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Abstract

The stability of some size-structured population dynamics models is investigated when the popula-

tion is divided into adults and juveniles. We determine the steady states and study their stability.

We also give examples that illustrate the stability results. The results in this paper generalize

previous results, for example, see Calsina, et al. (2003), El-Doma (2006), Farkas, et al. (2008),

and El-Doma (2008 a).
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1. Introduction

I
N this paper, we study a size-structured population dynamics model that divides the population

at any time t into adults, we denote by A(t), and juveniles, we denote by J(t). Adults are

individuals with size larger than the maturation size T ≥ 0. Juveniles are individuals with size

smaller than the maturation size T. The model takes the following form:
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∂p(a, t)

∂t
+

∂

∂a
(V (a, J(t), A(t))p(a, t)) + µ(a, J(t), A(t))p(a, t) = 0,

a ∈ [0, l), l ≤ +∞, t > 0,

V (0, J(t), A(t))p(0, t) =

∫ l

T

β(a, J(t), A(t))p(a, t)da, t ≥ 0,

p(a, 0) = p0(a), a ∈ [0, l), (1)

J(t) =

∫ T

0

p(a, t)da, t ≥ 0,

A(t) =

∫ l

T

p(a, t)da, t ≥ 0,

where, p(a, t), is the density of the population with respect to size a ∈ [0, l) at time t ≥ 0,

where, 0 < l ≤ +∞, is the maximum size an individual in the population can attain; P (t) =
∫ l

0

p(a, t)da = J(t)+A(t), is the total population size at time t; β(a, J(t), A(t)), µ(a, J(t), A(t)),

are, respectively, the birth rate i.e. the average number of offspring, per unit time, produced by

an individual of size a when the population size is P (t), and the mortality rate i.e. the death

rate at size a, per unit population, when the population size is P (t); 0 < V (a, J(t), A(t)), is the

individual growth rate at the population size P (t).

We study problem (1) under the following general assumptions:

0 ≤ p0(a) ∈ L1([0, l)) ∩ L∞[0, l), R+ = [0,∞);

V (a, J, A), β(a, J, A), µ(a, J, A) ∈ C([0, l)× R
+2

), and are nonnegative functions; (2)

VP (a, J, A), VPa(a, J, A), βP(a, J, A), µP (a, J, A) exist ∀a ≥ 0, J ≥ 0, A ≥ 0;

VP (., J, A), VPa(., J, A), β(., J, A), βP(., J, A), µ(., J, A), µP(., J, A) ∈ C([0, l) : L∞(R+2
)).

Models of size-structured populations were first derived in Sinko et al. (1967), where the popu-

lation density and the vital rates depend on age, size and time. Due to its complication, this type

of model has been ignored by mathematicians, for example, see Metz, et al. (1986). Problem

(1) generalizes those given in Calsina, et al. (2003), El-Doma (2006), where the vital rates are

taken to depend on the population size only, and El-Doma (2008 a), where juveniles are not

considered.

Size-structured population models are studied by many authors, for example, Mimura, et al.

(1988), studied a size-structured population model where the vital rates depend on a weighted

population size r(t) i.e., r(t) =

∫ l

0

ω(a)p(a, t)da, ω ≥ 0, as well as the size, and the growth rate V

is of separable form that is a special case of that in problem (1); they proved the global existence

and uniqueness of non-negative solutions, and obtained some stability results when the death

rate µ depends on the weighted population size r(t) only. Calsina, et al. (1995), studied a size-

structured population model with the additional assumption that there is an inflow of newborns (

of zero-size ) from an external source, like seeds in plants when carried by wind, or eggs from fish

when carried by water, and proved the existence and uniqueness of solution; and the existence of



374 M. El-Doma

a global attractor when the inflow of newborns is a constant. A similar size-structured population

model is also considered in Farkas, et al. (2007), El-Doma (2008 a), and El-Doma (2008 b), and

stability results are obtained. In Cushing (1985), the existence of stable positive steady states for

a size-structured population model is studied using bifurcation theory methods, and in Cushing

(1987), these results are generalized to systems of interacting populations. In Cushing (1990), a

competition model for several size-structured species exploiting a single resource is derived. It

is shown that, under suitable conditions, the asymptotic dynamics can be reduced to a system of

ordinary differential equations via which global stability results are obtained. In Cushing (1992), a

size-structured population model for cannibalism is studied, and, under suitable conditions, global

stability results are obtained. In Cushing (1996), a size-structured hierarchical model for intra-

specific competition is studied, and under suitable conditions, a single scalar differential equation

for the dynamics of a weighted population size is derived via which global stability results are

obtained. In Farkas, et al. (2008), problem (1) is studied using semigroups theory method with

the objective to obtain conditions for the stability of the steady states. However, only two special

cases are considered, namely, the case when µ(a, J, A) = µ(a), V (a, J, A) = V (a) and the case

when β(a, J, A) = β(a, A), µ(a, J, A) = µ(a, A), V (a, J, A) = V (a, A). In addition, they also

considered the case when there is a constant inflow of newborns from an external source, in this

case they looked into the steady states of the system, provided some examples, and relegated

further analysis to future work.

Further generalization of size-structured population dynamics models involved the additional

assumption of subdividing the population into subgroups based on growth rates, these growth

rates can be finite in number leading to a finite number of subgroups, for example, see Ackleh, et

al. (2005) or infinitely many different growth rates, for example, see Huyer (1994). These studies

proved existence and uniqueness results; and provided numerical results as in Huyer (1994), and

numerical and statistical results as in Ackleh, et al. (2005).

Our motivation for the present study is to extend the work in size-structured population dynamics

models where juveniles are not considered, for example, see El-Doma (2008 a), to the general

case of problem (1) in order to compare results and determine the effects of adults on juveniles

and vice versa.

In this paper, we study problem (1) and determine its steady states and examine their stability.

We prove that the trivial steady state is always a steady state and that there are as many

nontrivial steady states, P∞ = J∞ + A∞, as the nonnegative solutions of two equations, namely,

R(J∞, A∞) = 1, J∞ + A∞ > 0, see Section 2 for the definition of R(J, A), and, either equation

(8) or equation (9). We also show that these steady states remain unchanged if each of the vital

rates i.e., the birth rate, the death rate, and the growth rate is multiplied by any positive continuous

function f(J, A). Furthermore, we give sufficient conditions for their existence and uniqueness.

Then we study the stability of the trivial steady state and show that if R(0, 0) < 1, then the trivial

steady state is locally asymptotically stable and if R(0, 0) > 1, then the trivial steady state is

unstable. We also determine sufficient conditions for the local asymptotic stability of a nontrivial

steady state, P∞ = J∞ + A∞, for the general model, and then we give several corollaries to this

result, and we also give a condition for the instability of a nontrivial steady state. We also prove
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that these (in)stability results remain unchanged if each of the vital rates is multiplied by any

positive function f(J, A) ∈ C1(R+2
). Finally, we also give examples that illustrate our theorems.

