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Abstract 
 
The flow of blood through a stenosed catheterized artery has been studied. To observe the 
effects of hematocrit, blood has been represented by a two-phase macroscopic model (i.e., a 
suspension of red cells in plasma). It is found that for any given catheter size, the impedance 
increases with hematocrit and also for a given hematocrit, the same increases with the 
catheter size. In the stenotic region, the wall shear stress increases in the upstream of the 
stenosis throat and decreases in the downstream in an uncatheterized artery but the same 
possesses an opposite character in the case of a catheterized artery. The shear stress at the 
stenosis throat possesses the character similar to the flow resistance (impedance) with respect 
to the hematocrit for a given catheter size, however, the same decreases with an increase in 
the size of the catheter for any given hematocrit. 
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1.   Introduction 
 
Circulatory disorders are mostly responsible for over seventy five percent of all deaths and 
stenosis or arteriosclerosis is one of the frequently occurring diseases. Stenosis is the 
abnormal and unnatural growth in the arterial wall thickness that develops at various 
locations of the cardiovascular system under diseased conditions which occasionally results 
into the serious consequences. An account of most of the theoretical and experimental 
investigations on the subject may be had from Young (1979), Srivastava (1996, 2002), Sarkar 



AAM: Intern. J., Vol. 4, Issue 1 (June 2009) [Previously, Vol. 4, No. 1]                                                           99 

 

and Jayraman (1998), Mekheimer and El-Kot (2008a, b). Arterial stenosis is associated with 
significant changes in the flow of blood, pressure distribution, wall shear stress and the flow 
resistance (impedance). The flow accelerates and consequently the velocity gradient near the 
wall region is steeper due to the increased core velocity resulting in relatively large shear 
stress on the wall even for a mild stenosis, in the region of narrowing arterial constriction. 
The flow rate and the stenosis geometry are the reasons for large pressure loss across the 
stenosis.  
 
The increased impedance or the frictional resistance to flow and the wall shear stress will 
alter the velocity distribution when a catheter is inserted into a stenosed artery. A review of 
most of the experimental and theoretical investigations on artery catheterization has recently 
been presented by Srivastava and Srivastava (2008) in which they discussed the macroscopic 
two-phase blood flow through a catheterized artery of uniform diameter. Supported by 
experimental outcomes, Kanai (1970) established analytically that for each experiment, a 
catheter of appropriate size (diameter) is required in order to reduce the error due to the wave 
reflection at the tip of the catheter. A catheter with a tiny balloon at the end is inserted into 
the artery in balloon angioplasty to treat atherosclerosis. The catheter is carefully guided to 
the location at which stenosis occurs and balloon is inflated to fracture the fatty deposits and 
widen the narrowed portion of the artery. To measure translational pressure gradient during 
angioplasty procedures has been discussed by Gunj et al (1985), Anderson et al. (1986) and 
Wilson et al. (1988).  
 
Leimgraber et al. (1985) have reported high mean pressure gradient across the stenosis. A 
catheter is composed of polyster based thermo plastic polyurethane,  medical grade 
polyvinyl chloride, etc. The mathematical model corresponds to the flow through an annulus. 
Back (1994) and Back et al. (1996) studied the mean flow resistance increase during coronary 
artery catheterization in normal as well as stenosed arteries. The changed flow patterns of 
pulsatile blood flow in a catheterized stenosed artery were studied by Sarkar and Jayaraman 
(1998). Dash et al. (1999) further addressed the problem in a stenosed curved artery. Most 
recently, Sankar and Hemlatha (2007) studied the flow of Herschel-Bulkley fluid in a 
catheterized artery. The geometrically similar problem to observe the effects of an inserted 
catheter on uretral flow was analysed by Roos and Lykoudis (1970). Besides, several authors 
including Hakeem et al. (2002), Hayat et al. (2006) and Srivastava (2007) have explained the 
effects of an endoscope on flow behavior of chyme in gastrointestinal tract. 
 
