PRAIRIE VIEW A\&M UNIVERSITY

NAME: $\qquad$
Problem 1(a) (10 pts.) For circuit shown below, assuming that the voltage across a forwardbiased conducting diode is 0.7 volts, Find the voltage V and I .
$V=$ $\qquad$

$$
1=
$$

$\qquad$
Problem 1(b) (6 points) Assuming that the voltage across a forward-biased conducting diode is 0.7 volts
find $v_{0}$ if $V_{I}=-0.5 \mathrm{~V}$

$v_{0}=$ $\qquad$
Problem 2(a) ( 12 points) If $v_{1}=5 \mathrm{mV}$, (i) find the voltages at nodes B and C . (ii) Hence, calculate $v_{0}$.


Voltage at node B = $\qquad$ Voltage at node $C=$ $\qquad$

$$
v_{0}=
$$

$\qquad$

Problem 2(b) (6 points) For the amplifier shown below, what will be the range of the input voltage such that the output voltage of the op amp does not saturate at $\pm 15 \mathrm{~V}$. Assume that $R_{1}=1 K \Omega, R_{2}=9 K \Omega$,

$\qquad$ to $\qquad$

Problem 3. (16 points) For the common-emitter amplifier shown below, $V_{C C}$ is unknown, $R_{1}=$ $90 \mathrm{~K} \Omega, R_{2}=45 \mathrm{~K} \Omega, R_{E}=1.0 \mathrm{~K} \Omega, R_{C}=8.0 \mathrm{~K} \Omega, R_{\text {sig }}=0.2 \mathrm{~K} \Omega$, and $R_{L}=10 \mathrm{~K} \Omega$. The transistor $\beta$ is $100, r_{o}$ is almost infinite and $r_{\pi}=1.2 \mathrm{~K} \Omega$.
(a) Draw the small-signal equivalent circuit

(b) Find the input resistance, $R_{i n}$,
(c) Determine voltage gain, $\frac{v_{o}}{v_{s i g}}$.

## Problem 4 (10 points)

A silicon $p-n$ diode step junction maintained at room temperature is doped such that $E_{F}=E_{V}$ $+E_{G} / 5$ on the $p$-side and $E_{F}=E c-k_{B} T$ on the $n$-side. Take the temperature as 300 K and the bandgap as 1.1 eV
(a) Draw, to scale, the equilibrium energy band diagram for this junction.
(b) Determine, from the diagram, the built-in voltage $\mathrm{V}_{\mathrm{bi}}$.

## Problem 5 (10 points)

In a $\mathrm{p}^{+}-\mathrm{n}$ junction, suppose $\mathrm{N}_{\mathrm{D}}$ is doubled. If everything else remains unchanged, which the of the following increase or decrease? Justify each answer.

| PROPERTY | INCREASE/ <br> DECREASE | JUSTIFICATION |
| :--- | :---: | :--- |
| Built-in <br> Potential | Increases |  |
| Junction <br> Capacitance | Decreases |  |
| Dreareases <br> Boltage |  |  |
| Increases |  |  |
| Depletion <br> Width | Decreases |  |

## Problem 6 (15 points)

The current output of an optical diode is given by

$$
I=I_{0}\left[1-\left(\frac{\phi}{\phi_{0}}\right)^{2}\right], \quad \phi_{0}=\text { constant }
$$

where $\phi$ is the voltage drop across the diode. Compute the maximum power output of this diode. [Hint: The power output is $l \phi$. The value $\phi=\phi_{m}$ at which the power is maximum is obtained by setting the first derivative is zero.]

## Problem 7 (15 points)

The figure below is a schematic of $p-n$ junction diode with the $p$-side and the $n$-side as shown. Label the various parts of the device appropriately by showing: the depletion region, space charge region, depletion widths on each side with the appropriate charges (donor and acceptor ions), majority and minority carriers (electrons and holes) on each side, the direction of electric field in the junction region, the directions of electron and hole diffusion, and the directions of electron and hole drift. Which side is more heavily doped?


## Cheat Sheet - EE130

$\mathrm{q}=1.6^{*} 10^{-19} \mathrm{C} \quad \mathrm{e}_{0}=8.85^{*} 10^{-14} \mathrm{~F} / \mathrm{cm}$
K_S $=11.8, \mathrm{~K}_{-} \mathrm{O}=3.9 \quad \mathrm{Eg}(\mathrm{Si})=1.12 \mathrm{eV}$
Boltzman $\mathrm{k}=\overline{8} .62 * 10^{-5} \mathrm{eV} / \mathrm{K}$
Planck $\mathrm{h}=4.14 * 10^{-15} \mathrm{eV}^{*}$ s
Free e Mass, $\mathrm{m}_{0}=9.1 * 10^{-31} \mathrm{~kg}$
Effective density of states $\mathrm{Nc}=3.22 * 10^{\wedge} 19 \mathrm{~cm}-3$
$\mathrm{dEg}=3.5^{*} 10^{\wedge}(-8) * \mathrm{~N}^{\wedge}(1 / 3) \mathrm{eV}$

