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Abstract 
 
The present study is intended to demonstrate that for a descriptor system with matrix pencil 

 there exists a matrix  such that matrix  and matrix pencil  have the same 
positive and negative eigenvalues. It is also shown that matrix  can be calculated as a contour 
integral. On the other hand, different representations for matrix  are introduced. 
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1.  Introduction 
 
Matrix pencils appear in the process of analyzing descriptor systems 
 

.                                                                                                     (1) 

 
where C, G , , , L , D . It is generally known that 
the stability properties of system (1) can be characterized in terms of the eigenvalues of 
pencil   and that the controllability and observability properties of system (1) depend on 
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the rank of matrix pencils and   , respectively. See Cobb (1984), Mehrmann 
and Stykel (2005) and Yip and Sincovec (1981). Note that the eigenvalues of  may be ill-
conditioned in the sense that they may change largely even for small perturbations in C and G. 
On the other hand, there are different methods for various types of eigenvalues problems, see 
Mehrmann and Voss (2005) and Van den Eshof (2002). For a historical background of 
eigenproblems, one can refer to Ciarlet (2001).  
     
First, some basic concepts that are later needed for the purposes of the present paper are to be 
introduced. Matrix  is called a matrix pencil where ,  and . Matrix pencil 
is also shown by matrix pair ( . Pencil (  is called regular if there exists a  such 
that d ; otherwise, it is called singular. Descriptor system (1) is called regular if 
pencil (  is regular. The analyses in this paper are based on regular descriptor systems. 
Eigenvalues of matrix pencil (  are defined to be the roots of characteristic polynomial 

.  is the set of eigenvalues of pencil . Value  is called a 
finite eigenvalue of  , if . If matrix  is singular, then   is said to 
have an eigenvalue at infinity. Two matrix pencils of  and  are called equivalent if 
there exist nonsingular matrices T and S such that . Let  be a 
regular pencil with . There exist two nonsingular matrices T and S  such that  
 

 ,     ,                                                                      (2) 

 
where matrices  and are in Jordan canonical form and matrix is a nilpotent matrix; that is, 
there exists an integer  such that  but .                                                                                        
 
The representation  of pencil  is called Weierstrass canonical normal form. See 
Dai (1989).The inertia of a regular pencil  is defined by a quadruple of integers 
 

, 
 
where  are the numbers of eigenvalues with negative, positive 
and zero real parts, respectively and where  is the number of infinite eigenvalues 
of . 
 
 
2.  Reduction Generalized Eigenvalue and Inertia Problem to Standard Form 
  
Theorem1. There exists a matrix  such that  
 

                     . 
 
 
Proof: 
 
Assume that matrix pencil  is in canonical form , 
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 ,        , 

 
where matrices  and  are in Jordan canonical form and matrix  is a nilpotent matrix; then we 
define the matrix as 
 

. 
 
Therefore, 

 

 
 
Thus,  

 

. 
 

Also, it is generally known that the finite eigenvalues of  are the eigenvalues of matrix  
see Malyshev (1990) and Lewis(1985), so 
  

                      . 
 

In fact, it is hence proved that matrix pencil  and matrix  have the same positive and 
negative eigenvalues. 
 
In the next step, we want to show the relation of  with coefficients of Laurent series of        

 at infinity. It is generally known that Laurent series of  at infinity are in 
the following form 
 

, 
 
where 
 

 
 
and 
 

. 
 
See Lewis (1985). 
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Theorem 2.  Let  be a closed simple curve such that the finite eigenvalues of  lie 
inside , then 
 

. 
 
Proof: 
 
We have 
 

  

 

. 

So, 
 

  

 

                     
 
But,  includes all finite eigenvalues of . Hence, 
 

 
 
and since  is nilpotent, 
 

. 
 
Thus, 
 

. 
                                                                                                                                                    
 
Theorem 3. Let  be a closed simple curve such that the finite eigenvalues of  lie 
inside . Furthermore,  includes origin. Then, 
 

. 
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Proof: 
 
Since  includes origin,  
 

 
 
and 
 

. 
 
Thus, 
 

. 
                                                                                                                                                     
 
So far, a generalized eigenvalue and inertia problem have been reduced to a standard eigenvalue 
and inertia problem by using Weierstrass canonical normal form. Also the coefficients of Laurent 
series of  at infinity have been described as contour integrals. In sequel it will be 
shown that matrix  can be calculated as a contour integral. Then, different representations for 
matrix  will be obtained. 
 
Corollary 1.   is the coefficient of in the Laurent series of  at infinity. 
 
 
Proof: 
 
 
The coefficient of in the Laurent series of  at infinity is equal to                      
 

 . 

 
 
3.  Some Representations for Matrix  
 
In the previous section, matrix  was defined in terms of two matrices . This section attempts 
to find different representations for . One of them is a representation that just depends on 
matrix ; the other describes  in terms of matrix ; and the third representation describes the 
relation between  and the constant term of Laurent series of  at infinity. 
 
 
Lemma1.  There exists a representation for  that just depends on matrix  
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Proof: 
 
We define matrix  as follows: 
 

, 
 
where  is the matrix defined in canonical normal form. We would then have 
 

  

 

   .                                                                                                         (3) 

 
Also, 
 

 
 
and 
 

 
                        = .                                                                                      (4) 
 
By adding relations (3) and (4) 
 

+ , 

 
So, 
 

. 
 
Thus, 
 

   . 

 
But, the last term is equal to  and the proof is then complete.                                                                                 

 
Lemma2. There exists a representation for  that just depends on matrix  
 
 
Proof: 
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The proof is similar to Lemma1. It is sufficient to define 
 

. 
 

It, then, follows that  
 

. 
                                                                                                                                 
Theorem 4. There exists a matrix  such that  
 

,               . 
 
Proof: 
 
Let  be the constant term of Laurent series of  at infinity. 
 

. 
 
According to computations in Theorem 2, 
 

. 
 
So, 
 

. 
 
 
Since  includes the origin  
 

, 
 
and 
 

. 
 
 
Therefore, 
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and 
 

. 
 
But, 
 

. 
 
Hence,  
 

. 
 
Similar computations show that  
  

. 
                                                                                                                                  
Corollary 2. The following equalities hold 
       

= .   
              
 
Proof:  
 
It follows immediately from Lemma 1 and Lemma 2 and Theorem 4.                        
                                                                                              
 
4.  Conclusion 
 
In this paper, a method for the reduction of a generalized eigenvalue and inertia problem to a 
standard eigenvalue and inertia problem is presented. The method is based on the use of 
Weierstrass canonical normal form and matrix . In fact, it is demonstrated that matrix  and 
matrix pencil  have the same positive and negative eigenvalues. Also according to the 
analyses presented, it is stated that matrix  can be described in terms of coefficients of Laurent 
series of  at infinity. As part of this study, other representations for  have also been 
offered. It is to be noted that the regularity of matrix pencil  was the only assumption used 
in this paper and the results are valid even if  and  are singular matrices. 
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