PRAIRIE VIEW A&M UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING PhD PRELIMINARY EXAMS - MICROELECTRONICS FALL 2015 | Name: | | | | |----------------|--|-----------------|---| | | The following four band oxtrinsic and compensated. Write | | fferent doping configurations of a appropriate description. | | | | | | | E _F | _ | | | | E _H | E | E _{Fi} | E _F = E _{F1} | | | | | | | Ans: | Ans: | Ans: | Ans: | **Problem 2 (12 points)** Consider the following figure. Shown are the concentrations of holes and electrons on either side. Indicate the correct <u>directions</u> (+x or -x) of transport for each question below. - (a) hole diffusion? - (b) electron diffusion? - (c) hole current? - (d) electron current? **Problem 3 (16 points)** A Si step p-n junction has a doping of $N_a = 5 \times 10^{15}$ cm⁻³, $N_d = 10^{15}$ cm⁻³ and a cross-sectional area (A) of 10^{-4} cm². The intrinsic carrier concentration n_i is 1.5×10^{10} cm⁻³ and the temperature is 300K. (a) Compute Vbi: (b) Compute x_n and x_p (c) Hence compute the total depletion width $W = x_n + x_p$. (d) What is the total positive ion charge? (e) Which of the following statements is true for this junction? Why? (i) $$x_n = x_D$$ (ii) $$x_n = 5 x_p$$ (iii) $$x_n = 0.2 x_D$$ $$\begin{split} \not A &= V_t \ln \frac{N_d \, N_a}{n_i^2} & \qquad \qquad x_n = \sqrt{\frac{2 \, \varepsilon_s}{q} \, \frac{N_a}{N_d} \, \frac{1}{N_a + N_d}} (\not A - V_a) \\ x_p &= \sqrt{\frac{2 \, \varepsilon_s}{q} \, \frac{N_d}{N_a} \, \frac{1}{N_a + N_d}} (\not A - V_a) \end{split}$$ **Problem 4 (10 points)** Shown are four stages of a MOS capacitor for four different operating values of the gate voltage and the drain voltage. In the order the stages occur – accumulation, flat band, inversion and strong inversion – label the four figures appropriately. In particular, show the signs and relative magnitudes of voltages. **Problem 5 (8 points)** 1. For diode shown in the figure below, assuming that the voltage across a forward-biased conducting diode is 0.7 volts, Find the voltage V and I | X7 | | |-----|-----| | V = | I = | | | | **Problem 6 (12 points)** The terminal voltages of various npn transistors were measured during operation of their respective circuits with the following results. Calculate the voltages V_{BE} and V_{BC} and indicate the mode of operation of the transistor. | Case | Emitter
Voltage
(V) | Base
Voltage
(V) | Collector
Voltage
(V) | Voltage
V _{BE} | Voltage
V _{BC} | Mode (indicate the mode of operation) | |------|---------------------------|------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------------| | 11 | 2.4 | 2.1 | 2.3 | | | | | 2 | 3.3 | 4.0 | 5 | | | | | 3 | 2.3 | 3.0 | 2.4 | | | | **Problem 8.** (14 points) For the common-emitter amplifier shown below, V_{CC} is unknown, R_1 = 60 $K\Omega$, R_2 = 30 $K\Omega$, R_E = 2.0 $K\Omega$, R_C = 5.0 $K\Omega$, R_{sig} = 0.5 $K\Omega$, and R_L = 5 $K\Omega$. The transistor β is 100, r_O is almost infinite and r_π = 1.5 $K\Omega$. (a) Draw the small-signal equivalent circuit Draw the small signal equivalent circuit here. (b) Find the input resistance, R_{in} , (c) Determine voltage gain, $\frac{v_o}{v_{sig}}$.