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Abstract 
 
A nonlinear mathematical model for the spread of Japanese Encephalitis, caused by infected 
mosquito feeding on susceptible human population incorporating demographic and 
environmental factors is proposed and analyzed. In the modeling process, it is assumed that the 
growth rates of reservoir animal population and vector mosquito population are enhanced due to 
environmental discharges caused by human population related factors. The model is analyzed by 
stability theory of differential equations and computer simulation. Both the disease-free and the 
endemic equilibria are found and their stability is investigated. It is found that whenever the 
disease-free equilibrium is locally asymptotically stable, the endemic equilibrium does not exist. 
The analysis of the model shows that if the growth rates of reservoir animal population and 
vector mosquito population caused by environmental factors increase, the spread of Japanese 
Encephalitis increases and the disease becomes more endemic due to human immigration. 
Numerical simulations are also carried out to investigate the influence of certain parameters on 
the spread of disease, to support the analytical results and illustrate possible behavioral scenario 
of the model.  
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1.   Introduction 
 
Japanese Encephalitis Virus (JEV) is an arbovirus causing encephalitis and shares a close genetic 
relationship with other encephalitic viruses, including St. Louis encephalitis virus (SLEV), West 
Nile virus (WNV), Murray Valley encephalitis virus (MVEV), Alfuy virus (ALFV) and Kunjun 
virus (KUNV). The disease has been recognized in Japan since the nineteenth century and the 
virus was first isolated and characterized in 1935, Gould (2002). Japanese Encephalitis (JE) has 
since been identified throughout Asia, apparently appearing in India during the middle of the 
twentieth century and finally appearing on the islands of the northeast coast of Australia in the 
mid-1990s.  
 
JEV is the cause of the most important veterinary flavivirus diseases and human epidemic 
encephalitis in the world, Thongcharoen (1989). The virus is transmitted in an enzootic cycle 
among mosquitoes and vertebrate amplifying hosts, chiefly Ardeid (wading) birds and domestic 
pigs, providing a link to humans through their proximity to housing, especially in Asia. Culex 
mosquitoes, primarily Culex tritaeniorhynchus are the principal vectors, Rosen (1986), Sucharit 
et al. (1989). The virus is also able to replicate itself in pigs and birds. This means that pig and 
bird populations, constitute a reservoir of the disease, which may be difficult to eradicate, see 
Burke and Leake (1988).  
 
JEV is passed on by the bite of an infected mosquito that has previously sucked blood from an 
infected animal or person, Gould (2002), Easmon (2005). The risk for acquiring JEV among 
most travelers to Asia is extremely low; however the risk of transmission is higher in rural areas, 
especially where pigs are raised and where rice paddies, marshes and standing pools of water 
provide breeding grounds for mosquitoes and feed for birds, Gould (2002). 
 
In areas where JE is endemic, annual incidence ranges from 1 to 10 per 10,000. Children less 
than 15 years of age are principally affected, CDC (1993). Infection leads to overt (open) 
encephalitis in only 1 of 20 to 1000 cases. Encephalitis usually is severe, resulting in 
neuropsychiatric sequelae in 30% of cases, Okuno (1978), Umenai et al. (1985), Burke and 
Leake (1988), Halstead (1992), CDC (1993). In tropical zones, the virus has an endemic pattern, 
with sporadic cases occurring year round, and because most young adults will have acquired 
immunity the ratio of inapparent to apparent infections may be as high as 300:1. Different strains 
of JEV show wide variations in virulence for humans, which to some extent is reflected in the 
very wide case fatality ratios reported, varying from 5 to 40%. In some rural areas, where 
medical care is not easily available, case fatality rates as high as 70% have been reported. In 
contrast, high quality medical care may result in rates less than 10%, CDC (1993), Gould (2002), 
Easmon (2005).  
 