In a series of two subsequent papers, further stability results will be given for three special

cases, the first case is when, V (a, J, A) = V (a), µ(a, J, A) = µ(A), the second case is when,

V (a, J, A) = V (a), µ(a, J, A) = µ(J), and the third case is when, V (a, J, A) = V (a), µ(a, J, A) =

µ(a).

The organization of this paper as follows: in Section 2 we determine the steady states; in Section 3

we study the stability of the steady states and give examples that illustrate some of our theorems;

in Section 4 we conclude our results.

2. The Steady States

In this section, we determine the steady states of problem (1). A steady state of problem (1)

satisfies the following:

d

da
[V (a, J∞, A∞)p∞(a)] + µ(a, J∞, A∞)p∞(a) = 0, a ∈ [0, l),

V (0, J∞, A∞)p∞(0) =

∫ l

T

β(a, J∞, A∞)p∞(a)da, (3)

J∞ =

∫ T

0

p∞(a)da,

A∞ =

∫ l

T

p∞(a)da.

From (3), by solving the differential equation, we obtain that

p∞(a) = p∞(0)V (0, J∞, A∞)
π(a, J∞, A∞)

V (a, J∞, A∞)
, (4)

where π(a, J∞, A∞) is defined as

π(a, J∞, A∞) = e
−

R a

0
µ(τ,J∞,A∞)
V (τ,J∞ ,A∞)

dτ
.

We note that we similarly define π(a), π(a, J∞), π(a, A∞) by the same formula, for example,

π(a) = e
−

R a

0
µ(τ)
V (τ)

dτ
, and π(a, J∞) = e

−

R a

0
µ(τ,J∞)
V (τ,J∞)

dτ
.

Also, from (3) and (4), we obtain that p∞(0) satisfies the following:

p∞(0) = p∞(0)

∫ l

T

β(a, J∞, A∞)

V (a, J∞, A∞)
π(a, J∞, A∞)da. (5)

Accordingly, from (5), we conclude that either p∞(0) = 0 or the pair J∞, A∞ satisfy the

following:

1 =

∫ l

T

β(a, J∞, A∞)

V (a, J∞, A∞)
π(a, J∞, A∞)da. (6)
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In order to facilitate our writing, we define a threshold parameter R(J, A) by

R(J, A) =

∫ l

T

β(a, J, A)

V (a, J, A)
π(a, J, A)da, (7)

which is interpreted as the number of children expected to be born to an individual, in a life

time, when the population size is P = J + A.

We note that from equation (4),

p∞(0) =
[J∞ + A∞]

V (0, J∞, A∞)

∫ l

0

π(a, J∞, A∞)

V (a, J∞, A∞)
da

,

and accordingly, either p∞(a) ≡ 0 or p∞(a) is completely determined by a solution of the pair

J∞ ≥ 0, A∞ ≥ 0 of the following pair of equations which must also satisfy equation (6):

J∞ =
[J∞ + A∞]

∫ l

0
π(a,J∞,A∞)
V (a,J∞,A∞)

da

∫ T

0

π(a, J∞, A∞)

V (a, J∞, A∞)
da, (8)

A∞ =
[J∞ + A∞]

∫ l

0
π(a,J∞,A∞)
V (a,J∞,A∞)

da

∫ l

T

π(a, J∞, A∞)

V (a, J∞, A∞)
da. (9)

In the following theorem, we describe the steady states of problem (1).

Theorem 2.1

1) Problem (1) has the trivial steady state, P∞ = J∞ + A∞ = 0.

2) All pairs, (J∞, A∞), satisfying J∞ ≥ 0, A∞ ≥ 0, (J∞, A∞) 6= (0, 0), R(J∞, A∞) = 1, and,

equation (8) or equation (9), are nontrivial steady states of problem (1).

Proof. We note that 1) is easy to prove. To prove 2), suppose that we have a nontrivial steady

state, then it is easy to see that it satisfies the conditions of the theorem. On the other hand,

suppose that the pair, (J∞, A∞), satisfies, R(J∞, A∞) = 1, and, equation (8). Then let P∞ =

J∞ + A∞, and determine p∞(a) by setting P∞ =

∫ l

0

p∞(a)da and using equation (4) to obtain

that p∞(a) =
P∞

∫ l

0
π(a,J∞,A∞)
V (a,J∞,A∞)

da

π(a, J∞, A∞)

V (a, J∞, A∞)
. Since by equation (8) J∞ =

∫ T

0

p∞(a)da; then

from P∞ = J∞ + A∞, we obtain that A∞ =

∫ l

T

p∞(a)da, and hence A∞ satisfies equation (9).

Accordingly, p∞(a) satisfies system (3).

Similarly we can prove the result using equation (9) instead of equation (8). This completes the

proof of the theorem.

We note that in Farkas, et al. (2008), a similar theorem to Theorem 2.1 is given, but they do not

use equations (8)-(9), instead they combine these two equations into one equation for the ratio

of J∞ and A∞ together with the equation, R(J∞, A∞) = 1, as well as an extra condition that

0 < T < l. However, in this case, we are not able to verify that J∞ and A∞ satisfy the boundary
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conditions in system 2.1, namely, J∞ =

∫ T

0

p∞(a)da, and, A∞ =

∫ l

T

p∞(a)da. So, in contrast

to the result in Farkas, et al. (2008), Theorem 2.1 seems to be correct and concise.

In the next result, we determine conditions for the existence and uniqueness of a nontrivial

steady state when, R(J, A), given by equation (7), takes the special form, R(J, A) = F (P ),

i.e., we assume that β(a, J, A) = β(a, P ), µ(a, J, A) = µ(a, P ), V (a, J, A) = V (a, P ). In this

case, P∞, is the only unknown and is given as the positive solutions of the equation, F (P∞) =

R(J∞, A∞) = 1.

Theorem 2.2 A nontrivial steady state for the special case when, β(a, J, A) = β(a, P ), µ(a, J, A) =

µ(a, P ), V (a, J, A) = V (a, P ), exists and is unique in each of the following cases:

1) F ′(x) < 0∀x ≥ 0, F (0) > 1, and, ∃x∗ > 0 such that F (x∗) < 1, where F (P ) = R(J, A),

2) F ′(x) > 0∀x ≥ 0, F (0) < 1, and, ∃x∗ > 0 such that F (x∗) > 1.

Proof. The proof of the theorem follows immediately from the monotonicity of F (x) and the

conditions on F (0). Therefore, we omit the details of the proof. This completes the proof of the

theorem.

We note that a similar result to 2 in Theorem 2.2 is given in Diekmann, et al. (2008). Also see

Calsina, et al. (2003), for an equivalent result.

We also note that in the general case, we assume that RA(J∞, A∞) 6= 0, or RJ(J∞, A∞) 6= 0.

Then we can use the Implicit Function Theorem for the equation, R(J∞, A∞) = 1, and in this

case A∞ is determined uniquely as a function of J∞ or vice versa. Then according to Theorem 2.1

all nontrivial steady states are the fixed points of a function of a single variable given by the right-

hand side of equation (8) in case RA(J∞, A∞) 6= 0, or equation (9) in case RJ (J∞, A∞) 6= 0.

