 1.318 1711 2.064 2:492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25
26 1.315 1.706 2.056 2.£479 2.779 26
27 1.314 1.703 2.062 2.473 2771 27
28 1.313 1.701 2.048 2.487 2,763 28
29 1.311 1.699 2.043 2.462 2.758 29
inf. 1.282 1.645 1.960 2.326 2.576 inf,




[

‘_u = 19.00 | o1 236.8 1238.9 | 2405 | 2419 | 243.9 248.0 | 2491 | 250.1 | 2511 53.3 | 254.3
m i .mm A .mm d%.dmmm 19.30 1 19.33 1 19.35 | 19.37 19.38 TN.AD 19.41 19.45 | 19.45 | 19.46 | 19.47 19.49 | 19.50
y o.f oimo m.mo 2.0} B.94 8.89 8.85 8.81 8.79 8.74 B.66 8.64 B.62 B.59 8.55 8.53
M u.uc u.a._ u.dc o..ma 6.16 6.09 6.04 6.00 5,96 591 5.80 577 3.75 5.72 5.66 5.63
6 504 | 476 453 .08 [ 995 4.88 | 4.82 | 4.77 | a.74 | a.68 4.56 | 4.53 | 4.50 | 4.a5 4.40 | 438
7 474 | 435 | a1y | 237|428 {421 145 | 400 | 406 | 4.00 387 | 384 | 381 | 377 370 | 267
8 »:m ,..ow w 2 3.97 3.87 3.79 3.73 3.48 3.64 3.57 3.44 3.41 3.38 3.34 3.27 3.23
o %mm m_mo mmm w.% 3.58 3.50 3.44 3.39 3.35 3.28 3.15 3.12 3.08 3.04 2.97 2793
Ta .n.._o n_N_ u. B .48 3.37 3.29 3.23 3.18 3.14 3.07 2.94 2.90 2.86 2.83 2.75 2.1
- m.om = m.n 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.08 2.91 277 | 2.74 | 2.70 | 2.88 2.58 | 2.54
12 L.wm m,mo e m.wa 3.20 3.09 3.01 2.95 2.90 2.85 279 2.65 2.61 2.57 2.53 2.45 2.40
13 P R ¥ m.wm 3011300 | 291 | 285 | 280 2.75 | 2.69 2.54 | 2.51 2.47 | 2.43 2.34 | 2.30
i Pt ) Sl Eah 3.03 | 292 | 283 277 | 271 | 267 | 2.60 246 | 242 | 2.38 | 2.34 225 | 2.2
. i s Reae e 296 1 285 | 276 | 270 | 265 2.60 | 2.53 239 | 235 | 2.31 2.27 218 | 213
16 4.49 u.am u,f m‘ow 2.90 | 2.79 | 2.7 | 2.64 | 2.59 2.54 | 2.38 2.33 | 2.29 | 2.25 | 2.20 2.11 | 2.07F
|7 I e 20 | 291 2.85 | 274 | 266 | 2.50 2.54 | 249 | 2.42 228 | 224 | 219 | 215 2.06 | 2.00
15 aal | oo - e 2.81 | 270 | 261 | 2.55 | 249 245 | 2.38 223 | 219 | 215 | 2.10 201 | 1.94
1o i38 | 35 o - 277 1 266 | 258 | 2.51 | 246 241 | 2.34 212 | 205 | 2.1 2.06 1.97 1 1.92
4 aas ) aas | 313 o 274 1 263 | 254 | 248 | 2.42 | 238 2.31 216 | 211 | 2.07 | 2.03 1.93 | 1.88
by 432 | 347 e > w..w.. 2.60 | 2.51 | 2.48 | 2.39 | 2.35 | 2.23 2.12 | 2.08 | 2.04 | 1.99 1.0 | 1.84
27 430 | 344 | 304 m,ow 257 1 249 | 242 | 237 | 232 | 725 : 210 | 205 | 2.01 1.96 1.87 | 1.8)
23 s28 | 342 | 3o oY 255 | 246 | 240 | 234 | 230 223 1 215 | 207 | 203 | 1.98 | 1 94 1.84 | 1.78
24 426 | 340 | 300 oo W.S 244 1 237 | 232 | 227 | 220 | 213 205 f 201 [ 196 | 191 [ 188 | 181 | 176
2% 424 | 3.30 N.‘cu u.as .51 2.42 2.36 2.30 2.25 218 2. 203 1.98 1.94 1.89 1.84 1.79 1.73
2 493 337 A w.mo 2.49 | 2.40 | 2.34 | 2.28 2.24 | 2.16 | 2.00 | z2.01 | 1.96& 19.2 | 1.87 | 1.82 | 1.77 | 1.71
57 421 | 335 | 396 Pt w 471239 [ 232 | 227 | 222 | 15 207 [ 199 | 195 | 190 | 185 1.80 | 1.75 | 1.9
8 420 | 334 | 29% Py m_“w 237 1231 [ 225 | 220 | 213 206 [ 1.97 | 1.93 1.88 | 1.84 179 | 173 | 167
29 418 333 .03 m.mm . 2.36 2.29 2.24 219 212 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
3o .17 | 3.33 | 2002 | 2069 | 20 243 | 235 | 228 | 292 | 218 210 | 2.03 | 1.94 1.90 | 185 | 1.81 1.75 1 1.70 | 1.64
40 408 | 3093 » B4 m.o_ M.Am 2.42 | 2.33 | 2.27 | 2.21 2.16 | 2.09 | 2.01 | 1.93 | 1.89 1.84 | 1.79 | 1.74 | v.68 | 1.62
60 400 | 315 | 276 | 283 | 500 234 1225 | 218 | 292 | 208 2.00 1 192 1 184 | 179 | 174 | 169 1.64 | 1.58 | 1.5
120 392 | 307 | 268 | o ol 225 | 217 | 2,10 | 2.04 1.99 [ 192 | 1.84 175 1070 [ 165 | 139 | 153 | 147 1.39
- 3.84 300 o m.mw m,m 2.7 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
1 1 = : _|L 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 132 1.22 1.00




DIFFERENTIAL CALCULUS

The Derivative

For any function y = f(x),

the derivative =D .y =dylde =y
y = h'mi%J [(A /(A x)]

= lglgl_l;g {[f =z + A x) — FEIA )}

y' = the slope of the curve flx).
TEST FOR A MAXTMUM

y = f(x)isa maxdmum for

x = e, if f(e) = 0and f"(a) <0.
TEST FOR A MINIMUM

y = flx)is a minimum for

z = a,1ff'(a) = 6and f"(e) > 0.