Most people who are infected show only mild symptoms or no symptoms at all. However, at 
advanced stages, the disease may be fatal. It has an incubation period of 1-2 weeks. The disease 
begins like flu with headache, fever, chills, anorexia, vomiting, dizziness and drowsiness which 
in children is often accompanied by abdominal pain and diarrhea, Gould (2002). Gastrointestinal 
problems including vomiting, as well as confusion and delirium may also be present. In about 1 
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of every 200 cases, the illness progresses to inflammation of the brain, with more than half of 
those cases ending in permanent disability or death. 
 
Although, vaccine against JEV is present but it does not give 100% protection. It is, therefore, no 
alternative to ordinary protection against mosquito bites and in addition to the long term policy 
of immunizing animals that reduces the potential for amplification of the virus in environment. 
Unlike, Japan, China and Taiwan, the disease is still spreading in India. This may be because of 
the high exposure rates of non-immune individuals working outdoors, Gould (2002).  
 
Very few modeling studies so far have been done to understand the transmission dynamics of 
JEV to the best of our knowledge, Mukhopadhyay et al. (1993), Tapaswi et al. (1995). 
Mukhopadhyay et al. (1993) formulated a regression equation model using a third order 
Harmonic Fourier series having a linear trend to simulate the pattern of monthly occurrence of 
Tapaswi et al. (1995) models the spread of JE in human population of varying size from 
reservoir population through a vector population by considering reservoir population of constant 
size. Their study shows that if a certain threshold is exceeded, then there is a unique equilibrium 
with disease present which is locally stable to small perturbations and the global stability 
depends on death rates and the ratio of the equilibrium population sizes of the infected vector and 
total human populations.  
 
We have, however, considered a variable reservoir population having fluctuations due to 
immigration with a constant rate. This population further increases due to unhygienic 
environmental conditions, like discharge of household wastes, open drainage of sewage water, 
manmade water ponds and tanks, ill-ventilated houses, unused tyres, water coolers in the 
reservoir area. The human and vector (mosquito) populations are considered to be varying in 
size. This is because the size of human population is subject to frequent deaths due to fatality of 
the disease and the mosquito population which acts as a transmitter of virus, rapidly changes its 
size due to environmental considerations. We have used similar techniques from previous 
studies, Ghosh et al. (2000, 2004), Hethcote (2000), Hsu and Zee (2004), Singh et al. (2003, 
2005), Bowman et al. (2005), for constructing and analyzing our proposed model. 
 
The objective of our study is to investigate the transmission dynamics of JEV in three-population 
system consisting of human, reservoir and vector populations by considering the effects of 
environmental factors, which are conducive to the growth of reservoir and vector populations.  
 
2.   Mathematical Model 
 
We propose a nonlinear mathematical model to study the spread of Japanese Encephalitis in a 
three-population system consisting of human, reservoir and vector populations by taking into 
account the demographic and environmental factors. The total human population N(t) at time t, 
with constant inflow of susceptibles at the rate A, is divided into two subclasses that is 
susceptibles S(t) and infecteds I(t) with the number of deaths taken to be proportional to the size 
in each class. The human population is considered to be varying in size because of the 
considerable degree of fatality due to the disease. The disease is spread through the direct 
interaction between susceptible humans and infected vectors (mosquitoes) which is modeled 
using bilinear interaction (law of mass action), Ghosh et al. (2004, 2005), Naresh et al. (2008), 
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Singh et al. (2003, 2005). It is known that various kinds of household and other wastes, 
discharged into the environment in residential areas of population, provide a very conducive 
environment for the growth of mosquito population. Thus, unhygienic environmental conditions 
caused by human population become responsible for the spread of the disease. Since the 
mosquito population is subject to rapid change, it is assumed that the mosquito population is 
growing logistically with given intrinsic growth rate and carrying capacity. The growth rate of it 
is further assumed to increase with increase in the cumulative density of environmental 
discharges by the human population, Ghosh et al. (2000, 2004), Singh et al. (2003, 2005). The 
total vector (Culex species mosquitoes) population M(t) is divided into susceptible mosquito 
population MS(t) and infected mosquito population MI(t). There is no immune class in the 
mosquito population since it acts as a transmitter of virus only. The susceptible mosquito is 
infected through the direct interaction with the reservoir population P(t) and infected human 
population I(t). We consider variable reservoir population which forms a ‘pool of infection’ with 
constant inflow of infected individuals only, though it was assumed to be constant by taking birth 
and death rates equal, Tapaswi et al. (1995). It may be noted that our purpose is to study the 
effect of environmental factors on the spread of JE in the human population and therefore we do 
not consider compartments in the reservoir population. The growth rate of reservoir population is 
further assumed to increase with increase in the cumulative density of environmental discharges 
by the human population. The block diagram of the model is given in Figure 1 (dash line denotes 
interaction). 