We also have the well-known formula
dA

dJ
= −RJ

RA

in the former case, and a similar formula in

the latter case.

In the following result, we obtain a result about the steady states of problem (3) that tell us that

we can multiply all the vital rates by any positive continuous function of the pair, (J, A), without

affecting the steady state.

Theorem 2.3 Suppose that, β = β(a, J, A)f(J, A), µ = µ(a, J, A)f(J, A), V = V (a, J, A)

× f(J, A), where, f, is a positive continuous function. Then the steady states of problem (3) are

the same as when, β = β(a, J, A), µ = µ(a, J, A), V = V (a, J, A).

Proof. The proof is straightforward by using Theorem 2.1. Therefore, we omit the details. This

completes the proof of the theorem.

We note that the result in Theorem 2.3 seems to be very interesting since it proves that there is

a family of vital rates, in fact an infinite one that corresponds to a single steady state.

In the next result, we use Theorems 2.2-2.3 to extend the result given in Theorem 2.2.

Corollary 2.4 A nontrivial steady state for the special case, β = β(a, P )f(J, A), µ = µ(a, P )f(J, A),

V = V (a, P )f(J, A), where, f is a positive continuous function, exists and unique in each of
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the cases given in Theorem 2.2.

Proof. The result follows directly from Theorems 2.2–2.3. This completes the proof of the

corollary.

3. Stability of the Steady States

In this section, we study the stability of the steady states for problem (1) as given by Theorem

2.1.

To study the stability of a steady state p∞(a), which is a solution of (3) and is given by equation

(4), we linearize problem (1) at p∞(a) in order to obtain a characteristic equation, which in turn

will determine conditions for the stability. To that end, we consider a perturbation ω(a, t) defined

by ω(a, t) = p(a, t)−p∞(a), where p(a, t) is a solution of problem (??). Accordingly, we obtain

that ω(a, t) satisfies the following:

∂ω(a, t)

∂t
+

∂

∂a

[

V (a, J∞, A∞)ω(a, t) + p∞(a)
(

VJ (a, J∞, A∞)

∫ T

0

ω(b, t)db

+VA(a, J∞, A∞)

∫ l

T

ω(b, t)db
)]

+ µ(a, J∞, A∞)ω(a, t)

+p∞(a)
[

µJ (a, J∞, A∞)

∫ T

0

ω(b, t)db + µA(a, J∞, A∞)

∫ l

T

ω(b, t)db
]

= 0,

a ∈ [0, l), t > 0, (10)

ω(0, t)V (0, J∞, A∞) =

∫ l

T

β(a, J∞, A∞)ω(a, t)da + DJ (J∞, A∞)

∫ T

0

w(a, t)da

+DA(J∞, A∞)

∫ l

T

ω(a, t)da, t ≥ 0,

DJ (J∞, A∞) =

∫ l

T

p∞(a)βJ(a, J∞, A∞)da − p∞(0)VJ (0, J∞, A∞),

DA(J∞, A∞) =

∫ l

T

p∞(a)βA(a, J∞, A∞)da − p∞(0)VA(0, J∞, A∞).

By substituting ω(a, t) = φ(a)eξt in (10), where ξ is a complex number, and straightforward

calculations, we obtain the following characteristic equation:

1 =
[

(1 + GA(T, l, ξ))(1 + GJ (0, T, ξ)) − GJ (T, l, ξ)GA(0, T, ξ)
]

V (0, J∞, A∞)

∫ l

T

e−
R a

0
E(τ )dτβ(a, J∞, A∞)da

−GJ(0, T, ξ) − GA(T, l, ξ)− GJ (0, T, ξ)GA(T, l, ξ) + GA(0, T, ξ)GJ (T, l, ξ) (11)

+

[

(1 + GA(T, l, ξ))

∫ T

0

e−
R a

0
E(τ )dτda −GA(0, T, ξ)

∫ l

T

e−
R a

0
E(τ )dτda

]

V (0, J∞, A∞)

[

DJ − GJβ(ξ)
]
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+

[

(1 + GJ (0, T, ξ))

∫ l

T

e−
R a

0 E(τ )dτda − GJ (T, l, ξ)

∫ T

0

e−
R a

0 E(τ )dτda
]

V (0, J∞, A∞)

[

DA − GAβ(ξ)
]

,

where GJ (0, T, ξ), GJ (T, l, ξ), GJβ(ξ), DJ , E(a) are, respectively, given by

GJ (0, T, ξ) =

∫ T

0

∫ a

0

e−
R a

σ
E(τ )dτgJ (σ, J∞, A∞)dσda, (12)

GJ (T, l, ξ) =

∫ l

T

∫ a

0

e−
R a
σ

E(τ )dτgJ (σ, J∞, A∞)dσda, (13)

GJβ(T, l, ξ) =

∫ l

T

∫ a

0

e−
R a

σ
E(τ )dτβ((a, J∞, A∞)gJ (σ, J∞, A∞)dσda, (14)

DJ =

∫ l

T

βJ(a, J∞, A∞)p∞(a)da − p∞(0)VJ (0, J∞, A∞), (15)

E(σ) =
ξ + Vσ(σ, J∞, A∞) + µ(σ, J∞, A∞)

V (σ, J∞, A∞)
, (16)

where g(σ) is given by

gJ (σ) =

∂
∂σ

(

VJ (σ, J∞, A∞)p∞(σ)
)

+ p∞(σ)µJ (σ, J∞, A∞)

V (σ, J∞, A∞)
. (17)

We note that GA(0, T, ξ), GA(T, l, ξ), GAβ(ξ), DA, gA(σ, J∞, A∞), are defined similarly.

In the following theorem, we describe the stability of the trivial steady state, p∞(a) ≡ 0.

Theorem 3.1 The trivial steady state, p∞(a) ≡ 0, is locally asymptotically stable if R(0, 0) < 1,

and is unstable if R(0, 0) > 1.

Proof. We note that for the trivial steady state, p∞(a) ≡ 0, P∞ = 0, and therefore, from the

characteristic equation (11), we obtain the following characteristic equation:

1 =

∫ l

T

e
−ξ

R a

0
dτ

V (τ,0,0)
β(a, 0, 0)

V (a, 0, 0)
π(a, 0, 0)da. (18)

To prove the local asymptotic stability of the trivial steady state, we note that if R(0, 0) < 1,

then equation (18) can not be satisfied for any ξ with, Reξ ≥ 0, since

∣

∣

∣

∫ l

T

e
−ξ

R a

0
dτ

V (τ,0,0)
β(a, 0)

V (a, 0, 0)
π(a, 0, 0)da

∣

∣

∣
≤

∫ l

T

e
−Reξ

R a

0
dτ

V (τ,0,0)
β(a, 0, 0)

V (a, 0, 0)
π(a, 0, 0)da

≤ R(0, 0) < 1.

Accordingly, the trivial steady state is locally asymptotically stable if R(0, 0) < 1.