TEST FOR A POINT OF INFLECTION

y = f(x) has a point of inflection at x = e,
if f’a) = 0, and
if F"(x) changes sign as z increases through

x = a.

The Partial Derivative

In a function of two independent variables = and y,
a derivative with respect to one of the variables may
be found if the other variable is assumed to remain
constant. If y is kept fixed, the function

z = flx,)
becomes a function of the single variable x, and its
derivative (if it exists) can be found. This derivative
is called the parﬁal dertvative of z with respect to x.

The partial derivaiive with respect to z is denoted as

follows:
gz _ oflx,y)
oz ox

The Curvature of Any Curve

/ x

The curvature K of a curve at P is the limit of its
average curvature for the arc PQ as & approachss
P, This is also expressed as: the curvature of a
curve at a given point is the rate-of-change of its in-
ct to its arc length.

da

... A
K = limit — = ==
As—0 s ds

clination with respe

CURVATURE IN RECTANGULAR COQRDI-
NATES

K = ——‘L/U_W”

[1 -+ ()]~

When it may be easier to differentiate the function
with respect to y rather than x, the notation =z’ will
be used for the derivative.

x' = dx/dy

"
—-Xx

E=ayrem™

THE RADIUS OF CURVATURE

The radius of curvature K at any point on a curve is
defined as the absolute value of the reciprocal of the

curvature K at that point.

1
R=I_K—l (K= 0)
n298/2
)] (y" =2 0)

R =

[1T+¢(
[ n l

L'Hospital's Rule (L'Hoépital's Rule)

If the fractional function flx)/g(x) assumes one of

the indeterminate forms 0/0 or o/ (where ¢ is

finite or infinite), then
Iimit fz)glx)

x—ra

is equal to the first of the expressions
Hmit ('"\), lmit f ,V’), Himit f‘#(x)
x—ra (.ov z—a g ( ) r—sc £ ( )

which is not indeterminate, provided such first indi-

cated Iimit exists.

INTEGRAL CALCULUS

Fundamental Theorem

The fundamenml theorem of “hﬂ integral calculus is:
imit u fx)A=x, = f Fl=) dx

n—wm i=
Also, Ax;— 0 for all z.
A table of derivatives and integrals is available on the
next page. The integral equations can be used along
with the following methods of integration:
A Integration by Parts (integral equation #6),
B. Integration by Substitution, and
C. SBeparation of Rational Fractions into Partial Frac-

tions.

¢ Wade, Thomue L., Calculue, Copyright © 1953 by Ginn & Company. Diagram re-
printed by permission of Simon & Schusier Publianers.



10.

11.

13.

14.
15.
16.
17.

26.

27.

-C”Fn.";,c*’l\')»—l

DERIVATIVES and INDEFINITE INTEGRALS

In these formulas, «, v, and w represent functions of x. Also, @, ¢, and n represent constants. All arguments of the
trigonometric functions are in radians. A constant of integration should be added to the integrals. To avoid terminol-

defde = 0
dufdx = 1

dlcu)dx = cduldx

dlu + v—wide = duids + dvfdx — dwldx
duvildz = udvldx + vduldx

dluwvw)/dx = wv dwidx + uw dufdx + vw duldx

dlulv)  vduldx —u dujdx

dx v
dw")idx = nu"' duldx
dlfw)lfdxz = {d{f(u)lfdu} duldx
duldx = 1/(dx/du)

dlog w) 1 du
———ha 7 _ —_ =
dx (log, @ w dx
dinu) _ 1du
dx u dx
d(a*) _ y e du
dx el dx

de“)dx = o* dujdx

dwVdx = vu’ ' dufdz + (In w) u’ duldx
d(sin e)ldx = cos u dufdx

dlcos u)ldx = -sin u du/dx

d(tan u)dx =
dicot u)ldz = - csc?u dufdx
dfsec u)/dxz = sec u tan u du/dx

sec®u duld=

d(cscu)fdx = —cscwcot u dufdx
disin™'u) _ 1 du

dx - '/1—11.2 dx

(-w/2 <sintu<m/2)

dlcos™"u) _ 1 du
X V1_ 4t dx
(Q<cos'usm)
dtan"'w) _ 1 du
dx 1+u? de
(-n/2 <tan'wu < m/2)
dleot” ) _ __1 i
dx 1+ u? dx
(0 <cot™bu < x)
(sec™ly] 1 du
dx - u/ % dx
(Ocseclu<n/2)(-mcseclu<-n/i2)
dlesc ) _ 1 du
dx L U.Z—l E’

(O<esc'usm/2)(- <csclus-—m/2)

I

10.
11.

12.

13.

14.
15.
16.

18.
19.
20.
21.
22.
23.
24,

25.

26.

27h.

27c

ogy difficulty, the following definitions are followed: aresin z = sin™!u, (sinuw)™! = 1/sin u.

[df(x) = flx)

Jdx = x

Jefx)de = a flx)dx

Jlulx) = v@lde = [ulx)dx = [u(x)dx

x"l+} (m .l l)
m+1

[ ulx) du(x) = ulz)vlx) - [ vix) du(x)

[ %" dx =

dx il
—— = c +
jo:x+b alnlal bl

X

T = &
e Ina
[sinxdx = -cosx
Jecosxdx = sinx

a2

J'sinzx dx =§ - SIZ =

2 x sint 2x

‘xdx =T+
[ cos®x d 9 i

[xsinxdx = sinx —xcosx

[xcosxdx = cosx+xsinx
[sinxcosxdx = (sin®x)/2
[ sin ax cos bxdx = — SEAE=ULF cos @ + bx
2(a — b) 2(@ + b)
. (az#bz)
[tanxdx = -In |cosx[ = misecx}
feotxdx = -In [cscx! = In ]sinx!
jta.nzxdx = tanx—-x
[cotzxdx = —cotx—x
[ e dx = (V)™
[xe®dx = (*%a®)(ex - 1)
JInzdx = z{ln(x)-1] (x> Q)
dx . 1 I -} =
Jrc'.z-i-xz =" g (@0
dx 1 —uf. fay
= tan” {xy_—_ 1}, >0,¢c>
’[ax +c v ac i Vc / @ 0)
| . dx _ 2 . tan- Zax + &
ax® +bx +c V4ge —b* Y 4ac - b2
{dac - &% > Q)
) dx
Pax? v+ bx+¢
_ L |2ez+b - viFoggs
Vi~ dac 2ax + & +Vp? 440
(&%~ dac > 0)
dx _ 2 oy B
Iax‘)‘J.-bx—r-c— Jax + 6 (6" -4ac = 0)




MENSURATION OF AREAS AND VOLUMES

Nomenclature

total surface area
perimeter
volume

A

4
v

Parabola b

H/

= 2bh/3
b |

h

Fllipse

A = rab
= 2y (c* + b%/2

p = mle+)[1+ (L2 + (M,x YAA
+ g Y228 + Clyx M x Y x ¥)* 20

+ (l/z X 1/4)( ﬂ/ex 6/8)<7/’10)2/Z10 b e ]a

L approx

where

A= (@-b)fa+b)

F Gieck, IC & Gieck R., Engineering Formuias, 6th Ed., Copyright © 1867 by Gleck
*ublishing. Diagrams reprinted by permission of Kurl Gieck.