## Basic Semiconductors Fundamentals

$f(E)=\frac{1}{1+e^{\left(E-E_{f}\right) / k T}}$ approx: $f(E)=\mathrm{e}^{-\left(E-E_{f}\right) / k T}$
Charge Neutrality: $p-n+N_{D}-N_{A}=0$

$$
n_{i}=\sqrt{N_{C} N_{V} e^{\frac{-E_{c}}{2 \mathrm{KT}}}} \quad g_{c}(E)=\frac{m_{n} \sqrt{2 \mathrm{~m}_{n}\left(E-E_{C}\right)}}{p i^{2} h^{3}}
$$

$$
n=\frac{N_{D}-N_{A}}{2}+\left[\left(\frac{N_{D}-N_{A}}{2}\right)^{2}+n_{i}^{2}\right]^{\frac{1}{2}} \mathrm{Mn}>\mathrm{Mp} \text { in } \mathrm{Si}
$$

$$
p=n_{i} e^{\frac{E_{i}-E_{F}}{k T}} \quad E_{i}=\frac{E_{c}+E_{v}}{2}+\frac{3}{4} k \operatorname{Tln}\left(\frac{m_{p}}{m_{n}}\right)
$$

$$
n=n_{i} e^{\frac{E_{F}-E_{i}}{k T}} \quad E_{F}-E_{i}=k \ln \left(\frac{n}{n_{i}}\right)=-k T \ln \left(\frac{p}{n_{i}}\right)
$$

Low T = freeze out; high t = intrinsic; else extrinsic

$$
\begin{aligned}
& J_{P}=J_{\text {drift }}+J_{\text {diff }}=q \mu_{p} p E-q D_{P} \frac{d p}{d x} \\
& J_{N}=J_{\text {drifit }}+J_{\text {diff }}=q \mu_{n} n E+q D_{N} \frac{d n}{d x}
\end{aligned}
$$

mobility units $\mathrm{cm}^{\wedge} 2 /\left(\mathrm{s}^{*} \mathrm{~V}\right)$, diffusion $=\mathrm{cm}^{\wedge} 2 / \mathrm{s}$
Diff len.: $L_{N}=\sqrt{D_{N} \tau_{n}} \quad v_{t h}=\sqrt{\frac{3 \mathrm{kT}}{m_{e f f}}} \quad v=\mu E$

$$
\frac{D}{\mu}=\frac{k T}{q} \quad \mu_{p}=\frac{q \tau_{m p}}{m_{p}}, \text { units }: \frac{q \tau_{m p}}{m_{p}} \quad F=\frac{-q E}{m_{p}}
$$

hi $\mathrm{T}=$ phonon scattering, low $\mathrm{T}=$ ion scattering

$$
\rho=\frac{1}{q\left(\mu_{n} n+\mu_{p} p\right)} \quad \sigma=q\left(\mu_{n} n+\mu_{p} p\right) \Omega^{-1} \mathrm{~cm}^{-1}
$$

Generation: band2band, R-G center, impact ion Recomb: direct, R-G, Auger (2 collide, excite 1) rate of recombination $=\frac{d n}{d t}=\frac{\Delta n}{\tau}=\frac{\Delta p}{\tau}$

## Semiconductor Fabrication:

*oxidation $=$ deposition of SiO 2 layer dry $=$ thin, slow, precise, wet $=$ thick, fast, imprecise
*lithography/etching $=$ remove SiO 2 with photoresist *Dry/wet etch; dry=precise, wet = easy, cut sides Antenna effect, charges left after etching, tunnel
*Ion Implantation = dopant atoms introduce into Si low T vs diff. Dominant process now.
*Annealing/Diffusion = clean and spread
*Thin Film Deposition, spray metal, > clean sputter
*CVD - deposit ions/nitrides, etc.
Advanced lithography - EUV photo, ebeam, dip-pen
Positive $=$ light, softens, negative $=$ light hardens
Antenna effect - e- flow tunnel beneath oxide
Dop gasphase,solid source,in situ (deposit on surface)