To prove the instability of the trivial steady state when, R(0, 0) > 1, we note that if we define

a function h(ξ) by

h(ξ) =

∫ l

T

e
−ξ

R a

0
dτ

V (τ,0,0)
β(a, 0, 0)

V (a, 0, 0)
π(a, 0, 0)da,
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and suppose that ξ is real, then we can easily see that h(ξ) is a decreasing function if ξ > 0,

h(ξ) −→ 0 as ξ −→ +∞, and h(0) = R(0, 0). Therefore, if R(0, 0) > 1, then there exists ξ∗ > 0

such that h(ξ∗) = 1, and hence the trivial steady state is unstable. This completes the proof of

the theorem.

Theorem 3.1 is ecologically intuitive since R(0, 0) represents the number of children expected

to be born to an individual, in a life time, when the population size is zero. So, it is clear

that if R(0, 0) < 1, then the population will not grow and the trivial steady state is locally

asymptotically stable. Whereas if R(0, 0) > 1, then the population will eventually grow and

accordingly, instability occurs.

In the next theorem, we give a condition for the instability of a nontrivial steady state.

Theorem 3.2 A nontrivial steady state is unstable if

Ξ =
[

(1 + GA(T, l, 0))J∞ − GA(0, T, 0)A∞

]

RJ(J∞, A∞) +

+
[

(1 + GJ (0, T, 0))A∞ − GJ (T, l, 0)J∞

]

RA(J∞, A∞) > 0. (19)

Proof. If we suppose that ξ is real and denote the right-hand side of the characteristic equation

(11) by H(ξ), and also suppose that the inequality in (19) is satisfied, we obtain that H(0) =

1 +
[

(1 + GA(T, l, 0))J∞ − GA(0, T, 0)A∞

]

RJ (J∞, A∞) +
[

(1+GJ (0, T, 0))A∞−GJ (T, l, 0)J∞

]

RA(J∞, A∞) = 1+Ξ > 1, and H(ξ) −→ 0 as ξ −→ +∞.

Accordingly, ∃ξ∗ > 0 such that H(ξ∗) = 1, and hence a nontrivial steady state is unstable. This

completes the proof of the theorem.

We note that Theorem 3.2 is a generalization of Theorem 3.2 in El-Doma (2008 a), for the

special case when T ≡ 0, and if we set T = 0, i.e., J∞ = 0, then from (19), we obtain that

Ξ = A∞RA(0, A∞), and therefore, we retain the result given by Theorem 3.2 in El-Doma (2008

a).

We also note that, Ξ, can be viewed as the directional derivative of, R(J, A), at (J∞, A∞) in the

direction of the vector
(

(1 + GA(T, l, 0))J − GA(0, T, 0)A, (1 + GJ (0, T, 0))A − GJ (T, l, 0)J
)

.

We also note that in Farkas, et al. (2008), the special case µ(a, J, A) = µ(a), V (a, J, A) = V (a)

is considered, and in this case, it is easy to see that gJ = gA = 0, and accordingly, GJ = GA = 0,

therefore, using Theorem 3.2, we obtain the following condition for the instability of a nontrivial

steady state:

Ξ = J∞RJ (J∞, A∞) + A∞RA(J∞, A∞) > 0.

We also note that this result is in agreement with the result given in Farkas, et al. (2008).

In the next theorem, we prove that, ξ = 0, is a root of the characteristic equation (11) iff Ξ = 0,

where, Ξ, is given by (19).
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Theorem 3.3 ξ = 0, is a root of the characteristic equation (11) iff Ξ = 0.

Proof. We note that if ξ = 0, then using equation (6), the characteristic equation (11) becomes,

[

(1 + GA(T, l, 0))J∞ −GA(0, T, 0)A∞

]

RJ(J∞, A∞) +
[

(1 + GJ (0, T, 0))A∞ − GJ (T, l, 0)J∞

]

RA(J∞, A∞) = Ξ = 0.

This completes the proof of the theorem.

We note that according to Theorem 3.2 a nontrivial steady state is unstable i.e., ξ > 0, is a root

of the characteristic equation (11) if Ξ > 0. Also, by Theorem 3.3 if Ξ = 0, then, ξ = 0, is a root

of the characteristic equation (11). Therefore, a nontrivial steady state can only be hyperbolic

and locally asymptotically stable when, Ξ < 0.

To obtain further stability results, we note that by suitable changes of the variables of the

integrations, we can rewrite the characteristic equation (11) in the form given in equation A1 of

Appendix A.

In the next theorem, we give a sufficient condition for the local asymptotic stability of a nontrivial

steady state. We note that this result is for the general problem (1), and in the sequel we give

other conditions which are for special cases of problem (1).

Theorem 3.4 Suppose that condition, B1, of Appendix B holds. Then a nontrivial steady state

is locally asymptotically stable.

Proof. We note that the proof follows directly from the characteristic equation A1 of Appendix

A and Theorem (13) in El-Doma (2008 a). Therefore, the details are omitted. This completes

the proof of the theorem.

We note that condition B1 of Appendix B is for the general model and is apparently unwieldy,

but its importance stems from the fact it encompasses all other special cases, and accordingly, it

can be used to obtain conditions for the local asymptotic stability of a nontrivial steady state for

any special case, for example, see Farkas, et al. (2008).

The following corollaries also follow directly from Theorem 3.4, and therefore, the details of the

proofs are omitted.

Corollary 3.5 Suppose that, µ(a, J, A) = µ(a), V (a, J, A) = V (a). Then a nontrivial steady state

is locally asymptotically stable if the following holds:

∫ l

T

π(a)

V (a)

∣

∣

∣

[

β(a, J∞, A∞) +

∫ l

T

βA(a, J∞, A∞)p∞(a)da

]

∣

∣

∣
da +

∣

∣

∣

∫ l

T

βJ(a, J∞, A∞)p∞(a)da
∣

∣

∣

∫ T

0

π(a)

V (a)
da < 1. (20)

We note that

∫ l

T

βJ(a, J∞, A∞)p∞(a)da represents the total change in the birth rate, at the steady

state, due to a change in juveniles only. If we assume that
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∫ l

T

βJ(a, J∞, A∞)p∞(a)da = 0, then we retain the result of Theorem 3.4 in El-Doma (2008 a).

We also note that in Farkas, et al. (2008), the special case considered in Corollary 3.5 is also

considered, however, due to their different method which uses semigroups theory, a different set

of conditions is imposed in order to obtain the stability of a nontrivial steady state. In Example

2 below we will show that if the conditions of their theorem for the local asymptotic stability of

a nontrivial steady state are assumed, then Corollary 3.5 also gives the same result.