Circular Segment

s N
|

ANy

= [F*(¢-sin @I/2
¢ = s/r = 2{arccos [(r - d)/r]}

Circular Sector

' l”” Ny

\/ ¢

= ¢r¥2 = sri2
¢ = sir

V = 473 = =d%6
— 2



T
i Parallelogram

p = 2+b)

d, = V¥ + b*— 2ablcos @

If @ = b, the parallelogram is & rthombus.

Regular Polygon (. equal sides)

@ = 2x/n

= (rn-Dn
D = ns

s =

A = (nsr)/2

2r(tan (¢/2)]

d, = Vet + b+ 2ab(cos @)
di+dE = 2(a® + &Y
A = ah = ab(sin @)

V = (RIB)A, + A, + 44)

¢ Gieck, K & R. Gieci, Engineering Formulaa, 6th Ed., Copyright © 1887 by Gieck
Publisning. Dingrams reprinted by permission of Kurt Gieck.

MENSURATION OF AREAS AND VOLUMES

Right Circular Cone

| T~
hj\
J\‘
st

V = (x7%R)/3
A = side area + bage arsa
= 7r(r + V7T 1 7T)
A A, = 2P RP .

Right Circular Cylinder
T
Y3
z

=t

V= rnr*h = nd?/4
A = side area + end aresas
2rxrth +r)

¢

Paraboloid of Revolution

V = nd?h/8



CENTROIDS AND MOMENTS OF INERTIA

The location of the centroid of an area, bounded by the
axes and the function y = f(x), can be found by inte-

gration.
_ | xdA
%, = 1
_ [yda
oA A
A =] fx)dx
dA = fx)dx = gly)dy

The first moment of area. with respect to the y-axis and
the x-axis, respectively, are:

M, = [xdA = 24

M, = [ydA =y A

when either® or 7 is of finite dimension then [ x dA or

[ v dA refer to the centroidz or y of dA in these integrals.

The moment of inertia (second momeni of area) with
respect to the y-axis and the x-axis, respectively, are:
_ 2

I, = [ z"dA

I = [ y*dA
The moment of inertia taken with respect to an axis
passing through the area's centroid is the centroidal
moment of inertia. The parallel axis theorem for the
moment of inertia with respect to another axis parallel
with and located d units from the centroidal axis is
expressed by

-

Ipara.[lel axis Ic +Ad
Values for standard shapes are presented in a table in
the DYNAMICS section.

DIFFERENTIAL EQUATIONS
A common class of ordinary linear differential equa-

tions is
() dv(x)
by 2 + ...+ dw—” + bylx) = f(=)
where &, ..., b,, ..., b;, b, are constants.

When the equation is a homogeneous differential equa-
tion, f(x) = 0, the solution is
ylx) = Cle™ + Cod2™ + ... + Ce'n* + ... + Cyt'v
where r_ is the nth distinct root of the characteristic
polynomial P(x) with

Py = by +8, 7"+ 0T+ G
If the root r; = r,, then Cye»™ is replaced with
C,x¢ ., Higher orders of multiplicity imply higher

2 =2 J D =]

powers of x. The complete solution for the differential
equation is

yix) = y,(x) +y,&),
where y _(x} is any solution with f(x) present. If fix)
has ¢* terms, then resonance is manifested. Fur-

thermore, specific fix) forms result in specific yp(x)

forms, some of which are:

-

flx) 5
A B
Ag™* Be™, w=r,

A sin wx + Ay Ccos 0x B, sin wx + B, cos wx

If the independent variable is time ¢, then transient
dynamic solutions are implied.
First Order Linear Homogeneous Differential
Equations With Constant Coeificients

y' +ay = 0, where a Is areal constant:

Solution, y = Ce¢*, where

¢ = a constant that satisfies the initial conditions.

Second Order Linear Homogeneous Differential
Eguations With Constant Coefficients
An equation of the form

y"+ 2ey +by = 0
can be solved by the method of undetermined coeffi-
cients where a solution of the form y = Ce¢’™ is sought.
Substitution of this solution gives

(r? + 2ar + 8)Ce™ = 0
and since Ce™ cannot be zero, the characteristic
equation must vanish or

#+2ar+b =10
The roots of the characteristic equation are

rig = —¢= \/?——b_
and can be real and distinct for a? > b, real and equal
for ¢* = b, and complex for a<b.
If &® > b, the solution is of the form (overdamped)

y — Clgr‘lx + ngrz.:
If % = b, the solution is of the form (critically
damped)

vy = (C; + Cyx)ey*
If ¢ < b, the solution is of the form (underdamped)

¢®*(C, cos Bz + Cysin Px)

y:
where

o = -a

B =vVe-d

FOURIER SERIES
Every function F(¢), which has the period © = 2n/w
and satisfies certain continuity conditions, can be rep-
resented by a series plus a constant.

F() = a2+ 2 (@, cosnwt + b, sin nwt)

r=1

The above equation helds if F(£) has a continuous
derivative F'(¢#) for all #. Multiply both sides of the
equation by cos mwt and integrate from 0 to .

LT F(£) cos mutdt = jﬂov (a,/2) cos mwt dt



e

T T
fo Flt) cosmwitdt = fo (a,/2) cos mwt di
o T
+ ¥ [a, [ cos nwé cos mewt dt
el Mg
T
+ bnf sin nwf.cosmcoz‘dt]

Term-by-term integration of the series can be justified
if F(¢) is continuous. The coeffictents are

a (2/1Jf F(t) cos nwtdt and

n

b, = (2/1)[0 F@) sin nwt d¢, where

I3

T = 2n/w. The constants a,, b, are the Fourter coef-
fictents of F(z) for the interval 0 to <, and the corre-
sponding series is called the Fourter series of F(f) over
the same interval. The integrals have the same value
over any interval oflength <.

