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Abstract  
 
The tanh-coth method is used to seek solutions to obtain solutions to the new integrable sixth-
order Korteweg-de Vries equation (KdV6). Following the analogy between the Korteweg-de 
Vries equation (KdV) and the modified Korteweg-de Vries equation (MKdV) we construct a 
new system equivalent to KdV6 from which exact solutions to original equation and derived, 
during the sech method. 
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1.  Introduction 
 
The search of exact solutions of nonlinear evolution equations which appear in many scientific 
fields, especially in physics attracted a huge number of research projects. Several direct and 
computational methods have been developed in the last few years with the aim of making further 
progress in this field, deriving more solutions as well as facilitating the calculations involved. 
The use of computer symbolic systems such as Mathematica and Maple have so far, helped with 
reducing the tediousness and complications of the calculations involved.  
 
This paper, however, is devoted to the study of two forms of the new integrable sixth-order 
Korteweg-de Vries equation (KdV6)  

 
3 2( 8 4 )( 6 ) 0x x x xx t xxx xu u u u u         

       
(1.1) 

 
which was recently derived by Karasu et al. (2008) as an integrable particular case of the general 
sixth-order nonlinear wave equation  
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Here,  ,  ,  ,  ,  ,  ,   are arbitrary parameters, and ( )u u x t    is a differentiable 
function. Using the change of variables 
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equation (1.1) converts to Korteweg–de Vries equation with a source Kupershmidt (2008) 
satisfying the third-order differential system  
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By means of the transformation  
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system (1.4) reduces to Kupershmidt (2008),  Gómez and Salas (2008) 
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By the end of last year, Yao, Y. and Zeng, Y. (2008) successfully demonstrated the integrability 
of (1.6). Exact solutions to this last system have also been derived in Salas, A. H. and Gómez, C. 
A. (2008). In the same way, exact solutions to (1.1) have been obtained by the authors in 
Wazwaz (2008), Zhang et al. (2009). Our goal in this work is to derive soliton solutions to (1.6) 
using a simple method compared to those used in the previous works. In a similar way, following 
the analogy between KdV and modified Korteweg-de Vries equation (MKdV), we construct a 
new system from which exact solutions to original KdV6 can be derived.  
 
2.  Exact Solutions to Integrable KdV6 system (1.6) Using the tanh-coth 

Method 
 
Using in (1.6) the wave transformation 0( )x t      , being ,   constants to be determined 

latter and 0  an arbitrary constant, integrating with respect to the new variable , letting the 

integration constant equal to zero and simplifying, we obtain the system 
  

2 2( ) 3 ( ) ''( ) ( ) 0

'''( ) 4 ( ) ( ) 2 ( ) ( ) 0

lu u u w

w u w u w

    
    

     
     

 
 
   (1.6a) 

  
We seek solutions to system (1.6a) in the form  
 

( ) tanh ( )

( ) tanh ( )

M i
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called tanh-coth method. Balancing ''u  with 2u  in the first equation in (1.6a) and '''w  with uw  
in the second equation of (1.6a) we obtain  
 

2 2M M    

and 
3 ( 1)M M M      

 
from where 2M  . Therefore, solutions to (1.6a) take the form  
 

 
where 2a  , 1a  , 0a  , 1a  , 2a  , 2b  , 1b  , 0b  , 1b  , 2b  ,   and   are some constants to be 

determined. Substituting (1.7) into system (1.6a) and replacing hyperbolic functions tanh  and 
coth  with their exp  form, we obtain a system of two polynomial equations in the variable 

exp( )   . Equating the coefficients of the different powers of   to zero yields an algebraic 

2 2
2 1 0 1 2

2 2
2 1 0 1 2

0 0

( ) co th ( ) co th ( ) tan h ( ) tan h ( )

( ) co th ( ) co th ( ) tan h ( ) tan h ( )

( ) a rb itra ry co n s tan t,

u a a a a a

w b b b b b

x t

    
    

    

 

 

     
     

    

 
       
(1.7) 
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system in the unknowns ia , ib ,   and  . Solving it with the aid of Mathematica and reversing to 

original variables, we get a pair of solutions to system (1.6):  
 
First solution:  

2 0a  , 1 0a  , 0 0a a , 1 0a  , 2
2 2a   , 1 0b  , 2 0b  , 

2 2 2 4
0 0 0 012 2 40 4 32b a a a         ,  

1 0b  , 2 2 4
2 012 2 16b a       : 2 2

1 0 0( ) 2 tanh ( ( ))u x t a x t                 (1.8) 

 

 2 2 2 2
1 0 0 0( ) 2 6 8 2 tanh ( ( ))w x t a a x t       

 
 

          

 
  (1.9) 

 
Second solution:  

2
2 2a    , 1 0a  , 0 0a a , 1 0a  , 2 0a  ,  

2 2 4
2 012 2 16b a        , 1 0b  , 2 2 2 4

0 0 0 012 2 40 4 32b a a a         ,  

1 0b  , 2 0b  : 2 2
2 0 0( ) 2 coth ( ( ))u x t a x t                   (1.10)  

 

