Controlling Feed Costs and Meeting Animal Needs

Bruce B. Carpenter, PhD Professor and Extension Livestock Specialist

Questions Ranchers Have

- WHAT NUTRIENTS ARE NEEDED?
- HOW MUCH SUPPLEMENT SHOULD I FEED?
a HOW OFTEN SHOULD I FEED?
- WHEN SHOULD FEEDING START AND STOP?

Biological Use of Nutrients

Maintenance

Growth

Lactation

Reproduction

The Big Picture (risk mgt)

\square Moderate stocking allows you to keep a "nucleus herd" together

The Big Picture: Energy roughage is the main source of dietary energy

Daily DM requirements 2.5 to 3.5% of body wt

Grazing Management:

Residue and forage production

(") = Inches of precipitation

from Hanselka et al. 2001

How Much Forage Do You Have ?

 (native range, management of improved forages will differ)- "Educated Guess" ???
- Experience is important
- Forage Survey by clip and weigh method
- By season
- By range site
- By "grazable acres"
- Clip forage, dry forage, weigh dry matter
- Forage Survey by estimate
- By Season
- By range site
- By "grazable acres"
https://agrilifeextension.tamu.edu/library/ranching/photo-guide-to-forage-supplies-on-texas-rangelands/

2649 lb / ac

1220 lb / ac

196 lb / ac

How Much Grass Do I Have? How Long Will It Last?

$250 \mathrm{lb} / \mathrm{ac} \times$ Number of grazable acres
$25 \mathrm{lb} /$ day consumption X number of head

Number of days grazing 150

Grazing Management:
 Optimal amounts (lb/ac) of forage residue

Desert	Short-grass	Mid-grass	Tall-grass
250	$300-500$	$750-1000$	$1200-1500$

*leave higher amounts ungrazed for improvement or if droughts are frequent

MANAGE AND FEED ACCORDING TO NUTRIENT REQUIREMENTS

Growing:
CP . 5 kg / day
TDN 3.8 lbs / day

Lactating two year-old:
CP $0.9 \mathrm{~kg} /$ day
TDN 5.5 kg / day

Mature, non-lactating:
CP 0.45 kg / day
TND $4.18 \mathrm{~kg} / \mathrm{day}$

Mature, lactating:
CP $0.95 \mathrm{~kg} /$ day TDN 5.6 kg /day

More Milk Production Means:

- More Forage Must Be Produced and Fed
- Higher Quality Forage Must Be Produced
- Extra Supplements Must Be Fed

"AVERAGE" COW SIZE: 1300 LB, UP 300 LB IN 30 YRS.

The Nutrients:

- Water $80-90 \%$ of a cell's weight
- Protein: "the building blocks of the body"
- amino acids
- Energy: "the ability to do work"
- Cellulose, starch, fats
- Vitamins:
- catalyze chem reactions
- Immune response
- Minerals:
- catalyze chem reactions
- Immune response
- Structural, bone etc.

Guiding Principal of Ruminant Nutrition

- You are not feeding livestock
\square You are feeding rumen microbes, they feed the animal

\square Protein

- Microbial (degradable) from digestion of rumen microbes in small intestine.
-This is the primary source of protein
- Bypass from digestion of true protein in the small intestine
\square Carbohydrates
- Cellulose, Starch, Plant Sugars
- Cellulose is the primary source

Glucose, feeds microbes

VFAs absorbed from blood

Protein "rules of thumb"

$\square 7$ \% CP Diet Required, Just for Rumen Function

- About 12\% CP Diet Required for Lactation
- Requirements Affected By:
- Age, Production Status, Breed

Protein and Poor Quality Forage

$\square 450$ lb heifers fed 4.2\% CP hay for 138 days (Univ. Nebraska)

	No Supp	CSM 1.25 lb	Corn 1.25 lb
Hay intake	8.9 lb	12.5 lb	8.9 lb
ADG	- (0.82) lb	0.25 lb	- (0.66) lb

60-70\% degradable protein will maximize forage intake

Use of NPN

(non-protein Nitrogen, urea, biuret)

- Depends of Forage
- Yes: forage plentiful but slightly protein deficient
- Yes: Low animal protein requirements (i.e. non lactating, mature females
- No: Forage limited and/or high animal requirements (i.e. growing or lactating)
\square NPN is $1 / 2$ as effective as natural protein
- i.e a 30\% CP supplement, 15 units NPN, 15 units natural protein
- 22\% usable protein

How do you know if nutrient requirements are being met?