## PN Junctions

Forward Bias $=$ Current flows $\mathrm{P}->\mathrm{N}$
Dep approx: assume carrier inside dep. region $=0$ charge density out dep reg $=0$ and $\mathrm{q}(\mathrm{Nd}-\mathrm{Na})$ inside $\frac{d^{2} V}{d x^{2}}=\frac{-d E}{d x}=\frac{-\rho}{\epsilon_{s}} \quad \mathrm{n}: \quad V(x)=V_{b i}-\frac{q N_{D}}{2 \epsilon_{s}}\left(x_{n}-x\right)^{2}$
$W=\sqrt{\frac{2 \epsilon_{s}\left(V_{b i}-V_{A}\right)}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)}$
$v_{b i}=\frac{k T}{q} \ln \left(\frac{N_{a} N_{d}}{n_{i}^{2}}\right) \mathrm{p}: \quad V(x)=\frac{q N_{A}}{2 \epsilon_{s}}\left(x+x_{p}\right)^{2}$
n -side: $\quad V(x)=V_{b i}-\frac{q N_{D}}{2 \epsilon_{s}}\left(x_{n}-x\right)^{2}$
$N_{A} x_{p}=N_{D} x_{n}$ common field in depletion region one that reaches first is first to depleted
Dep reg. Widens under reverse bias
E-field: $\quad E(x)=\frac{-q N_{A}}{\epsilon_{s}}\left(x_{p}+x\right)$
Peak E-field: $\quad E(0)=\frac{2 \mathrm{qN}}{\epsilon_{s}}\left(V_{b i}+\left|V_{r}\right|\right)^{1 / 2}$
Brkd Voltage: $\quad V_{B R}=\frac{\epsilon_{s} E_{\text {crit }}^{2}}{2 \mathrm{qN}}-V_{b i}$
Cap diagram slope $=2 / q N \epsilon_{s} A^{2}$
cap/volt characteristics: $\frac{1}{C_{d e p}^{2}}=\frac{W_{d e p}^{2}}{A^{2} \epsilon_{s}^{2}}=\frac{2\left(V_{b i}-V_{A}\right)}{q N \epsilon_{s} A^{2}}$
Vbr decreases with increasing N or decreasing Eg
$p_{p 0}\left(-x_{p}\right)=N_{A} \quad n_{n 0}\left(-x_{n}\right)=N_{D}$ majority
$n_{p 0}\left(-x_{p}\right)=\frac{n_{i}^{2}}{N_{A}} \quad p_{n 0}\left(-x_{n}\right)=\frac{n_{i}^{2}}{N_{D}}$ minority $p n=n_{i}^{2} e^{q V_{A} / k T} @$ edge of dep region; maj$/ m i n$ $n_{p}=n_{p 0}+\Delta n_{p}(x) \quad p_{n}=p_{n 0}+\Delta p_{n}(x)$
Drift doesn't change with V b/c low numbers
Forward bias = more minority @ dep edge
Reverse bias = black hole @ dep edge
$\frac{\partial \Delta n_{p}}{\partial t}=D_{N} \frac{\partial^{2} \Delta n_{p}}{\partial x^{2}}-\frac{\Delta n_{p}}{\tau_{n}}+G_{L}$ assume $\mathrm{E}=0$
$\frac{\partial \Delta p_{n}}{\partial t}=D_{P} \frac{\partial^{2} \Delta p_{n}}{\partial x^{2}}-\frac{\Delta p_{n}}{\tau_{p}}+G_{L} \quad L_{p}=\sqrt{D_{p} \tau_{p}}$
Steady State: $\frac{\partial \Delta p_{n}}{\partial t} \rightarrow 0$
No gradient/diff current: $\quad D_{P} \frac{\partial^{2} \Delta p_{n}}{\partial x^{2}} \rightarrow 0$
No thermal R-G: $\frac{\Delta p_{n}}{\tau_{p}} \rightarrow 0 \quad$ No light: $\quad G_{L} \rightarrow 0$
Diode Saturation Currents:

$$
I_{0}=\operatorname{Aqn}_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{d}}+\frac{D_{n}}{L_{n} N_{a}}\right) \quad I=I_{0}\left(e^{q V / k T}-1\right)
$$

IV curve shifts left @ high T b/c more diffusion Charge storage: $I=Q / \tau_{s}$ charge/carrier lifetime Capacitance: $C=\tau_{s} G$ Conductance: $G=\frac{I_{D C} q}{k T}$

## PIN Junctions

Only e/h generated in dep reg contribute to current
Only light absorbed in dep reg is useful. Avalanches.

## MS Junctions

lightly doped rectifying, heavily doped ohmic Ideal assumptions: intimate contact, no oxide/charge Not ideal: interface pinned Ef 0.4-0.9 eV below Ec $\Phi_{B N}=\Phi_{M}-X$ Barrier height; work(metal) - EA
$\Phi_{B N}=q V_{b i}+\left[\frac{1}{2} E_{G}-\left(E_{F S}-E_{i}\right)_{F B}\right]$ barrier height
$\Phi_{B P}=X+E_{G}-\Phi_{M}$ holes' barrier
$V_{b i}=\Phi_{M}-\Phi_{S}=\Phi_{B}-\left(E_{C}-E_{F}\right)$ built-in potential
$W=\sqrt{\frac{2 \epsilon_{s}\left(V_{b i}-V_{A}\right)}{q N_{D}}}=\sqrt{\frac{2 \epsilon_{s}\left(V_{b i}+V_{A}\right)}{q N_{A}}}$