 

Figure 1. Block diagram of the model.  
 
Keeping in view of the above discussion and considering the criss-cross interaction of reservoir 
and mosquito population, mosquito and human population, the dynamics of the transmission of 
JE is assumed to be governed by the following system of nonlinear ordinary differential 
equations: 
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S + I = N, MS + MI = M, 
 

and, 
 

S(0) > 0, I(0)  0, N(0)   0, P(0)   0, MS(0) 0, MI(0)   0, M(0)   0, E(0)   0. 
 
Here, E(t) is the cumulative density of environmental discharges conducive to the growth of 
reservoir and mosquito population; A is the constant immigration rate of human population, σ is 
the transmission coefficient due to mosquito population; d and α are the natural and disease 
induced death rates of human population, respectively and ν is the rate by which infected 
individuals are recovered and become susceptible again. A0 is the constant immigration rate of 
infected reservoir population; d1 is the natural death rate of reservoir population and α1 is the 
death rate of reservoir population due to disease and control measures.  
 
The constant L is the carrying capacity of mosquito population in the natural environment; γ is its 
growth rate, γ0 is the death rate of mosquito population due to natural cause as well as control 
measures;  λ1 and λ2 are the transmission coefficients due to interaction of susceptible mosquito 
population with reservoir population and with infected human population respectively; δ0 and δ 
are the per capita growth rate coefficients of the reservoir and mosquito population, respectively 
due to conducive environmental discharges, the cumulative density of environmental discharge 
grows due to constant influx Q0 as well as due to human activities at the rate   and 0  is the 

depletion rate coefficient of the environmental discharges. In the model, all the dependent 
variables and parameters are assumed to be non-negative. 
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3.   Equilibrium Analysis 
 
To analyze the model (2.1), we consider the following reduced system (since S + I = N and MS 
+MI = M), 
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Solving the right hand side of the model system (3.1) by equating it to zero, we obtain the 
following biologically relevant equilibria. 
 

(1)    Disease-free equilibrium, 





 EP

d

A
W

~
,0,0,

~
,,00 , exists without any condition,  

where   
 

 
)/()(

~

00110

00

dAQd

A
P





     and    

0

0 /~


 dAQ

E


 . 

 
The existence of W0 is obvious. This equilibrium implies that if the mosquito population, which 
serves as a medium of transport of JEV, does not participate in the system then the equilibrium 

level of human population will reach the value 
d

A
 and the reservoir population will remain at its 

equilibrium P
~

. It may also be noted that in the absence of mosquito population, the infected 
human population will become zero.  
 
 
(2)   Endemic equilibrium, ),,,,,( ******

1 EMMPNIW I   

 
This equilibrium implies that if the mosquito population is present in the system, then the 
infection will be transmitted to the human population. The equilibrium values of different 
variables will be given by **** ,,, IMPNI , *M  and *E . These equilibrium values are explicitly 
given by equations (3.3- 3.7). 
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We prove the existence of the second equilibrium W1 by setting right hand side of equations 
(3.1) to zero and solving the resulting algebraic equations, we get, 
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In the equilibrium 1W , *N  is the positive root of the following equation, which can be obtained 

from equation (3.2) after using *I and *
IM  from equations (3.3) and (3.7), respectively. Using 

this value of 0*  NN  in equations (3.3 - 3.7) we obtain other equilibrium values,  
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It would be sufficient if we show that F(N) = 0 has one and only one root. From equation (3.8), 
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Thus, there exists a unique positive root of F( N ) = 0, (say *N ) in 
d