If a Fourier series representing a periodic function is
truncated after term n=N the mean square value Fy

-of the truncated serles is given by the Parseval rela-

tion. This relation says that the mean square value is
the sum of the mean square values of the Fourier com-

ponents, or

N
= (a,/2)*+ (172)3 (a}+

and the EMS value is then defined to be the square

root of this quantity or Fy
FOURIER TRANSFORM
The Fourier transform pair, ane form of which is
Flw) = [ f@ 9% de
F& = [1en] [ Flw) d*de
can be used to characterize a broad class of signal mod-
els in terms of their frequency or spectral content.
Some useful transform pairs are:

5(8) 1
w(t) (1/2)8{w) + 1/jw
u[sz I u(/é—qc—}= : ,i’l—?.} o sl lwefy)
2/ / recty wt/2
e 276w — w,)

Seme mathematical liberties ars required to obtain the
second and fourth form. Other Fourier transforms are
derivable from the Laplace transform by replacing s

with jw provided

fi&y = 0, i<Q
[hlrelde <=
0

LAPLACE TRANSFORMS
The unilateral Laplace transform pair

F(s) = |7 fya™de

1 0+ (oo )
O = oo . Fls)ds

represents a powerful tool for the transient and fr
quency response of linear time invariant system
Some useful Laplace transform pairs are [Note: Th
last two transforms represent the Final Value The
rem (F.V.T.) and Initial Value Theorem (I.V.T.) 1
spectively. Itis assumed that the limits exist.]:

&), Impulse atz =0 1
u(f), Stepatt =0 1/s
Hu(t)], Ramp att = 0 1/s?
% /(s + «)
te™ (s + e)?
*'sin Bt B/(s + )2 + B2
~*‘cos Bt (s + a)/l(s + ) + pz_]
v {d_(g?} 5" H(s) -ré_,i; gh—m-1 %;LC
[ O (1/s)F(s)
[ 2@ -v k@ dr H(s)X(s)

lim(i)t sF(s)
s—
Iimit s F'(s)

§—r=

Iitmit @
limit £
i—0

DIFFERENCE EQUATIONS
Difference equations are used to model discrete Sys
tems. Systems which can be described by differenc
equations include: computer program variable
iteratively evaluated in a loop, sequential circuits, cas
flows, recursive processes, systems with time-dsla
components, etc. Any system whose input v( an
output y(¢) are defined only at the equally-space
intervals ¢t = k7" can be described by a differenc
equation.
First Order Linear Difference Equation
The difference equation
P -P[L 1\1 + ") -
represents the balance P of a loan after the kth pa;
ment A. If P, is defined as y{%), the model become
yR) - (L+0yk-1) = - A
Second Order Linear Difference Equation

The Fibonacci number sequence can be generated bj

yiRy = vk -1 -3k - 2}
where y(-1) =1 and y(— 2) = 1. An alternate forz
for this model is

+ 1) + flk)

fe +2) = flk
fO =1

with f(0) =1 and
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- Transforms
The z-transform pair

F) = 2 f(n)z

fB) = 3§ P d

represents a powerful tool for solving linear shift in-
variant difference equations. A limited unilateral list
of z-transform pairs foliows [Note: The last two trans-
form pairs represent the Initial Value Theorem (LV.T.)
and the Final Value Theorem (F.V.T.) respectively.]:

[k F2)
5(k), Impulseat k=0 1

w(k), Stepatk =0 191 - 7Y
' U1 - pzh

f(k -1 1Y)+ y(- 1)

y(& - 2) V) + (-2 + (- 1)zt
gk + 1) z2Y(z) - zy(0)

¥k +2) 22 Y() - 2%y(0) - zy(1)

22 X(E — m)h(m) H(z) X(z)

1}535 f(&) limit F(z)

Hmit f(R) limit (1 - 2 HF(z)
EULER'S APPROXIMATION

%, = % + At(dx,/dE)

NUMERICAL METHODS

Newton's Method of Root Extraciion
fl(}iven a polynomial P(x) with n simple roots, a;, ¢, —,
., where

13
PE) = IL(x - a,,)
m=
St

= 2"+ g, 2"+ ayx
and P(a;) = 0. A root q; can be computed by the itera-
tive alcro rithm
a: 4L i Plx)
: IP)fax| . — o/
Wl*h ‘P(a’ *l)l < lP(a’ )f Convergence is quadratic.
Newton's Method of Minimization
Given a scalar value function

hlx) = hix;, x5, ~ %)
fnd a vector x*e R, such that

hix*) < Rlx) forall =

Newton's algorithm is

24, . =il .
{3 hi \ dh

Kp1 = Fg — | =—H _*

LA o4 (\ax ':x=xK) Oxlx = xg

where
EX
ax].
o
Ew
o
E2
and
B &h
af  xdn S
& °h %
14 &‘:1&"‘2 szz axzé‘xn
x?
Fh 3h Pk
Gxdx, G0, B 2 |

Numerical Integration
Three of the more common numerical integration algo-
rithms used to evaluate the integral

[° e dx
with Ax = (b-a)n are:
Fuler's or Forward Rectangular Rule
[ f@)ds = 8xS F(a + kAx)

k=0
Trapezoidal Rule

for n =1
[ fla) + F(0)]
[ e = ax [ LOTIO]
for n > 1

Ax .

r f@) de = = f(wzs“ fla + RAZ) + £(5)]



Simpson's Rule/Parabaolic Rule (n must be an even

integer)
for n =2
6 _ [b-a \ a+b

[ fea = (52 5+ 4521 + 1)
for n>4

[Preyde = A2 [f(a) + 25 fa+ hax)

Z o 3 h=2,46,~ } .

+4) fla+ kAx) + f(b)
k=1,3,5,

Numerical Solution of Ordinary Differential
Equations - Euler's Method
Given a differential equation

dyldt = fly,t) with »(0) =y,
At some general time £A¢

Y[k + 1AZ] = y(hAt) + At fly(RAL,RAL]
which can be used with starting condition y, to solve
recursively for y(At), y(2A%), -, y(nAf).

The method can be extended to nth order differential
equations by recasting them as r first order equations.

