DEPARTMENT OF ELECTRICAL \& COMPUTER ENGINEERING ROY G. PERRY COLLEGE OF ENGINEERING PRAIRIE VIEW A\&M UNIVERSITY MICROELECTRONICS - SPRING 2021
 PRELIMINARY EXAMINATION
 THURSDAY, JANUARY 14, 2021

READ THIS CAREFULLY AND SIGN BELOW

I declare truthfully that the work I am presenting here is my own, and that I have not conducted myself in any manner unethical. I have not copied from anyone nor have I let anyone copy from me. I am aware of the ethical requirements of my profession and I firmly believe in practicing and implementing them.

Name:

Signature:

Note: This examination will be conducted in two parts:

1. Online synchronous - you can work out the questions at your own location and send your workout by e-mail to Dr. Rick Wilkins: rłwilkins@pvamu.edu.
2. Video Chat: On Wednesday, January 20, 2021, you will be asked to participate in a Zoom session with a professor. You will be asked to explain how you solved the problems on the examination. This session may last upto thirty minutes.

Your grade on the examination will be determined based on these two parts.

All the best.

PROBLEM 1 (5 POINTS)

Examine carefully the schematic of the energy band picture of a bipolar junction transistor ($p-n-p$ or $n-p-n$), which can be seen as two p-n junctions put together back-to-back. Label each part approrpriately (p or n). Show the depletion region, the depletion width and the built in potential. Is each part equally doped? If not, show which part is more doped than the other.

PROBLEM 2 (15 POINTS)

Find the equilibrium electron and hole concentrations, and the location of the Fermi level for germanium at 300K if the germanium contains the following concentrations of shallow dopant atoms:
(a) $5 \times 10^{16} \mathrm{~cm}^{-3}$ phosphorus atoms.
(b) $10^{18} \mathrm{~cm}^{-3}$ boron atoms and $5 \times 10^{17} \mathrm{~cm}^{-3}$ phosphorus atoms.
(c) Calculate the resistivity for these two samples.

PROBLEM 3 (5 POINTS)

Consider a circuit with a Si p-n diode in series with a resistance of $1 \mathrm{~K} \Omega$. A forward potential of 10 V is applied. I argue that the current through the diode should be, by Ohm's Law,

$$
I_{D}=\frac{10 \mathrm{~V}}{1 \mathrm{~K} \Omega}=10 \mathrm{~mA}
$$

My colleague claims that the correct answer should be 9.3 mA . Who do you agree with? Justify your response.

PROBLEM 4 (10 POINTS)

Silicon atoms, at a concentration of $10^{10} \mathrm{~cm}^{-3}$, are added to gallium arsenide. Assume that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the concentration added replace gallium atoms and 95 percent replace arsenic atoms. Let $T=300$ K. Determine the donor and acceptor concentrations.

PROBLEM 5 (15 points)

Examine the MOS-Capacitor band diagram below, under various biasing condictions. Label the M, O, S parts on the diagrams. Is the semiconductor p-type or n-type? Explain. Show the types of charge carrier - electrons and holes - in each biasing mode in the bulk and at the interface.

Problem 6. (10 points) Assuming that the voltage across a forward-biased conducting diode is 0.7 volts, and
(a) If $V_{I}=10.0 \mathrm{~V}$, find v_{0}

$v_{0}=$ \qquad
(b) If $V_{I}=-8.0 \mathrm{~V}$, find v_{0}
$v_{0}=$ \qquad

Problem 7. (15 points) Assuming that the op amp is ideal, $\mathrm{V}_{\text {in }}=1.0 \mathrm{mV}$, and $\mathrm{R}_{\mathrm{A}}=10$ $K \Omega$, find i_{1}, i_{2}, and $V_{o} . \quad($ Hint: Vin $=V 1-V 2)$

$$
\mathrm{i}_{1}=
$$

$$
\mathrm{i}_{2}=
$$

\qquad

$$
\mathrm{V}_{0}=
$$

\qquad

Problem 8. (25 points) For the common-source amplifier shown below, $g_{m}=50 \mathrm{~mA} / \mathrm{V}$, $r_{d s}=50 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{sig}}=0.1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 1}=10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{G} 2}=10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{S}}=500 \Omega, \mathrm{R}_{\mathrm{D}}=8 \mathrm{~K} \Omega$, and output resistor $\mathrm{R}_{\mathrm{L}}=8 \mathrm{~K} \Omega$. Assume that the coupling and bypass capacitors are very, very large.