 2 2 2 2
2 0 0 0( ) 2 6 8 2 coth ( ( ))w x t a a x t       

 
 

          

 
(1.11) 

 

3.  Solutions to a New System KdV6 Using the sech Method 

A direct calculation shows that (1.1) reduces to  
 

22 0 4 0 1 2 0 4 8 0xxxxxx x xxxx xx xxx x xx xxx t xx t x x tu u u u u u u u u u u u         (1.12) 

 
or, in equivalent form,  

 
2 1( 4 8 )( 12 ) 0x xx x x xt xxxx x xxu u u u u u         

(1.13) 

 
Using the analogy between the KdV equation and the mKdV equation, and motivated by the 
structure of (1.13), the sixth-order modified Korteweg-de Vries equation (MKdV6) was 
introduced by Zhang et al. (2009) in the form 
 

3 2 1 3( 8 8 ) ( 4 ) 0x x x x x x x x t x x x xv v v v v v           (1.14) 

 
They also showed that 
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3 2 1 3

( 8 4 )( 6 ) 2 2 (2 )

( 8 8 )( 4 ) 0
x x x xx t xxx x x x

x x x xx x x x t xxx x

u u u u u v i

v v v v v v

          


         
 

 
  (1.15) 
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where 2 2 2x xxv iv   is the Miura transformation between the KdV6 equation (1.1) and the 

MKdV6 equation (1.14). Therefore, solving (1.14) and taking into account (1.15), solutions to 
(1.1) can be obtained. Setting 2

x xw v , the new mKdV6 equation is equivalent to the new system  

 
2 3 4 220 80 20 120 8 4 0

2 0.
xxxxxx x xxxx x xx xxx xx x xx xxxt x xt xx t

xx x xx

v v v v v v v v v v v v v w

w v v

         


 
 

 
  (1.16) 

 
In order to solve this last system, let  

 

0 0( ) arbitray constant

( ) ( ) and ( ) ( ).

x t

v v x t v w w x t w

    
 

     
     

 

 
  (1.17) 

 
Substituting (1.17) into (1.16) we obtain:  
 

4 6 (6) 3 6 3 6 2

4 2 6 4 6 (3)

( ) ( ) 4 ( ) ( ) 20 ( ) 20 ( ) ( )

8 ( ) ( ) 120 ( ) ( ) 80 ( ) ( ) ( ) 0

( ) 2 ( ) ( ) 0

v v v w v v v

v v v v v v v

w v v

           
         

   

         
          
     

 

 
 
(1.18) 

 
Integrating the second equation in (1.18) gives  

 
2

1( ) ( )w v c       

 
so that  
 

2
1 1( ) ( ) arbitrary constantw c v c           (1.19) 

 
Substituting (1.19) into the first equation of (1.18) and letting  
 

( ) ( )v u   , 

 
we finally get 
  

2 3 4 3 3
1
3 3 2 3

4 ( ) 12 ( ) ( ) 120 ( ) ( ) 20 ( )

80 ( ) ( ) ( ) ( ) 20 ( ) ( ) ( ) 0

c u u u u u u

u u u u u u u

         
          

     
         

 
 
(1.20) 

 
Now, we integrate equation (1.20) once to obtain  
 

 3 2 2
1

3 2 3 3 5
2

4 ( ) ( ) ( ) 20 ( )

20 ( ) ( ) 4 ( ) 24 ( )

c u u u u

u u u u c

        

      

   

    
 

 
(1.21) 

 
where 2c  is the constant of integration.  
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Equation (1.21) is a polynomial ordinary differential equation in the unknown function ( )u   and 
their derivatives. To solve it, we may employ distinct methods. In this case, the sech method 
Hereman (2008) may be applied successfully to obtain an exact solution. We seek a solution to 
(1.21) in the form 
  

0

( ) sech ( )
M

i
i

i

u a 


   

 
Balancing u  with 5u  gives  
 

4 5M M    

 
so that 1M  . Therefore, we seek solutions to (1.21) as  
 

0 1( ) sech( ).u a a    

 
 
Proceeding as before, we obtain two solutions to system (1.16), namely:  
 

First solution: 29
0 1 1 2400 2 0 10a a c c             :  

 

1 2
0 1

2 2 29
0 0 240

( ) 2sech( )

1
( ) 2 2 tan (tanh( ( 10 )))

2
( ) ( 10 ) 2 tan( ( 10 ))

u

v x t x t k

w x t x t x t k

 

  

      





 







 

     

        
 

Second solution: 
2

1
0 1 1 242

0 0a a c c
  



 
 
 


           
 

 

   
2 2

1 1
0 12

1
0 0 22 4

1
( ) sech( )

2

( ) 2 tan tanh

( ) tanh

u

v x t x t k

w x t x t x t k
  



 

  

     
 
 
 






    
     

    

 


 

     

       

 

 
We believe that these traveling wave solutions are new in the open literature.  
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4.  Conclusions 

Two forms of the KdV6 equation have been studied from the point of view of its exact solutions 
using computational methods. The tanh-coth and the sech methods were employed to achieve the 
goals set for this work. Kink solutions were formally derived for each form. The results obtained 
here show that the method used can also be applied to other NLPDE’s.  
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