Anticipating our future needs, we define F (a, σ) by

F (a, σ) =
V (σ, J∞, A∞)

V (a, J∞, A∞)
e
−

R a

σ

µ(τ,J∞ ,A∞)
V (τ,J∞ ,A∞)

dτ
. (21)

Corollary 3.6 Suppose that, µ(a, J, A) = µ(a, J), V (a, J, A) = V (a, J). Then a nontrivial steady

state is locally asymptotically stable if the following holds:

∫ l

T

π(a, J∞)

V (a, J∞)

∣

∣

∣

[

β(a, J∞, A∞) +

∫ l

T

βA(c, J∞, A∞)p∞(c)dc

]

∣

∣

∣
da + |DJ |

∫ T

0

π(a, J∞)

V (a, J∞)
da

+

∫ T

0

∫ a

0

F (a, σ)|gJ(σ, J∞, A∞)|dσda

+

∫ T

0

∫ l

T

∫ a

0

π(b, J∞)

V (b, J∞)
F (a, σ)

∣

∣

∣
gJ (σ, J∞, A∞)

(

β(a, J∞, A∞) +

∫ l

T

βA(c, J∞, A∞)p∞(c)dc
)
∣

∣

∣
dσdadb

+

∫ l

T

∫ T

0

∫ a

0

π(b, J∞)

V (b, J∞)
F (a, σ)

∣

∣

∣
gJ (σ, J∞, A∞)

(

β(b, J∞, A∞) +

∫ l

T

βA(c, J∞, A∞)p∞(c)dc
)
∣

∣

∣
dσdadb

< 1.

We note that the conditions of Corollary 3.6 represents a situation where juveniles control the

population in terms of the death rate as well as the growth rate. If we further assume that they

also control the population in terms of the birth rate i.e., we assume that β = β(a, J), then we

obtain the following condition for the stability of a nontrivial steady state:

∫ l

T

π(a, J∞)

V (a, J∞)
β(a, J∞)da + |DJ |

∫ T

0

π(a, J∞)

V (a, J∞)
da +

∫ T

0

∫ a

0

F (a, σ)|gJ(σ, J∞, A∞)|dσda

+

∫ T

0

∫ l

T

∫ a

0

π(b, J∞)

V (b, J∞)
F (a, σ)

∣

∣

∣
gJ(σ, J∞, A∞)

∣

∣

∣
β(a, J∞)dσdadb

+

∫ l

T

∫ T

0

∫ a

0

π(b, J∞)

V (b, J∞)
F (a, σ)

∣

∣

∣
gJ(σ, J∞, A∞)

∣

∣

∣
β(b, J∞)dσdadb < 1.

We note the above condition is impossible because of equation (6).

Corollary 3.7 Suppose that, µ(a, J, A) = µ(a, A), V (a, J, A) = V (a, A). Then a nontrivial steady
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state is locally asymptotically stable if the following holds:

∫ l

T

π(a, A∞)

V (a, A∞)

∣

∣

∣

[

β(a, J∞, A∞) + DA

]

∣

∣

∣
da +

∣

∣

∣

∫ l

T

βJ(a, J∞, A∞)p∞(a)da

∣

∣

∣

∫ T

0

π(a, A∞)

V (a, A∞)
da

+

∫ l

T

∫ a

0

F (a, σ)
∣

∣

∣
gA(σ, J∞, A∞)

∣

∣

∣
dσda

+

∫ l

T

∫ l

T

∫ a

0

π(b, A∞)

V (b, A∞)
F (a, σ)

∣

∣

∣
gA(σ, J∞, A∞)

[

β(b, J∞, A∞) − β(a, J∞, A∞)
]
∣

∣

∣
dσdadb

+
∣

∣

∣

∫ l

T

βJ(a, J∞, A∞)p∞(a)da
∣

∣

∣

∫ T

0

∫ l

T

∫ a

0

π(b, A∞)

V (b, A∞)
F (a, σ)

∣

∣

∣
gA(σ, J∞, A∞)

∣

∣

∣
dσdadb +

∣

∣

∣

∫ l

T

βJ(a, J∞, A∞)p∞(a)da

∣

∣

∣

∫ l

T

∫ T

0

∫ a

0

π(b, A∞)

V (b, A∞)
F (a, σ)

∣

∣

∣
gA(σ, J∞, A∞)

∣

∣

∣
dσdadb < 1.

We note that the conditions of Corollary 3.7 represents a situation where adults control the

population in terms of the death rate as well as the growth rate.

We also note that Farkas, et al. (2008), considered the case when µ(a, J, A) = µ(a, A), V (a, J, A) =

V (a, A), β(a, J, A) = β(a, A). We note that these conditions represents a situation where adults

control the population. Under such conditions Corollary 3.7 gives the following condition for the

local asymptotic stability of a nontrivial steady state:

∫ l

T

π(a, A∞)

V (a, A∞)

∣

∣

∣

[

β(a, A∞) + DA

]

∣

∣

∣
da +

∫ l

T

∫ a

0

F (a, σ)
∣

∣

∣
gA(σ, A∞)

∣

∣

∣
dσda

+

∫ l

T

∫ l

T

∫ a

0

π(b, A∞)

V (b, A∞)
F (a, σ)

∣

∣

∣
gA(σ, A∞)

[

β(b, A∞) − β(a, A∞)
]
∣

∣

∣
dσdadb < 1.

We note that this result corresponds exactly to Theorem 3.4 in El-Doma (2008 a), where juveniles

are not considered.

As we noted before, the method in Farkas, et al. (2008) is different accordingly, they obtained

a different set of conditions for the local asymptotic stability of a nontrivial steady state in this

case.

We also, note that under such conditions Theorem 3.2 gives the following condition for the

instability of a nontrivial steady state:

RA(J∞, A∞) > 0.

This result corresponds exactly to Theorem 3.2 in El-Doma (2008 a), where juveniles are not

considered. However this result is not obtained in Farkas, et al. (2008), instead they obtained

two different conditions under which a nontrivial steady state is unstable.

Corollary 3.8 Suppose that, µ(a, J, A) = µ(J, A), V (a, J, A) = V (J, A), β(a, J, A) = β(J, A).
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Then a nontrivial steady state is locally asymptotically stable if the following holds:

∫ l

T

π(a, J∞, A∞)

V (J∞, A∞)

∣

∣

∣

[

β(J∞, A∞) + DA

]

∣

∣

∣
da + |DJ |

∫ T

0

π(a, J∞, A∞)

V (J∞, A∞)
da

+

∫ T

0

∫ a

0

F (a, σ)
∣

∣

∣
gJ (σ, J∞, A∞)

∣

∣

∣
dσda +

∫ l

T

∫ a

0

F (a, σ)
∣

∣

∣
gA(σ, J∞, A∞)

∣

∣

∣
dσda

+

∫ T

0

∫ l

T

∫ a

0

π(b, J∞, A∞)

V (J∞, A∞)
F (a, σ)

∣

∣

∣

[

DJgA(σ, J∞, A∞) − gJ (σ, J∞, A∞)
(

β(J∞, A∞) + DA

)]∣

∣

∣
dσdadb

+

∫ l

T

∫ T

0

∫ a

0

π(b, J∞, A∞)

V (J∞, A∞)
F (a, σ)

∣

∣

∣

[

gJ(σ, J∞, A∞)
(

β(J∞, A∞) + DA

)

− DJgA(σ, J∞, A∞)
]
∣

∣

∣
dσdadb

< 1.

We note that the conditions of Corollary 3.8 represents a situation where both adults and juveniles

affect the vital rates and therefore the population, hence the condition for the local asymptotic

stability of a nontrivial steady state is complicated.