[ R e U e



ELECTRIC CIRCUITS

UNITS
The basic electrical units are: coulombs for charge,
volts for voltage, amperes for current, and ohms for

resistance and impedance.
ELECTROSTATICS

. Q&5
F, = mam, where

the force on charge 2 due to charge 1,

F, =

@, = the ith point charge,

r = the distance between charges 1 and 2,

a,., = aunitvector directed from 1 to 2, and

€ = the permittivity (or dielectric constant) of the

medium.
For free space or air:

€ = g, = 8.85x 107" Farads/meter
Electrostatic Fields
Electric field intensity & (volts/meter) at point 2 due
to a point charge @, at paint 1 is

E bt _QL. arlZ

dner

For a line charge with density p; C/m on the z-axis,
the radial electric field is

b s = pL
L’:L =

e

a
Zmer 7
For a sheet charge of density p, C/m® in the xy
plane:

Ps
_
E, = 5 G z>0

Gauss' law states that the integral of the electric flux
density D = e E over a closed surface is equal to the
charge enclosed or

Qencl = §A eE-dA
The force on a point charge @ in an electric field with
intensity £ is F = QE.
The work done by an external agent in moving a charge
& in an electric field from point r; to point ry, is

r
- [ R—
W=-Q[" EqL
i
The energy stored &, in an electric field E is
oo Py 12

Ex = (UR)[[[, €|E|® dv
Voltage
The potential difference V' between two points r; and
ry 1s the work W required per unit charge to move a
charge @ from r; to ry;ie, V = W/Q.
For two paraliel plates with potential difference V, sepa-
rated by distance d, the strength of the £ field between
theplatesis

v
L=y

directed from the + plate to the - plate.

Current
Electric current () through asurface is defined as t}

rate of charge transport across that surfaceor

(&) = dg(r)/de, which is a function of time
since g(t) denotes instantaneous charge.
A constant i(¢) is written as I, and the vector currenis
density in amps/m® is defined as /. :

Magnetic Fields
For a current carrying wire on the z-axis

g = B IﬂL,Where

I 27nr
the magnetic field strength (amps/meter),

H —1

B = the magnetic flux density (tesla),

@y = the unit vectorin positive § direction in eylin.
drical coordinates, .

I = the current, and

u = the permeability of the medium.

Forair: uw = g, = 4w X 107 H/m

Force on a current carrying conductor in a uniforny

magnetic field is f
F = IL XB, where

L = the length vector of 2 conductor.

The energy stored £ in a magnetic field H is
Sy = WD[[], n|H|?dv

Induced Voliage

Faraday's Law states that for a coil of N turns enclos- 3 :

ing flux ¢, the induced voltage e is given by ‘
¢ = -Ndd/dt, where

¢ = the flux (webers) enclosed by the N conductor 3

turns and
b = |, B-dA
Resistivity

For a conductor of length L, electrical resistivity
p,and area 4, the resistance is

pL

& =g
For metallic conductors, the resistivity and resistance
vary linearly with changes in temperature according to
the following relationships

o = pll+e(T-T,], and

R =R+ ue(T-T,)], where
p, isresistivity at T, and
® 1is the temperature coefficient.
Ohm's Lawis V = IR, u(® = (R
Resistors in Series and Parallel
For series connections, current in resistors is the
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T

i
£
&

e

Loipanm

same and the equivalent resistance for n resistors in
geries 1s
R, =R +R,+..+R&,

For parallel connections of resistors, the voltage drop
across the resistors is the same and the resistance for

. resistors in parallel is

Ry = 1/(/R, + 1Ry + ... + LR)
For two resistors R, and R, in parallel
' R.E
R, = 12
T R +R,

Power in a Resistive Element

V2 2
= VI = =7
2 R

Kirchhoff's Laws
Kirchhoff's voltage law for & closed loop 1s

Z Vz‘iua! = E Vdmp:

Kirchhoffs current law for a closed surface is
E Iin = E Iout.

SOURCE EQUIVALENTS

For an arbitrary circuit

Sources
and
Resistors

The Thevenin equivalent is

W

5 b

-V, , and the short

The oper circuit voltage V. is V,
circuit current is [ from a to b.

The Norton equivalent cireuit is

D a
I, D §Req

J O

where [, and E_, are defined above.

A load resistor R, connected across terminals ¢ and
b will draw mazimum power when E; = E_

CAPACITORS AND INDUCTORS

1 (2)
+
L +
C va(t) = v

io(®)

The charge q(£) and voltage vy(f) relationship for
a capacitor C in farads is
bt qC(*)/VcC‘) or qc(t) = OUG(t)

A parallel plate capacitor of area A separated a dis-
tance < by an insulator with a permittivity € has a

capacitance

The current-voltage relationships for & capacitor are
1 .
ve(®) = ve0) + & 4 idndr

and i) C(dve/di)

The energy stored in a capacitor is expressed in joules

1l

and
Energy = Cuvi/2 = qE12C = qoue/2
The inductance L of a coil is
= Nofi,
and using Faraday's law, the voltage-current rela-
tions for an inductor are

v (6) = L(di /dt)
§® = i@+ 7 [ u(odT, where

= inductor voltage,
= inductance (henrys), and

= current (amps).
The energy stored in an inductor is expressed in

o, h[S

joules and
Energy = Li;/2

Capacitors & Inductors in Parallel and Series
Capacitors in Parallel
= - -+ .
C'eq—Ci,C'z.....C'n
Capacitors in Series

_ 1
Cu = 1/C, + 1/Cy +

..+ 1/C,

Inductors In Paraliel

3 1
L = /L, + UL, + ... + UL,

Inductors In Series

Ly = L+ L,+...+L,



RC AND RL TRANSIENTS
X - UR -
T .
V= t=10 c ve
) i) ' -
t 2 0; ve) = vC(O)g"mCﬁ- V(1 = g¢/RC)

{[V-v 0)/R}ye/RE
HOR = [V- uC(ong*/EC

i(8)
vp(t)

L,
! £(t) ]

—RE/L)

["

£2 0 i) = 0P+ L1,
vp@ = R = iR + V(1
v (&) = L{di/dt) = -i(0Q)ReE 4 vt
v(0) and i(0) denote the initial conditions and the
paremeters £C and L/R are termed the respective
circuit time constants.

-Rt/L)

OPERATIONAL AMPLIFIERS

v, = Alv;-v,), where UZ:b_g Yo
A islarge (>10%) and “

vy ~ vy is small enough so as not to saturate the am-
plifier.
For the ideal operational amplifier, assume that the
mput currents are zero and that the gain A is infinite
so when operating linearly, v,~v, = 0.
For the two-source configuration with an ideal opera-
tional amplifier,

kB,

(2
=

R7 -!/-.-.RZ\.T

Vo= - SRy {1+ S
o R, ! RI/D

If v, = 0, the non-inverting amplifier output is
R !
v, = l/l + 5<lvy

N R'l
If v, =0, the inverti lifi tout i
€y ; ting amplifier output is

= R?
v, == F;Un

AC CIRCUITS

For a sinusoidal voltage or current of frequency
f (Hz) and period T (seconds),
f = UT = w/(@n), where

= the angular frequency in radians/s.

