Digital Design Preliminary Exam (Fall 2019)

Problem 1	20 points
Problem 2	20 points
Problem 3	15 points
Problem 4	15 points
Problem 5	15 points
Problem 6	15 points
Total	100 points

Name and Student ID: \qquad
Name (Print Please) Student ID

No Calculators allowed.

Problem 1

a) Simplify the following function f indicated by the truth table:

minterm	\mathbf{w}	\mathbf{x}	\mathbf{y}	\mathbf{z}	f(output)
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
2	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
4	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
5	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
6	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
7	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
8	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
9	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
10	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
11	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
12	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
13	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
14	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
15	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Problem 1 Cont'd

b) Draw the circuit at the gate level for the simplified function.

Problem 2

Design a sequential counter which counts the following sequence in the order listed: $(0,1,2,3,4,5,6,0)$. The sequence starts at zero and ends at zero. Implement with a T-flip flop or D-flip flop. Specific the flip flop you will use.
Note: Unused states are don't care conditions.
a. Illustrate the State Table
b. Illustrate the State Diagram
c. Draw the Sequential Circuit

Problem 3

Implement the following functions using a) Programmable Logic Array (PLA) and b) Programmable Array Logic (PAL). Illustrate the Programming Tables.

$$
\begin{aligned}
& \mathrm{F} 1=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \\
& \mathrm{F} 2=\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{CD}
\end{aligned}
$$

Problem 4

Design a multiplexer to implement the following function. Use an 8 to1 or 4 to 1 implementation: Draw the multiplexer in block form.
$F(w, x, y)=w^{\prime} x^{\prime} y^{\prime}+w^{\prime} x^{\prime} y+w x y+w x y$,

Problem 5

a. What is the difference between a sequential circuit and an asynchronous circuit? Give an example of both with drawings.
b. Illustrate the timing diagram of a 3 bit sequential counter that counts from 0 to 7 and is positively edge-triggered.

Problem 6

a. Explain the difference between RAM and ROM. You may do so using block diagrams.
b. Name 2 types of ROM memory.
c. How many bits (inputs) to a ROM circuit must exist if there are 256 addresses (outputs)?