A
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< N  < 

d

A
. Knowing 

the value of *N , the values of *I , *P , *
IM , *M and  *E can be computed from equations (3.3 – 

3.7).  
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3.1.   Boundedness of Solutions 
 
Continuity of right hand side of system (3.1) and its derivative imply that the model is well posed 
for N > 0. The invariant region where solution exists is obtained as follows: 
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since N(t) > 0 for all t  0. Therefore, N(t) cannot blow up to infinity in finite time and 
consequently, the model system is dissipative (solutions are bounded). Hence, the solution exists 
globally for all t > 0 in the invariant and compact set, 
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As N(t) tends to zero, S(t) and I(t) also tend to zero. Hence, each of these subpopulations tends to 
zero as N(t) does. It is therefore natural to interpret these terms as zero at N(t) = 0.  
 
 
3.2.   Positivity of Solutions 
 
Let the initial data be I(0)= I00, N(0)= N0>0, P(0)= P0>0, MI(0)= MI00, M(0)= M00 and E(0) = 
E0>0 for all t  0. Then, the solution [I(t), N(t), P(t), MI(t), M(t), E(t)] of the model remain 
positive for all time t  0. From the first equation of model (3.1) we get )()()(' tIdtI   , 
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Here c1 is a constant of integration. A similar reasoning for the remaining equations shows that 
they are always positive in Ω for t > 0.  We assume that at t = 0, N(t), I(t), P(t), MI(t), M(t) and 
E(t) are all non-negative and that N(0) > 0.  
 
We notice that 
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4.   Stability Analysis 
 
Now, we analyze the stability of equilibria W0 and W1 and the stability results of these equilibria 
are stated in the following theorems. 
 
Theorem 4.1.  
 
(i) The disease-free equilibrium W0 is locally asymptotically stable if 
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Proof: 
 
See Appendix I. 
 
 
Theorem 4.2. 
 
The endemic equilibrium W1 is nonlinearly asymptotically stable in the region   if the 
following conditions are satisfied: 
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Proof: 
 
See Appendix II. 
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Remark 
 
If the per capita growth rate coefficients of the mosquito and reservoir population due to 
conducive environmental discharge tend to zero i.e., 0  and 00  , then inequalities (4.1), 

(4.3), (4.4) and (4.6) are automatically satisfied.  This implies that the environmental conditions 
conducive to the growth of reservoir animal population and mosquito population have 
destabilizing effect on the system.   
 
The above theorems imply that under certain conditions, if the reservoir and mosquito population 
increase due to environmental factors, the number of infecteds increases, which lead to fast 
spread of encephalitis. 
 
 
5.   Numerical Simulations 
 
It is noted here that our aim is to study, through a nonlinear model and its qualitative analysis, 
the role of environmental factors on the spread of Japanese Encephalitis. It is therefore desirable 
that we show the existence of equilibria of the model as well as the feasibility of stability 
conditions numerically for a set of parameter values. 
 
To study the dynamical behavior of the model, numerical simulation of the system (3.1) is 
carried out by MAPLE 7.0, using the parameter values; Ghosh et al. (2000, 2004):  
  =  0.0003,  = 4.5,   =  1/45, d = 1/65, A = 150, A0 = 50, 1  =  1/15, d1 = 1/10,   = 0.0001, 

0  = 0.000001, 1 = 0.0001, 2 = 0.00021,   =  0.6, 0 = 0.3, L =  1000, Q0 = 2,   = 0.0002, 

0 = 0.0001. 