Average Value
For z periodic waveform (either voltage or current)d
with period T', Ak
T
Xy = (UTY) x@ de
The average value of a full-wave rectified sine wave ig

Xove = QLT

and half this for a half-wave rectification, where
X . = the amplitude of the waveform.
Effective or RMS Values
For a periodic waveformn with period 7', the rmsg m:—
effective value i1s ' ;
X .. = D é xz(t) dﬂ
For a sinusoidal waveform and full-wave rectified sine-
wave,
Koo = LoV 2
Far & half~-wave rectified sine wave,
Leme = L2
Sine-Cosine Relations
cos (wt) = sin (wt + 7/2) = —sin (Wt - 7/2)
sin {(wt) = cos(wt — 7/2) = —cos (wt + 7/9)
Phasor Transforms of Sinusoids
PV_ cos (wt+@)] = V._ 2P
P cos(wt+8)] =T 40 =7

For a circuit element, the impedance is defined as the:
ratio of phasor voltage to phasor current.

H
<

v
Z=7

For a Resistor,
Zy = R

Far a Capacitor,

1 _ .
Ze = 7,0 = %

For an Inductar,

Z; = jwL = jX , where
X, and X; are the capacitive and inductive re
actances respectively defined as



and X, = wL

: [mpedances in series combine additively while those In
_ arallel combine according to the reciprocal rule just
as in the case of resistors.
Complex Power .
Real power P (watts) is defined by
P = CAV o Low c0s

=V _ .1

Tms ~Tms cos 5

where O is the angle measured from V to I. If I
|eads (lags) V, then the power factor (p.f),

pf. = cos 8
is said to be a leading (lagging) p.f.
Reactive power @ (vars) is defined by
Q =RV, I . sné

= Vo eLims i1 G
Complex power S (volt-amperes) is defined by
5 =P +j¢
For resistors, 8 = 0, so the real power 1s
P=Vyln = VAR =I.E
RESONANCE

The radian resonant frequency for both parallel and
series LC combinations is

= 2rf, (rad/s)

“ = JTE

Series Resconance

and

Z = R at resonance.

Quality factor
1

Q_a)L_
T R _a)DC'R

Bandwidth
BW = w,/Q (rad/s}

Parallel Resonance

1
w,L = G and
Z = R at resonarnce.
_ R
QR = wRC = e
BW = w, /@ (rad/s)

TRANSFORMERS

Ip Ig
+ ]: +
ZP - va Nl <) N2 VS ZS
S B B
Turns Ratio
a = N)/N,
LAY
AR
The impedance seen at input is
Zp = a’Zg

ALGEBRA OF COMPLEX NUMBERS
Complex numbers may be designated m rectangular
form or polar form. In rectangular form, a complex
number is written in terms of ifs real and imagmary
components.

z = a +jb, whete

g = the real component,
b = the imaginary component, and
= VvV - .

In polar form

.

z = ¢ L9, where

- T
= tan™ (bfa),
= ¢ cos 8, and
= ¢sin 8.

Q“QQDQ

Complex numbers are added and subtracted In rec-

tangular form. If
a, +]jb; ¢, (cos &, + jsin ;)

=c155" and

z
~1

L B :
z; = @y + 0, = ¢, (cos G, + jsin 6,)

= ¢, / &, , then
¢ — L T L E
z, +zy = (‘11"““2)"1(51"'02) and
_ ’ . 7 I
z, -2z, = (@ —ay) +ib, - by)
i bers can be mulbiplied or divided in

While complex numbe

rectangular form, it is more convenient to perform

these operations in polar form.

Z, Xz, = (CLXCE)M
= (clicz)/__gie_z

\
X
N
|




ELECTRICAL AND COMPUTER ENGINEERING

ELECTROMAGNETIC DYNAMIC FIELDS
The integral and point form of Maxwell's equations are

$E-dl = - [[ (8B/6:)-dS

FHA = I, +] fS (8D/3t)-dS

ff D-dS = f_u/spdv

ffs BdS =0

! VxE = - aB/at

VXxH = J+dD/at
VD =p
V-B =0

The sinusoidal wave equation in E for an isotropic
homogeneous medium is given by

V2E = - wlcE
The EM energy flow of a volume Vg enclosed by the
surface Sy, can be expressed in terms of the Poynting's

Theorem
- [[ ExH)dS = ffLJEdU
/e [ [ L (eE~fz + pH?2) dv
where the left-side term represem:s the energy flow per
unit time or power flow into the volume Vg, whereas

the f'E represents the lossin Vg and the Iast term
represents the rate of change of the energy stored in

the E and H fields.

1L.0OSS LESS TRANSMISSION LINES

The wavelength, A, of a sinusoidal signal is defined as
the distance the signal will travel in one period.

where V is the velocity of propagation and fis the fre-

quency of the sinusoid.
The charactersitic impedance, Z,, of a fransmission
line is the input impedance of an infinite length of the

line and is given by

where L and C are the per unit length inductance and
capacitance of the line.
Standing wave ratio, SWE, 1s given by

(7

IZ Ll

SWR - -
\Z,1

where Z; is the load impedance.
The reflection coefficient, p, is a measure of the per-

centage of the voltage arriving at the load which is
reflected towards the source. The reflection coefficent
is related to SWR, Z, and Zg by the following equa-

tions:
swg - L1
1-p
T - Z
p -2
ZL 2 ZD
AC MACHINES

The synchronous speed n, for ac motors is given by
n, = 120f/p(in rpm), where
f = the line valtage frequency in Hz and
p = the number of poles.
The slip for an induction motor is
slip = (n, - n)/n,, where
= the rotational speed (rpm).
BALANCED TEREE PHASE SYSTEMS
The three phase line-phase relations are
I = V3 I, (fordelta)
' V3 Vp (for wye)
where subscripts L/P denote line/phase respectively.
Three phase complex power is defined by
VA = P +j¢

