Digital Design Preliminary Exam (Fall 2019)

Problem 1	20 points				
Problem 2	20 points				
Problem 3	15 points				
Problem 4	15 points				
Problem 5	15 points				
Problem 6	15 points				
Total	100 points				
Name and Student ID: Name (Print Please) Student ID					

No Calculators allowed.

a) Simplify the following function f indicated by the truth table:

minterm	w	х	у	Z	f(output)
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

Problem 1 Cont'd

b) Draw the circuit at the gate level for the simplified function.

Design a sequential counter which counts the following sequence in the order listed: (0,1,2,3,4,5,6,0). The sequence starts at zero and ends at zero. Implement with a T-flip flop or D-flip flop. Specific the flip flop you will use.

Note: Unused states are don't care conditions.

- a. Illustrate the State Table
- b. Illustrate the State Diagram
- c. Draw the Sequential Circuit

Implement the following functions using a) Programmable Logic Array (PLA) and b) Programmable Array Logic (PAL). Illustrate the Programming Tables.

$$F1 = ABC + A'BC + A'B'C'$$

$$F2 = AB' + A'CD$$

Design a multiplexer to implement the following function. Use an 8 to 1 or 4 to 1 implementation: Draw the multiplexer in block form.

$$F(w,x,y) = w'x'y' + w'x'y + wxy + wxy'$$

a. What is the difference between a sequential circuit and an asynchronous circuit? Give an example of both with drawings.

b. Illustrate the timing diagram of a 3 bit sequential counter that counts from 0 to 7 and is positively edge-triggered.

a.	Explain the difference between RAM and ROM.	You may do so using block diagrams.
b.	Name 2 types of ROM memory.	
c.	How many bits (inputs) to a ROM circuit must ex	xist if there are 256 addresses (outputs)?