 
The equilibrium values for the model system (3.1) are computed as follows: 
 

I* = 1646.987294, N* = 7608.9165157, P* = 380.3761404, MI
* = 4178.390656,  

M*=7443.566607,  E* = 35217.83303.
 
 

 
The eigenvalues of the variational matrix corresponding to the endemic equilibrium of the model  
are  

-6.016911750, -0.4517175783, -0.02177481172, -0.0001094418333, 3.721783284, 
  -0.1314488664.  
 
Since all the eigenvalues are found to be negative, the endemic equilibrium is locally 
asymptotically stable for the above set of parameter values. 
 
The results of numerical simulation are displayed graphically in figures (2-10). Figure 2 shows 
that the system (3.1) is nonlinearly asymptotically stable in MI -P plane. All the trajectories 
starting from different initial starts, reach the endemic equilibrium W1.  
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1. I(0) = 1000, N(0) = 7000, P(0) = 500, MI(0) = 9000, M(0) = 10000, E(0) = 40000. 
2. I(0) = 1000, N(0) = 7000, P(0) = 200, MI(0) = 1000, M(0) = 7000, E(0) = 40000. 
3. I(0) = 1000, N(0) = 7000, P(0) = 500, MI(0) = 1000, M(0) = 6800, E(0) = 40000. 
4. I(0) = 1000, N(0) = 7000, P(0) = 200, MI(0) = 9000, M(0) = 10000, E(0) = 40000. 

 
Hence, we infer that the system (3.1) may be nonlinearly asymptotically stable about this 
equilibrium point W1 for the above set of parameter values. In Figures (3-5), the variation of 
reservoir animal population, infected mosquito population and infected human population 
respectively for different values of cumulative density of environmental discharge with time is 
shown. From these figures, it is clear that with the increase in the level of environmental 
discharge due to constant influx (Q0), the reservoir animal population and infected mosquito 
population increases. This increase in infected mosquito population and reservoir animal 
population ultimately results in increasing the infected human population, (see Figure 5). Thus, 
the unhygienic environmental discharge conducive to the growth of reservoir animal population 
and the mosquito population should be controlled to stop spreading of JE. In figure 6, we show 
the variation of infected human population with time to see the effect of cumulative density of 
environmental discharge due to human activities ( ).   
 
It is found that as the rate of cumulative density of environmental discharge due to human 
activities increases, the number of infected individuals also increases. Figures 7-8 depict the role 
of conducive environmental discharge ( 0 ) on the reservoir animal population and infected 

human population, respectively with time. It is found that the reservoir animal population 
increases with increase in the per capita growth rate coefficient of the reservoir population due to 
conducive environmental discharge. This increase in the infected reservoir population increases 
the infected human population i.e. the increase in the spread of JE, (see Figure 8).  
 
It is, therefore, urged that suitable mechanism be devised to keep the environmental hygiene 
pollution-free so that the spread of JEV is minimal. In Figures 9-10, we have shown the variation 
of infected mosquito population and infected human population with ( ) the per capita growth 
rate coefficient of mosquito population due to conducive environmental discharge with time. We 
observe from these figures that infected mosquito population increases with increase in the value 
of ( ), which, in turn, increases the infected human population.  
 
From the above analysis, it may be concluded that the unhygienic environmental discharge 
conducive to the growth of mosquito population and the reservoir animal population is mainly 
responsible for the spread of Japanese Encephalitis. Thus, in order to keep the spread of JE 
controlled, the unhygienic environmental discharges should be kept at minimum so that the 
accumulation of infected mosquito population and reservoir animal population is restricted. For 
this, a suitable control mechanism may be devised to curb the growth of mosquito population and 
reservoir animal population which otherwise increases due to human population related factors 
and unhygienic environmental conditions leading to fast spread of Japanese Encephalitis. 
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Figure 2. Variation of infected mosquito population with reservoir animal population.  