- Body Condition Scoring
-1-9 scale cattle, visual
\square Forage Sampling
- Hay Sampling
- Fecal Sampling (NIRS / NUTBAL)
-http://cnrit.tamu.edu/ganlab/
Examine fecal material

Forage / Hay Testing Laboratories

Dairy One Forage Lab
Ithaca, NY; 800-344-2697
http://www.dairyone.com
Servi-Tech Laboratories
Amarillo, TX; Dodge City, KS; Hastings, NE 800-557-7509 http://www.servitechlabs.com
> wet chemistry will always work
> NIR can be used if lab has forage specific database

Determining Hay Quality

sample each cutting
TDN (i.e. energy)

- summative equations
- NDF, ash, CP
- NDF digestibility
- cattle, horses, etc.

Crude Protein approx. cost \$50

BCS 1

BCS 2

BCS 3

BCS 4

BCS 5

BCS 6

BCS 7

BCS 8

BCS 9

Effect of Body Condition at Calving on Percent Rebred in Beef Cows

BCS at Calving
Herd and Sprott, 1986
Percent Pregnant
Cows in lower BCS are less likely to rebreed.

Number of Prior Pregnancies X BCS Affects Present Pregnancy Rate

 (n=3734 Florida Cows)

Pregnancy Number

48 Hour Calf Removal

Is there a problem here ?

Daily Protein Intake Required to Correct a Protein Deficiency

Percent
Protein in
Supplement
0.2
0.4
0.8

Protein Deficiency (lbs / day)

16	1.25	2.5	5.0
20	1.0	2.0	4.0
32	0.63	1.25	2.5
38	0.53	1.05	2.10

Strategies or Controlling Feed Costs

- feeding losses can range from 2 to 60\%
- restrict access to hay through the use of a ring, wagon, or other method
- move feeding location around if possible
- prevents mud buildup
- spreads manure

- if unrolling hay only feed enough for 1 d
- require cattle to clean hay up before feeding more

Frequency of Feeding High Energy Supplements vs. Cotton Seed Cake (Wallace and Parker, NMSU)

	Grain Cube $9.4 \% ~ C P ~$		CS Cake $41 \% \mathrm{CP}$
Feedings / week	Twice	Daily	Twice
DM / feeding	6.4 lb	1.83 lb	7.0 lb
TDN / feeding ${ }^{1}$	5.32 lb	1.52 lb	5.32 lb
ADG	-0.03 lb	0.14 lb	0.51 lb
Preg Rate	68%	94%	100%
Cost / head ${ }^{2}$	$\$ 22.84$	$\$ 22.84$	$\$ 35.88$

${ }^{1}$ Based on TDN values of 83% grain cube, 76% CS cube
2Based on cost of gain cubes @ \$160 / ton and CS cake @ \$230 / ton
Preg Rate higher with daily vs. $2 x$ / week feeding of grain cubes
Weight Gain and Preg Rate higher with CS cake @ \$36 / head

CONTROLLING FEED COSTS

 Frequency of Feeding High Protein Supplements (Wallace and Parker, NMSU,| Trial 1, 130 d | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Times Fed | $1 / \mathrm{WK}$
 $(\mathrm{n}=43)$ | $3 / \mathrm{WK}$
 $(\mathrm{n}=40)$ | $1 / \mathrm{WK}$
 $(\mathrm{n}=27)$ | $3 / \mathrm{WK}$
 $(\mathrm{n}=18)$ |
| Amt per
 Feeding | 6.9 lb | 2.3 lb | 10.5 lb | 3.5 lb |
| ADG | 0.5 lb | 0.47 lb | 0.34 lb | 0.37 lb |
| Preg Rate | 93% | 90% | 89% | 89% |
| Cost per
 Head | $\$ 14.10$
 $(\$ 27.50)$ | $\$ 14.10$
 $(\$ 27.50)$ | $\$ 24.09$
 $(\$ 50)$ | $\$ 24.09$
 $(\$ 50)$ |

Based on cost of CS cake @ \$220 per ton, 1885-86
Adj for feed cost, 2014 @ 432 per ton
Feeding once per week reduced labor and transportation costs by 60\%

CONTROLLING FEED COSTS Read Feed Tags

- A Feed Tag Must Have:
- \%Crude protein, \%Crude fat, \% Crude fiber, NPN
- Ether Extract Includes:
fats, oils, fat sol. vitamins, NPN
- Crude Fiber Includes:
- Cellulose, Hemicellulose, Lignin

Maximum CF as Guaranteed
 TDN

4	79
6	76
8	73
10	70
14	64
18	58
22	52
24	49

Minerals

\square What is a good mineral program?

Minerals

- Salt
- Don't put out salt blocks with salted mineral mixes
- Phosphorous: Calcium
- Females
- Traditioal recommendation: Ratio 1:1
- Very important for reproductive function
- Magnesium
- Small grains, lactating females
- Bioavailability
- organic sources (chelates) > hydroxyl, > chlorides > sulfates >
 carbonates > oxides.