We also note that we have listed only few corollaries, of course, we can have many more for

any possible situation that we choose and this is the advantage of the general formulation in the

present work.

In the following result, we prove that the characteristic equation (11) remains unchanged if each

of the vital rates is multiplied by any positive function, f(J, A) ∈ C1(R+2
).

Theorem 3.9 Suppose that, β = β(a, J, A)f(J, A), µ = µ(a, J, A)f(J, A), V = V (a, J, A)

×f(J, A), where, f(J, A) ∈ C1(R+2
), is a positive function. Then the characteristic equation (11)

for problem (1), in this case, is the same as when, β = β(a, J, A), µ = µ(a, J, A), V = V (a, J, A),

i.e., it satisfies (11) too.

Proof. By Theorem 2.3, the steady states are the same. So, we linearize problem (1) at p∞(a), as

before, but this time we use the new vital rates, β = β(a, J, A)f(J, A), µ = µ(a, J, A)f(J, A), V =

V (a, J, A)f(J, A). Then we obtain (10) again after simple manipulations and using (3). This

completes the proof of the theorem.

In the next result, we generalize the (in)stability results obtained so far to the general case

when the vital rates, respectively, assume β = β(a, J, A)f(J, A), µ = µ(a, J, A)f(J, A), V =

V (a, J, A)f(J, A).

Corollary 3.10 Suppose that, β = β(a, J, A)f(J, A), µ = µ(a, J, A)f(J, A), V = V (a, J, A)

× f(J, A), where, f(J, A) ∈ C1(R+2
), is a positive function. Then the (in)stability results for

problem (1), in this case, are the same as when, β = β(a, J, A); µ = µ(a, J, A); V = V (a, J, A).

Proof. We note that the (in)stability results given in Theorem 3.1 follow in this case because

by Theorem 3.9 we obtain the same characteristic equation (11), accordingly, we obtain the

characteristic equation (18). We also note that the instability result given in Theorem 3.2 follows

in this case because by Theorem 3.9 we use the same characteristic equation (11). A similar

reasoning as above holds for Theorem 3.3. We also note that Theorem 3.4 and all its corollaries
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are obtained from the characteristic equation (11), and therefore, the results follow in this case

too. This completes the proof of the corollary.

We also note that we can produce further stability results for three special cases, namely, the

case when

l = +∞, V (a, J, A) = V (a), µ(a, J, A) = µ(A),

∫

∞

0

dτ

V (τ )
= +∞,

the case when

l = +∞, V (a, J, A) = V (a), µ(a, J, A) = µ(J),

∫

∞

0

dτ

V (τ )
= +∞,

and the case when

l = +∞, V (a, J, A) = V (a), µ(a, J, A) = µ(a),

∫

∞

0

µ(τ )

V (τ )
dτ = +∞.

The analysis of these special cases will be the subject of a series of two subsequent papers.

Example 1: In this example, we consider an example originally considered in Cushing, et al.

(1991), and later in Farkas, et al. (2008). Their interest is to determine the juvenile competitive

effects on adult’s fertility. They assumed that β(a, J, A) = β(a, W ), W = αJ +A, α > 0; W∞ =

αJ∞+A∞, µ(a, J, A) = µ(a), and V (a, J, A) = 1, where the constant, α, measures the depressive

effects of juveniles on adult’s fertility.

We note that, in this case, from Corollary 3.5, we obtain the following condition for a nontrivial

steady state to be locally asymptotically stable:
∫ l

T

π(a)
∣

∣

∣
β(a, W∞) +

∫ l

T

βW (c, W∞)p∞(c)dc
∣

∣

∣
da + α

∣

∣

∣

∫ l

T

βW (c, W∞)p∞(c)dc
∣

∣

∣

∫ T

0

π(a)da < 1.

Also, Theorem 3.2 gives the following condition for a nontrivial steady state to be unstable:

[αJ∞ + A∞]

∫ l

T

βW (a, W∞)p∞(a)da > 0.

Accordingly, from Theorem 3.2, for a nontrivial steady state to be locally asymptotically stable

we must have

∫ l

T

βW (a, W∞)p∞(a)da < 0, and therefore, Farkas, et al. (2008), concluded that

their method fails to establish conditions for a nontrivial steady state to be locally asymptotically

stable. Also if we assume that β(a, J∞, A∞)+

∫ l

T

βA(a, J∞, A∞)p∞(a)da ≥ 0, together with the

just mentioned condition, we obtain the following condition for a nontrivial steady state to be

locally asymptotically stable:

∫ l

T

π(a)da − α

∫ T

0

π(a)da > 0.

Hence, due to monotonicity, there exists a unique T ∗ > 0 satisfying

∫ l

T ∗

π(a)da = α

∫ T ∗

0

π(a)da,
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such that for any T ∈ [0, T ∗) a nontrivial steady state is locally asymptotically stable. From the

above inequality we note that if α, is large i.e., when adult’s fertility is adversely affected by

competition from juveniles, then it is a destabilizing effect that can induce instability. This is

in agreement with Cushing, et al. (1991), and the references therein. We also note that if T is

sufficiently small then that will decrease the competitive effects of juveniles on adult’s fertility.

We also note that,
∂

∂α
p∞(a) < 0, that means the density of the population p∞(a) given by

equation (4) is decreased by the depression coefficient, α, this result is proved in Cushing, et

al. (1991), which also proved that,
∂

∂α

(p∞(a)

P∞

)

= 0, which means that the proportion of the

density to the total population remains constant independent of the depression coefficient, α.

Example 2: Corollary 3.5 states that if µ(a, J, A) = µ(a), and, V (a, J, A) = V (a). Then a

nontrivial steady state is locally asymptotically stable if (20) holds.

Also, Theorem 3.2 gives that a nontrivial steady state is unstable if

J∞

∫ l

T

βJ(a, J∞, A∞)p∞(a)da + A∞

∫ l

T

βA(a, J∞, A∞)p∞(a)da > 0.

Also, by Theorem 3.1, a trivial steady state is locally asymptotically stable if
∫ l

T

β(a, 0, 0)

V (a, 00)
π(a)da < 1, and unstable if

∫ l

T

β(a, 0, 0)

V (a, 0, 0)
π(a)da > 1.

We also note that in Farkas, et al. (2008), the following conditions for a nontrivial steady state

to be locally asymptotically stable are given:

1) J∞

∫ l

T

βJ(a, J∞, A∞)p∞(a)da + A∞

∫ l

T

βA(a, J∞, A∞)p∞(a)da < 0,

2) β(a, J∞, A∞) +

∫ l

T

βA(a, J∞, A∞)p∞(a)da ≥ 0,

3)

∫ l

T

βJ(a, J∞, A∞)p∞(a)da ≥ 0.