 
 

 
Figure 3. Variation of reservoir animal population for different values of Q0  
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Figure 4. Variation of infected mosquito population for different values of Q0  

 

 
Figure 5. Variation of infected human population for different values of Q0  
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Figure 6. Variation of infected human population for different values of   

 

 
Figure 7. Variation of reservoir animal population for different values of δ0 
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Figure 8. Variation of infected human population for different values of δ0 

 

 
Figure 9. Variation of infected mosquito population for different values of δ 
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Figure 10. Variation of infected human population for different values of δ 

 
 
6.   Conclusion 
 
In this paper, a nonlinear mathematical model is proposed and analyzed to study the effect of 
environment on the transmission dynamics of Japanese Encephalitis considering human, 
reservoir and mosquito population, all with variable size structures. The reservoir and mosquito 
populations are assumed to increase by environmental and human population related factors. The 
mosquito population is assumed to be governed by a general logistic model. The model is 
analyzed using stability theory of differential equations and numerical simulation. The model 
exhibits two equilibria namely, the disease-free and the endemic equilibrium. Results show that 
the disease-free equilibrium is stable if decay coefficient of mosquito population is maintained at 
a level higher than their growth rate. Also, whenever the disease-free equilibrium is stable, the 
endemic equilibrium does not exist. The endemic equilibrium, which exists whenever disease-
free equilibrium is unstable, is found to be nonlinearly asymptotically stable under certain 
conditions.  
 
It is shown that with the increase in the reservoir and mosquito population due to environmental 
and human related factors, the infected human population increases. It has been pointed out that 
constant migration in human and reservoir population makes the disease more endemic. Our 
study shows that in the absence of infected reservoir or mosquitoes into the human community, 
JE can be eradicated from entire mosquito-reservoir-human population. Also, as the level of 
environmental conditions improves through improved drainage system, preventing stagnant 
water, fogging, etc. the spread of JE can be controlled. Therefore, in order to control the spread 
of JE, an effective control mechanism should be adopted to curb the growth of infected reservoir 
animal population and mosquito population and preventive measures should be taken against 
mosquito bites. 
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APPENDIX – I  
 
Proof of Theorem 4.1. 
 
The variational matrix for the system (3.1) corresponding to equilibrium   
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are assumed to be nonnegative, it follows that i (i = 1, 2, 3, 4, 6) < 0. The stability of W0 will 

depend on the sign of 5 . Thus, the disease free equilibrium W0 is stable if 
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 , i.e., the decay coefficient of mosquito population is higher than their 

growth rate. 



AAM: Intern. J., Vol. 4, Issue 1 (June 2009) [Previously, Vol. 4, No. 1]                                                                  173  

  

To establish the local stability of the endemic equilibrium 1W , we consider the following positive 
definite function,  
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where ki’s (i = 0, 1, 2, 3, 4, 5) are positive constants to be chosen appropriately and i, n, p, mi, m 
and e are small perturbations about W1, defined as follows, 
 

I = I* + i, N = N* + n, P = P* + p, Mi = Mi
* + mi, M = M* + m and E = E* + e. 

 
Differentiating above equation, with respect to ‘t’, and using the linearized system corresponding 
to W1, we get 
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dU1  will be negative definite under the following conditions, 
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The stability conditions are then obtained as given in the theorem.  Hence, 
dt

dU1  will be negative 

definite under the conditions (4.1), (4.2) and (4.3) as stated in the statement of the theorem, 
showing that W1 is locally asymptotically stable. Hence, the proof. 
 

 
 

APPENDIX – II 
 
Proof of Theorem 4.2. 
 
Consider the following positive definite function,  
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where the coefficients k0, k1, k2, k3 k4 and k5 can be chosen appropriately. Differentiating the 
above equation with respect to ‘t’ and using (3.1), we get 
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Now, 
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dU 2 will be negative definite under the following conditions, 
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The stability conditions can than be obtained, as given in the statement of the theorem. Thus 

dt

dU 2 will be negative definite under the conditions (4.4), (4.5) and (4.6) as stated in the 

Theorem. Hence, the proof. 