Mineral Consumption Affected By:

- Minerals in Water
- Forage Mineral Content
- Forage Availability
- Production Status of the Cow
- Palatability
- Location of Mineral Feeders

12:12 mineral is $\$ 1000$ / ton

- How can we cheapen that up ???
- Use a 6:12 mix (12:12 may not be as important as we once thought, probably eat more)
- The big problem with 12:12 minerals is consumption. General rule- the higher the P level in the supplement, the lower and more erratic the consumption will be.

$12: 12$ mineral is $\$ 1000$ / ton (Cont)

- Compare price based on targeted consumption - 40z, 3oz, 2oz, 10z, / hd / day
- Measure consumption
- Remember to account for other sources of P : forage, cubes, etc.
- Don't put out salt/mineral mix AND salt
- Don't put out mineral when grass is green ??
- Forage Testing for P

Vitamins

Symptoms of Vitamin A Deficiency

\square Weak, blind or dead calves at birth

- Retained placenta
- Cows come into heat, but fail to become pregnant
- Decreased sexual activity in bulls
- Decreased sperm quality
\longmapsto Vitamin A stored in liver for 4 months

Situation One (adapted McCollum)

- Forage availability is not limiting. CP quality low.
- Forage consumption is low, due to low CP
- Stratiegy: Feed Small amout of supplemental protein
- Supplement Type:
- > 30\% CP, mostly natural, at least 60-65\% degradable. Some NPN okay
- Feeding Rate:
- 0.1 to 0.3% of BW / day. Once to 3 times per week
- Efficiency:
- 1.5 to 3 lbs supplement per lb of weight gain in dry cows $\sqrt{1}$

Is this economical ??

Situation Two

- Forage availability may or may not be limiting
- Quality may or may not be limiting
- Objective: Improve performance by supplying extra nutrients without depressing forage intake
- Strategy: Maintain or increase forage intake, but also provide extra energy
- Supplement:
- 20-30\% CP. Very limited NPN
- Increase energy with Digestable Fiber

1 Wheat Mids, Corn Gluten, Soybean Hulls, Citrus Pulp

- As cubes these will be the $15-20 \%$ fiber but $50 \%+$ TDN cubes
- Feed daily to 3 times per week
- Efficiency:
- 5 to 10 lbs of supplement per lb gain in dry cow
 Is this economical ?? If at all only in the short-term. Allows higher stock densities

Situation Three

- Forage availibility is adequate but will be limiting in the future
- Objective: Maintain current level of production, but extend the forage supply into the future
- Stratiegy: Feed a supplement that will depress forage intake, but maintain energy intake
- Supplement Type:
- 10-18\% CP with grain and grain byproducts
- Feed daiy
- Efficiency:
- $10+\mathrm{lbs}$ of supplement per pound of weight gain in growing cattle

Calculating Feed Value

- 20\% CP, 9\%CF, \$360 / ton
- 90 cents per lb of CP : $2000 \mathrm{lb} \times 20 \% \mathrm{CP}=400 \mathrm{lb}$ protein. $\$ 360$ (ton) / $400=\$ 0.90 / \mathrm{lb}$ CP
- 25 cents per lb of TDN $2000 \mathrm{lb} \times 71.5 \%$ TDN = 1430 lb TDN. $\$ 360$ (ton) / $1430=\$ 0.25 / \mathrm{lb}$ TDN
- 32\% cube, 12% CF, $\$ 428$ / ton
- 67 cents per lb of CP : $2000 \mathrm{lb} \times 32 \% \mathrm{CP}=640 \mathrm{lb}$ protein. $\$ 428$ (ton) $/ 640=\$ 0.67 / \mathrm{lb} \mathrm{CP}$
- 27 cents per lb of TDN: $2000 \mathrm{lb} \times 67 \%$ TDN = 1340 lb TDN. $\$ 360$ (ton) / 1220 = \$0.27 / lb TDN
- 38 \% cube, 13% CF, $\$ 432$ / ton
- 57 cents per lb of CP: $2000 \mathrm{lb} \times 38 \%=760 \mathrm{lb}$ protien. $\$ 432$ (ton) / 760 = \$0.57 / lb CP
- 33 cents per lb of TDN: $2000 \mathrm{lb} \times 65.5 \%$ TDN= 1310 lb TDN. $\$ 432$ (ton) $/ 1310=\$ 0.33 /$ lb TDN

Summary

- Manage forage quantity to reduce supplemental energy feed costs
- Use the right kind of supplemental protein to maximize forage intake
- Is my program working ?
- BCS, cow pies, NUTBAL, forage / hay analysis
- Saving feed dollars
- Have grass
- reduce the need for energy supplements
- Allow less frequent feeding
- Allows some NPN in right situation
- Feed during mid-day
- Hay Management
- Read / know feed tags
- Choose the right \& least-cost supplement for the job. i.e. know how to calculate feed value
- Feed the right amount of supplement
- Know when to start and stop feeding
- Measure mineral consumption
- Breeding season matches the rainy season