Now, if we assume 1-3, then from the left-hand side of inequality (20), we obtain

∫ l

T

π(a)

V (a)

∣

∣

∣

[

β(a, J∞, A∞) +

∫ l

T

βA(a′, J∞, A∞)p∞(a′)da′

]

∣

∣

∣
da +

∣

∣

∣

∫ l

T

βJ(a′, J∞, A∞)p∞(a′)da′

∣

∣

∣

∫ T

0

π(a)

V (a)
da

= 1 +
1

p∞(0)V (0)

[

J∞

∫ l

T

βJ(a, J∞, A∞)p∞(a)da + A∞

∫ l

T

βA(a, J∞, A∞)p∞(a)da
]

< 1.

However, the result in Farkas, et al. (2008), fails in some cases, for example, when
∫ l

T

βJ(a, J∞, A∞)p∞(a)da < 0,

∫ l

T

βA(a, J∞, A∞)p∞(a)da < 0, T = 0, and condition 2. holds,

whereas our result in Corollary 3.5 gives that a nontrivial steady state is locally asymptotically

stable. In fact, if we do not assume that, T = 0, then the condition for the local asymptotic
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stability of a nontrivial steady state is given by

δ

∫ l

T

π(a)

V (a)
da − γ

∫ T

0

π(a)

V (a)
da < 0,

where δ, γ are defined as

δ =

∫ l

T

βA(a, J∞, A∞)p∞(a)da, (22)

γ =

∫ l

T

βJ(a, J∞, A∞)p∞(a)da. (23)

We note that δ can be interpreted as the total change in the birth rate, at the steady state, due to

a change in adults only. Also, note that γ is interpreted similarly.

Example 3: In this example, we consider the case when β(a, J, A) =
c

J + A
, c > 0 is a constant;

µ(a, J, A) = µ(a), V (a, J, A) = V (a).

In this case using equation (6), we obtain that P∞ = c

∫ l

T

π(a)

V (a)
da as the unique solution. We

also note that from equations (8)-(9), we obtain

J∞ =
c
∫ l

T

π(a)
V (a)

da
∫ l

0
π(a)
V (a)

da

∫ T

0

π(a)

V (a)
da, A∞ =

c
[

∫ l

T

π(a)
V (a)

da
]2

∫ l

0
π(a)
V (a)

da
. (24)

In order to determine the stability of this steady state, we apply Corollary (14) to obtain the

following condition for local asymptotic stability:

J∞

A∞

< 1.

Example 4: In this example, we consider the case when β(a, J, A) =
c

JA
, c > 0 is a constant;

µ(a, J, A) = µ(a), V (a, J, A) = V (a).

In this case using equation (6), we obtain the following equation for a hyperbola:

J∞A∞ = c

∫ l

T

π(a)

V (a)
da. (25)

Now, by solving simultaneously equation (25) and equation (8), we obtain a unique steady state

given by

J∞ =
√

c

√

∫ T

0

π(a)

V (a)
da, A∞ =

√
c
∫ l

T

π(a)
V (a)

da
√

∫ T

0
π(a)
V (a)

da
.

In order to determine the stability of this steady state, we note that in this case, from Theorem 3.3,

we obtain that, ξ = 0, is not a root of the characteristic equation (11). And from the characteristic
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equation A1 of Appendix A, we obtain the following characteristic equation:

1 = −A∞

J∞

∫ T

0
e
−ξ

R a

0
dτ

V (τ) π(a)
V (a)

da
∫ l

T

π(a)
V (a)

da
. (26)

Now, let ξ = x + iy, and suppose that x ≥ 0. Then the real part of the characteristic equation

(26) becomes

1 = −A∞

J∞

∫ T

0
e
−x

R a
0

dτ
V (τ) π(a)

V (a)
cos y

∫ a

0
dτ

V (τ )
da

∫ l

T

π(a)
V (a)

da
. (27)

From the right-hand side of equation (27), we obtain that, except when x = y = 0, we have

∣

∣

∣

A∞

J∞

∫ T

0
e
−x

R a

0
dτ

V (τ) π(a)
V (a)

cos y
∫ a

0
dτ

V (τ )
da

∫ l

T

π(a)
V (a)

da

∣

∣

∣
<

A∞

J∞

∫ T

0
π(a)
V (a)

da
∫ l

T

π(a)
V (a)

da
= 1.

Accordingly, the nontrivial steady state is locally asymptotically stable.

Regarding Example 1 - Example 4, we note that we can use Theorem 2.3 and Corollary 3.10 to

show that these steady states as well as their stability results remain unchanged if each of the

vital rates is multiplied by any positive function f(J, A) ∈ C1(R+2
).

4. Conclusion

In this paper, we studied a size-structured population dynamics model where the maximum size is

either finite or infinite and the population is divided into adults and juveniles. The vital rates i.e.,

the birth rate, the death rate, and the growth rate, depend on size, adults, and juveniles, therefore,

the model takes into account the limited resources as well as the intra-specific competition

between adults and juveniles.

We determined the steady states of the model and examined their stability. We proved that the

trivial steady state is always a steady state and that there are as many nontrivial steady states

as the nonnegative solutions of two equations (8) or (9), and, R(J∞, A∞) = 1, where, R(J, A),

is given by equation (7), and, J∞ + A∞ > 0. We also showed that these steady states remain

unchanged if each of the vital rates is multiplied by any positive continuous function f(J, A).

Furthermore, we gave some sufficient conditions for their existence and uniqueness.

Then we studied the stability of the trivial steady state and showed that if R(0, 0) < 1, then the

trivial steady state is locally asymptotically stable and if R(0, 0) > 1, then the trivial steady state

is unstable.

In addition, we studied the stability of a nontrivial steady state and we proved a theorem that

provided a sufficient condition for the local asymptotic stability of a nontrivial steady state of

the general model, we note that this theorem generalizes the stability results given in Farkas,

et al. (2008), in that they studied only two special cases whereas here we give the complete
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characteristic equation, and derive a general stability result. We also stated several corollaries to

that theorem for some special cases, and these were just a few from that can be stated. We also

gave a condition for a nontrivial steady state to be unstable, and this condition can be viewed

as the positiveness of the directional derivative of R(J, A) at (J∞, A∞). We also proved that

these (in)stability results remain unchanged if each of the vital rates is multiplied by any positive

function f(J, A) ∈ C1(R+2
). Finally, we illustrated our stability results by examples.

We note that in this paper as well as in our previous papers El-Doma (2008 a) and El-Doma (2008

b), we assumed the principle of linearized stability for size-structured models, which has received

considerable attention in recent years. This principle consists of two parts, namely, stability part

and instability part, for example, see Diekmann, et al. (2007 b). The stability part says that

a nontrivial steady state is locally asymptotically stable if all the roots of the corresponding

characteristic equation, which results from the linearization of the model equations at a steady

state, lie to the left of the imaginary axis. The instability part says that a nontrivial steady state

is unstable if the corresponding characteristic equation has at least one root that lie to the right

of the imaginary axis. For example, Tucker, et al. (1988), proved the stability part for a general

size-structured model that incorporated several structuring variables i.e., several growth rates. De

Roos, et al. (1990), concluded that their numerical results are in agreement with the stability

results obtained via linearization for a size-structured model of Daphnia. Calsina, et al. (1995),

proved the existence of a global attractor for a size-structured model that is similar to the model

considered in this paper with the additional assumption that there is an inflow of newborns from

an external source, but without assuming that the population is divided into adults and juveniles.

