
PRAIRIE VIEW A&M UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING PhD PRELIMINARY EXAMS - MICROELECTRONICS FALL 2015

Name:			
	The following four band oxtrinsic and compensated. Write		fferent doping configurations of a appropriate description.
E _F	_		
E _H	E	E _{Fi}	E _F = E _{F1}
Ans:	Ans:	Ans:	Ans:

Problem 2 (12 points) Consider the following figure. Shown are the concentrations of holes and electrons on either side. Indicate the correct <u>directions</u> (+x or -x) of transport for each question below.

- (a) hole diffusion?
- (b) electron diffusion?
- (c) hole current?
- (d) electron current?

Problem 3 (16 points) A Si step p-n junction has a doping of $N_a = 5 \times 10^{15}$ cm⁻³, $N_d = 10^{15}$ cm⁻³ and a cross-sectional area (A) of 10^{-4} cm². The intrinsic carrier concentration n_i is 1.5×10^{10} cm⁻³ and the temperature is 300K.

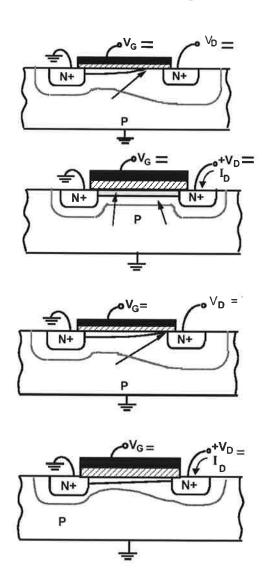
(a) Compute Vbi:

(b) Compute x_n and x_p

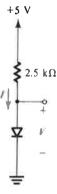
(c) Hence compute the total depletion width $W = x_n + x_p$.

(d) What is the total positive ion charge?

(e) Which of the following statements is true for this junction? Why?


(i)
$$x_n = x_D$$

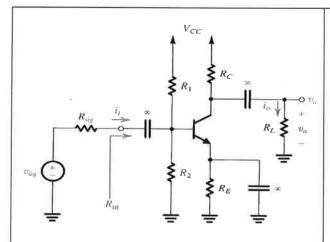
(ii)
$$x_n = 5 x_p$$


(iii)
$$x_n = 0.2 x_D$$

$$\begin{split} \not A &= V_t \ln \frac{N_d \, N_a}{n_i^2} & \qquad \qquad x_n = \sqrt{\frac{2 \, \varepsilon_s}{q} \, \frac{N_a}{N_d} \, \frac{1}{N_a + N_d}} (\not A - V_a) \\ x_p &= \sqrt{\frac{2 \, \varepsilon_s}{q} \, \frac{N_d}{N_a} \, \frac{1}{N_a + N_d}} (\not A - V_a) \end{split}$$

Problem 4 (10 points) Shown are four stages of a MOS capacitor for four different operating values of the gate voltage and the drain voltage. In the order the stages occur – accumulation, flat band, inversion and strong inversion – label the four figures appropriately. In particular, show the signs and relative magnitudes of voltages.

Problem 5 (8 points) 1. For diode shown in the figure below, assuming that the voltage across a forward-biased conducting diode is 0.7 volts, Find the voltage V and I


X7	
V =	I =

Problem 6 (12 points) The terminal voltages of various npn transistors were measured during operation of their respective circuits with the following results. Calculate the voltages V_{BE} and V_{BC} and indicate the mode of operation of the transistor.

Case	Emitter Voltage (V)	Base Voltage (V)	Collector Voltage (V)	Voltage V _{BE}	Voltage V _{BC}	Mode (indicate the mode of operation)
11	2.4	2.1	2.3			
2	3.3	4.0	5			
3	2.3	3.0	2.4			

Problem 8. (14 points) For the common-emitter amplifier shown below, V_{CC} is unknown, R_1 = 60 $K\Omega$, R_2 = 30 $K\Omega$, R_E = 2.0 $K\Omega$, R_C = 5.0 $K\Omega$, R_{sig} = 0.5 $K\Omega$, and R_L = 5 $K\Omega$. The transistor β is 100, r_O is almost infinite and r_π = 1.5 $K\Omega$.

(a) Draw the small-signal equivalent circuit

Draw the small signal equivalent circuit here.

(b) Find the input resistance, R_{in} ,

(c) Determine voltage gain, $\frac{v_o}{v_{sig}}$.