VA - /3 VI, (cosBy + jsinGp)

where

VA = total complex volt-amperes,

P = real power,

@ = reactive volt-amperes, and

8, = power factor angle of each phase.
SIGNAL PROCESSING

Signal processing concepts inctude circuits, transform,

commumnication, and other concepts which are covered

in other sections of this reference. Two concepts of

importance not covered elsewhere include convolution

and correlation. The convolution v(?¢) of two functions
xz(t) and () can be written as

p(@) = x(t) Qv

where
. bl .
) By = [ x(t)yE -t)dr
—tn
One form for the correlation 7(7) of nonperiodic func-
tions x(¢) and y(£} is
«
) = [ &
Fourier transforms of correlation functions generally

Hyl(t +¢) dt



lead to power density functions.
COMMUNICATION THEORY CONCEPTS

Specrral characterization of communication signals can
be represented by mathematical transform theory. An
amplitude modulated AM signal form is

v(t) = ALl + m()]cos w £, where
A, = carrier signal amplitude.
If the modulation baseband signal m(¢) is the sinusoi-
dal form with frequency w_, or

m(t) = mcos w,,¢
then m is the index of modulation with m > 1 implying
overmodulation. One form of a frequency modulated
FM signal form is

v() = Acos [wt + ¢@®)]
where the ¢(¢) angle modulation is & functicn of the
baseband signal. The angle modulation form

d@) = k,m @)
is termed phase modulatior since angle variations are
proportional to the baseband signal m,(¢). Alternately

L
o = k,—J: m{z) dt
is termed frequency modulation since wz = §(#) im-
plies dd(®)/dt = w. Therefore, the instantaneous
frequency w, associated with v(¢) is defined by
wit = wi+ kff ‘m(t)d=
from which
o, = dlw;f)/dt = wo,+ kfm(t) = w,+ Aw)
whers the frequency cl°v1at10n is prono*'tmnal to the
baseband signal or
Aw() = kan()

These fundamental concepts form the basis of analog
communication theory. Alternately, sampling theory,
conversion, and PCM (Pulse Code Modulation) are
fundamental concepts of digital comrmunication.

FOURIER SERIES
If F(¢) satisfies certain continuity conditions and the
reiationship for periodicity given by

f& = fe+T)
then f(¢) can be represented in the trigonometric and
complex Fourier series givnr' by

FO = A +L A e +§$B sin
rL&?OL‘ nom]
and
.T() ZC Jnwsl
where a=—=
w, = 2n/T

t+T
A, = UD][ floids
¢ (=T
4, =@ ]

f(x)casnw,t dt
- T

— oy =7 N S

) 7 fr) gineeT g
Three useful and common Fourier series forms °
are defined in terms of the following graphs (with
w = 2x/T). ‘

o]

c - W | o

Given: ol
v
2 B °
o
0 =
NI N,
i o
2 2
L—T
then
f1 = ( 124V /nw) cos now,t
(r;odd)
Given:
f,(t)&
ok,
r 0T 7 2T
2
- V. in (nrt/7T)
Vs | 2ZVr & sin /T
»-z(t) = —j.-,‘--v T =1 (_TZ-TC’T.'/T) Cosn(ﬂnf
- Vr = sin(nEt/T) jrowe
f200) =_.a_n§- T ¢
Given:
éf,(t)="utruinifimguisecwithmishuAn
I T T l
—}T T zr 3T
then

fs&) = LAﬁ(t -nT)
fol&) = AT+ \ZA/T) Z cos nw t

f3&) = (A/Tl T e

SOLID STATE ELECTRONICS & DEVICES i

Conductivity of a semiconductor material:
o = qlng, + Py, where

electron mobility,

hole maobility,

electron concentration,

hole concentration, and
charge on an electron.

<% BFF

W m oW mow
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Doped material:
p-type material; p, = N,
n-type material; n, = Ny
Carrier concentrations at equilibrium
(p)n) = n? where
pn, = intrinsic concentration.
Built-in potential (contact potential) of a p-n junction:
£T. NN, .
V, = —In—%5= , where
n;
Thermal voltage
yy = AT
q
aceeptor concentration,

N, =
Ny = donor concentration,
T = temperature (K), and

1.38x10° B (/K.

il

k Boltzmann's Constant =
Resistance R of a diffused layer is

R = RD—VTIIJ , where
Eq = sheet resistance = p/T'
p = resistivity,
T = thickness,
L = length of diffusion, and
W = width of diffusion.

TABULATED CHARACTERISTICS FOR:

Diodes

Bipolar Junction Trausistors
N-Channel JFET and MOSFET
Enhancement MOSFETs

follow on pages 102-103.
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(J unction Dlode) ip Shockley Equation
‘o ip = Is[e("u"“vr) — 1], where
i Va up /. = saturation current
O—hi—o -2 I - n = emission coefficient, typically 1 fo
- - ’ -~ T =
a + 5 ¢ r/ (0.5 to 0.6V o
V, = breakdown voltage [V = thermal voltage i
(The Shockley equation is good for vy > al
(Zener Dicde) [ . Same as above.
I° i
i ’ ,
Oh}'—o = % Yz 2o
Qe ) c |
bpr = [_’f (0.5 to 0.6)V
V, = Zener voltage
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NPN - Transister

lg = ig+ic

ic = Pig

Ig iy

o B/(B + 1)

g = ISe(UEE/VT)

I; = emitter satura-
tion current

V. = thermal voltage

Note: These relationships
are valid in the active mode
of operation.

Low Frecruencv.

|Active Reg;on:

i;?se zmitter julrllct.ion for“;e?rd g, = I C/VT
iage ,bgse collector junction r, = B /gm , where
reverse biased
c 7z c = DC collector current at the
[ 7, Q..
' point
| U]
_ | LX0R
Iy B, Fo = { - J
—E - L di, lg
point
Bo—1|
Var {IE

Saturation Region:

both junctions forward biased

c
Q|
! iﬂc
e
BC [r

N
Ve

4

PNP - Transister

Same as for NPN with cur-
rents and voltage polarities
reversed.

|Cutoff Region:

Same as for NPN,

both junctions reverse biased

|
g

Same as for NPN with cur-
rents and voltage polarities
reversed.