Diekmann, et al. (2007 a), conjectured the principle and outlined preliminary steps for a proof.

Diekmann, et al. (2007 b), proved the principle for cases when the maximum attainable size for

an individual is finite and the death rate assumes the affine form i.e., µ0(a)+µ1(P (t)). Diekmann,

et al. (Preprint a), relaxed the condition on the maximum attainable size for an individual in the

population and the condition on the death rate is improved so that the death rate can take the

form, µ(a, P (t)). Further examples that illustrated the previous results are given in Diekmann,

et al. (2008).

In a series of subsequent two papers, we study three special cases, namely, the first case is when,

V (a, J, A) = V (a), µ(a, J, A) = µ(A), the second case is when, V (a, J, A) = V (a), µ(a, J, A) =

µ(J), and the third case is when, V (a, J, A) = V (a), µ(a, J, A) = µ(a). We note that the first

special case linked our study of the stability of our size-structured population dynamics model to

the study of the classical Gurtin-MacCamy’s age-structured population dynamics model given in

Gurtin, et al. (1974), specifically, the studies for the stability given in Gurney, et al. (1980), and

Weinstock, et al. (1987), in fact, the characteristic equation for this special case, when juveniles

are not considered i.e. when, T = 0, has the same qualitative properties as the characteristic

equation of the Gurtin-MacCamy’s age-structured population dynamics model, this fact is proved

in El-Doma (2008 a). Also similarly, the third special case linked our study to studies related to

cannibalism, for example, see Iannelli (1995), Bekkal-Brikci, et al. (2007), and El-Doma (2007).
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Appendices

A. The Characteristic Equation

1 =
1

V (0, J∞, A∞)

∫ l

T

e−
R a

0 E(τ )dτ

[

β(a, J∞, A∞) + DA

]

da +
DJ

V (0, J∞, A∞)

∫ T

0

e−
R a

0 E(τ )dτda

−
∫ T

0

∫ a

0

e−
R a

σ
E(τ )dτgJ (σ, J∞, A∞)dσda −

∫ l

T

∫ a

0

e−
R a

σ
E(τ )dτgA(σ, J∞, A∞)dσda

+

∫ l

T

∫ l

T

∫ a

0

e−
R b

0 E(τ )dτe−
R a

σ
E(τ )dτgA(σ, J∞, A∞)

[β(b, J∞, A∞) − β(a, J∞, A∞)

V (0, J∞, A∞)

]

dσdadb

+

∫ T

0

∫ l

T

∫ a

0

e−
R b

0 E(τ )dτe−
R a

σ
E(τ )dτ

[DJgA(σ, J∞, A∞) − gJ (σ, J∞, A∞)
(

β(a, J∞, A∞) + DA

)

V (0, J∞, A∞)

]

dσdadb

+

∫ l

T

∫ T

0

∫ a

0

e−
R b

0 E(τ )dτe−
R a

σ
E(τ )dτ

[gJ (σ, J∞, A∞)
(

β(b, J∞, A∞) + DA

)

− DJgA(σ, J∞, A∞)

V (0, J∞, A∞)

]

dσdadb

−
∫ T

0

∫ b

0

∫ l

T

∫ a

0

e−
R a

σ
E(τ )dτe−

R b

e
E(τ )dτB(σ, e)dσdadedb

+

∫ T

0

∫ l

T

∫ b

0

∫ l

T

∫ a

0

e−
R c

0 E(τ )dτe−
R a

σ
E(τ )dτe−

R b

e
E(τ )dτ B(σ, e)β(a, J∞, A∞)

V (0, J∞, A∞)
dσdadedbdc

+

∫ l

T

∫ T

0

∫ b

0

∫ l

T

∫ a

0

e−
R c

0 E(τ )dτe−
R a

σ
E(τ )dτe−

R b

e
E(τ )dτB(σ, e)

[

β(c, J∞, A∞) − β(a, J∞, A∞)
]

V (0, J∞, A∞)
dσdadedbdc,

A1

where B(σ, e) is given by

B(σ, e) = gA(σ, J∞, A∞)gJ (e, J∞, A∞) − gJ (σ, J∞, A∞)gA(e, J∞, A∞).

B. A Sufficient Condition for Local Asymptotic Stability

∫ l

T

π(a, J∞, A∞)

V (a, J∞, A∞)

∣

∣

∣

[

β(a, J∞, A∞) + DA

]

∣

∣

∣
da + |DJ |

∫ T

0

π(a, J∞, A∞)

V (a, J∞, A∞)
da

+

∫ T

0

∫ a

0

F (a, σ)|gJ(σ, J∞, A∞)|dσda +

∫ l

T

∫ a

0

F (a, σ)|gA(σ, J∞, A∞)|dσda (28)

+

∫ l

T

∫ l

T

∫ a

0

π(b, J∞, A∞)

V (b, J∞, A∞)
F (a, σ)

∣

∣

∣
gA(σ, J∞, A∞)

[

β(b, J∞, A∞) − β(a, J∞, A∞)
]
∣

∣

∣
dσdadb

+

∫ T

0

∫ l

T

∫ a

0

π(b, J∞, A∞)

V (b, J∞, A∞)
F (a, σ)

∣

∣

∣

[

DJgA(σ, J∞, A∞) − gJ (σ, J∞, A∞)
(

β(a, J∞, A∞) + DA

)]
∣

∣

∣
dσdadb

+

∫ l

T

∫ T

0

∫ a

0

π(b, J∞, A∞)

V (b, J∞, A∞)
F (a, σ)

∣

∣

∣

[

gJ (σ, J∞, A∞)
(

β(b, J∞, A∞) + DA

)

− DJgA(σ, J∞, A∞)
]
∣

∣

∣
dσdadb



AAM: Intern. J., Vol. 4, Issue 2 (December 2009), [Previously Vol. 4, No. 2] 391

+

∫ T

0

∫ b

0

∫ l

T

∫ a

0

F (a, σ)F (b, e)|B(σ, e)|dσdadedb

+

∫ T

0

∫ l

T

∫ b

0

∫ l

T

∫ a

0

π(c, J∞, A∞)

V (c, J∞, A∞)
F (a, σ)F (b, e)β(a, J∞, A∞)|B(σ, e)|dσdadedbdc

+

∫ l

T

∫ T

0

∫ b

0

∫ l

T

∫ a

0

π(c, J∞, A∞)

V (c, J∞, A∞)
F (a, σ)F (b, e)

∣

∣

∣
B(σ, e)

[

β(c, J∞, A∞) − β(a, J∞, A∞)
]
∣

∣

∣
dσdadedbdc

< 1, B1

where F (a, σ) is given by

F (a, σ) =
V (σ, J∞, A∞)

V (a, J∞, A∞)
e
−

R a

σ

µ(τ,J∞ ,A∞)
V (τ,J∞ ,A∞)

dτ
.
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