(a) Draw the small signal equivalent circuit
(b) Determine the voltage gain, $\frac{V_{0}}{V_{S}}$ at midband frequencies.
\qquad

APPENDIX A
BANDGAP MOBILITY TABLE

	Bandgap (eV)		Mobility at 300 K $\left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right)$	
Semiconductor	300 K	0 K	Elec.	Holes
C	5.47	5.48	1800	1200
GaN	3.4	3.5	1400	350
Ge	0.66	0.74	3900	1900
Si	1.12	1.17	1500	450
$\alpha-\mathrm{SiC}$	3.00	3.30	400	50
GaSb	0.72	0.81	5000	850
GaAs	1.42	1.52	8500	400
GaP	2.26	2.34	110	75
InSb	0.17	0.23	80000	1250
InAs	0.36	0.42	33000	460
InP	1.35	1.42	4600	150
CdTe	1.48	1.61	1050	100
PbTe	0.31	0.19	6000	4000
$\mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As}$	0.8	0.88	11000	400

Intrinsic Carrier Concentrations

Germanium Silicon
Gallium Arsenide

300 K	2.02×10^{13}	8.72×10^{9}	2.03×10^{6}
400 K	1.38×10^{15}	4.52×10^{12}	5.98×10^{9}
500 K	1.91×10^{16}	2.16×10^{14}	7.98×10^{11}
600 K	1.18×10^{17}	3.07×10^{15}	2.22×10^{13}

APPENDIX B - USEFUL INFORMATION

$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$.	$\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{m}_{\mathrm{n}}=\mathrm{m}_{\mathrm{p}}=9.1 \times 10^{-31} \mathrm{~kg}$	$n p=n_{i}^{2}$
$\begin{aligned} & n=n_{i} e^{\left(E_{f}-E_{i}\right) / k T} \\ & p=n_{i} e^{\left(E_{i}-E_{f}\right) / k T} \end{aligned}$	$n_{i}=\sqrt{N_{c} N_{v}} e^{-\frac{E_{g}}{2 k_{B} T}}$
$N_{V}=2\left(\frac{m_{p} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}$	$\begin{aligned} n & =\frac{N_{D}-N_{A}}{2}+\left[\left(\frac{N_{D}-N_{A}}{2}\right)^{2}+n_{i}^{2}\right]^{1 / 2} \\ p & =\frac{N_{A}-N_{D}}{2}+\left[\left(\frac{N_{A}-N_{D}}{2}\right)^{2}+n_{i}^{2}\right]^{1 / 2} \\ & =\frac{n_{i}^{2}}{n} \end{aligned}$
$n=N_{C} e^{\left(\varepsilon_{F}-\varepsilon_{c}\right) / k_{B} T}$	$E=h f=\frac{h c}{\lambda}$
$D=\frac{k_{B} T}{q} \mu$	

Property	$\mathbf{S i}$	GaAs	Ge
Bandgap Energy	1.12	1.42	0.66
Dielectric Constant	11.7	13.1	16.0
Effective density of states in conduction band $N_{c}\left(\mathrm{~cm}^{-3}\right)$	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band $N_{v}\left(\mathrm{~cm}^{-3}\right)$	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concertration $n_{i}\left(\mathrm{~cm}^{-3}\right)$	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility Electron Hole	1350		
480	8500		
400	3900		
1900			