r = E i Re v o N Channel Junction. Field Effect Transistors (JTET) .~
' and ‘Depletmn MOSFET (’Low and. Mecllm-n I‘reguency) 2 i
Schematic .’ L..- : ; TR ' ] I CooT Smallds 4
Symibol ¢ | -.;“,_____.Mathemau"al Relanmnsh.lps afes -
JFET Cutoff Region: vgg <V, -V 2V Tpselp 15 . - )
. g, = V| in saturation region
e ip = 0 |
e
M | Triode Region: vgg > V, and vgp >V,
4 [ S 2
] G 1 . . nog 7
’§, B ip = Upgs/Vol2upsligs = V) = Vbs! G iplé
," 1 | —— p— e _C)
i i Saturation Regi v and <V T gt 4 T
r ! aturation Region. U, > V, and v /" X mle A ~
k. 50 “52 # @ = Uga O 'd% U
1 ad * — ) 7 .
}:;. ip = Iss(1 = vgg!Vy ), where = i =
: Depietion MOSFET |, ) L i o ]
/... = drain current with vge = 0 (in the
DSS : GS
Do saturation region) g
Vi — 72
, 1i° = KV,
9 K = conductivity factor where
et | . r — ‘mehoall L
¢ | B v, pinch-off voltage __ dug
[1is e T G
(! ‘d 'Qpgint
56

" Schematic

Cuioff Region: vgg < Vi g, = 2K(vgg - V) in §aturation
reglon
I = = -
ip =0
G D
a9 Triode Region: vge > V, and Ugp ~ v - o v %
I b Vas G~ M nte Ny bn T
: s T +r Z v 5 .y
| & ip = Kl20ps{ugs = Vi) = Ups] - \2 i iy
— c . -
G E i O
h ) Frima I - i 7 l
r-J Saturation Region: vggs > V, and Ugp < v, 5
[ = - . S
s6 ° ip = Blugs - v,)%, where
g where
& = conductivily factor
12 threshold voltage P, = I Uy |
: 3 -
Sl

Jame as for IV - channel with current and voltage

polarities Tev versed.
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NUMBER SYSTEMS AND CODES
An unsigned number of base- has a decimal equiva-
lent D defined by

D =K§] aKrj( +i=’£1 a.;-r—‘. , where

the (K+1) digit to the left of the radix point and

a; the ith digit to the right of the radix point.
Signed numbers of base-r are often represented by the
radix complement operation. If M is an N-digit value
of base-r, the radix complement R(M) is defined by

R@p =N - M
The 2's complement of an N-bit binary integer can be

wrltten

94

Il

N-1 g
2's Comnplement (M) =K'—Zo bK2K - bN_IZA =
The following table contains eq—uivalent codes for &
four-bit binary value.

e |

Dasex = e A

0000 0 0 0 o] 0000
0001 1 1 ] 1 0001
0010 2 2 2 2 0011
6O1 1 3 3 3 3 0010
0100 4 4 4 4 0110
0101 5 5 5 5 0111
0110 6 6 6 6 0101
01117 7 7 7 7 0100
1000 8 8 10 8 1100
1001 9 9 11 2 1101
1010 10 A 1 --- 1
1011 11 B 13 - 1110
1100 12 C 14 o= 1010
1101 13 D 15 = 1011
1110 14 E 16 === 1001
1111 15 F 17 - 1000

LOGIC OPERATIONS AND BOOLEAN ALGE-
BRA

Three basic logic operations are the "AND ( - )"
"OR (+)" and "Exclusive-OR (®)" functions. The
definition of each function, its logic symbol, and its
Boolean expression are given in the following table.

QPO

oo lElE
= O O

= o o ol
o= O

As commonly used, A AND B is often written AB or
A B.

The not operator inverts the sense of a binary valu; '
©=1,1-+0) %

A C=4

Logic Symbol

DeMorgan's Theorem
first theorem: A+ B
second theorem: A-B = A+B ‘

These theorems define the NAND gate and the NOR i

gate. Logic symbols for these gates are shown below.

NAND Gates: 4B = A+ B

A A

B B

NOR Gates: A+ B =4
A

Bl 4>

B

FLIP-FL.OPS
A flipflop is a device whose output can be placed in'
one of two states, 0 or 1. The flip-flop output is syn-
chronized with a clock (CLK) signal. @, represents the 4
value of the flip-flop output before CLK is applied and’
@,.; represents the output after CLK has been ap-
plied. Three basic {lip-flops are described below. '

RS Flip-Flop JK Flip-Flop D Flip-Flop

— : piingan: ot

— S @ —tJ Q e == D Q

—4CL — CLK LK
-
00 |@, no change 00 @, nochange 0| O 4
0110 010 1| 1 d
1011 10 (1 e
11 |x invalid 11 |@, toggle i

MM O

= OO

M O O

O = O M

O =M M

| o~ o |t
T




Switching Function Terminology
Minterm - A product term which contains amn occur-
rence of every variable in the function.
Maxterm - A sum term which contains an occurrence

of every variable in the function.

Implicant - A Boolean algebra term, gither in sum or
product form, which contains one or more
minterms or maxterms of a function.

Prime Implicant - An implicant which is not entirely
contained in any other implicant.

Essential Prime Implicant - A prime implicant which
contains a minterm or maxterm which 1s not
contained in any other prime implicant.



Definitions

Transform

Inverse transform

Fourier Transforms

Tables

Table T.1

V) = S0 = | o Pt

~oa

o) = FUNT = | WP ar

—oo

Integral theorem

20 o

[ meae= [ vy
—00 J—s0 v
Theorems
Operation Function Transform
Superposition a0 (t} + aga(t) aVi(f) + a:Vu(f)
Time delay u(t —t,) V(f e n
Scale change v{or) - V(i)
o] \e
Conjugation v*(t) VE(—f)
Duality V() v(=f)
Frequent translation u(t)e =t Vf—£)
Modulation v(z) cos (w,t + $) IV~ f)ef + V(f + f)e ]
3 ) a"u(t)

Differentiation — (J2=f)V(F)

. i 1 ) o on
Integration J_ oqv(/\) dA ﬂ—ﬂfV( F) + 1 W0) 8(F)
Convolution vsw(t) V(FIW(SF)

Multiplication v(t)w(t) V= W(F)
) @)
Multiplication by " t"u(r) (=j2m)™

d_f"

780
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TABLES

Transforms
Fanction () V(f)
Rectanguiar II (f) T sinc fr
Triangular A ( i) T sinc® fr
T
Gaussian P (1/b) e™™F
1
- —br —_
Causal exponential e "u(r) b+ onf
Symmetric exponential et =2
v+ (2mf)?

: : Lol L
Sinc sinc 2Wt W II ( 2 W)
si a inc2 W = A(i)

inc square sin t W\
Constant 1 3(f)

Phasor g flattd) e®8(f— 1)
Sinusoid cos (w, ¢ + &) He® 8(f — £} + e8(F + £)]
Impulse 8(t — ) el
Sampling S 5(r — &7) £ 8(f—af)
Signum sgn t 1/jaf
TR
Ste u(t ST 30
p o) )