It is known that at low shear rates, blood being a suspension of corpuscles, behaves like a 
non-Newtonian fluid (Srivastava and Srivastava, 1983, 2008). Besides, the theoretical 
analysis of Haynes (1960) and the experimental observations of Cokelet (1972) indicate that 
blood can no larger be treated as a single-phase homogeneous viscous fluid in narrow arteries 
(of diameter < 1000 μm ). It is to note that the individuality of red cells (of diameter 8 μm ) is 
important even in such large vessels with diameter up to 100 cells diameter (Srivastava and 
Srivastava (1983)). Skalak (1972) concluded that an adequate description of flow requires 
consideration of red cells as discrete particles. Certain observed phenomena in blood 
including Fahraeus-Lindqvist effect, non-Newtonian behavior, etc. can not be explained fully 
by treating the blood as a single-phase fluid. Thus, the individuality of erythrocytes (red cells) 
can not be ignored even while dealing with the problem of microcirculation. It appears to be 
therefore necessary and important to treat the whole blood as a particle-fluid (erythrocyte-
plasma) mixture while flowing through narrow arteries. 
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The studies mentioned earlier on flow through stenosed catheterized vessels have considered 
blood either as a single-phase Newtonian or non-Newtonian fluid. Red blood cells are known 
to be responsible for many of the blood properties and diseases, and consequently dominate 
the flow field [Srivastava (1996)]. In large arteries such as aorta, the single-phase approach 
provides satisfactory tools to describe certain aspects, however, it fails to explain the 
behavior of blood while flowing through small diameter vessels [2400-8 μm ; Srivastava and 
Srivastava (1983)]. With increasing applications of particulate suspension model to describe 
the flow behavior of blood in small diameter tubes, it is regretted that no efforts, at least to 
the authors knowledge has been made in the literature to observe the effects of hematocrit 
(volume fraction density of erythrocytes) on increased impedance, shear stress and other flow 
characteristics in stenosed catheterized arteries. We therefore propose to study the effects of 
hematocrit on flow behavior of blood while flowing through narrow stenosed catheterized 
arteries. The mathematical model considers the blood as an erythrocytes-plasma mixture (i.e., 
a suspension of erythrocytes in plasma). 
 
2.   Formulation of the Problem 
 
Consider the axisymmetric flow of blood through a catheterized artery with an axisymmetric 
stenosis. The artery is assumed to be a rigid circular tube of radius R and the catheter as a 
coaxial rigid circular tube of radius R1. The geometry of the stenosis which is assumed to be 
manifested in a catheterized arterial wall segment is described (Figure 1) as  
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with R(z) and Ro are the radius of the artery with and without stenosis, respectively, Lo is the 
stenosis length and d indicates its location. δ=δm(1–e-t/θ), represents the instantaneous 
maximum height of the stenosis in which t is the time, θ is the time constant, and δm is the 
maximum projection of the stenosis in to the lumen. The parameters t and θ are important 
only at the initial stages of the stenotic development and become insignificant as 
t (Young,1968).  
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Blood is assumed to be represented by a two-phase macroscopic model, that is, a suspension 
of erythrocytes (red cells) in plasma, a Newtonian viscous fluid. An attempt to analyze the 
problem in an exact manner seems to be very difficult due to the complicated structure of 
blood and the circulatory system. Under the simplified assumptions along with their 
justifications, stated in Srivastava and Srivastava (1983), the equations describing the steady 
flow of a two-phase macroscopic model of blood may be expressed as 
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where 2 22 /)/(/)/1( zrrrr   as Laplacian operator, r and z are the cylindrical 
polar coordinate system with z measured along the tube axis and r perpendicular to the axis of 
the tube. (uf, up) and (vf, vp) are the axial and radial components of the (fluid, particle) 
velocity. f and p  are the actual density of the material constituting the fluid (plasma) and 

the particle (erythrocyte) phases, respectively, (1-C) f is the fluid phase and C p is particle 

phase densities, C denotes the volume fraction density of the particles, p is the pressure, 

s (C) s  is the mixture viscosity (apparent or effective viscosity) , S is the drag coefficient 

of interaction for the force exerted by one phase on the other, and the subscripts f and p 
denote the quantities associated with the plasma (fluid) and erythrocyte (particle) phase, 
respectively.  
 
It is to note that the pressure gradients have been assumed to be the same for the two phases 
which is true in most of the practical situations [Drew (1976)]. The concentration of the 
particles is considered to be small enough as to neglect the field interaction among them 
[Srivastava (1996)]. The volume fraction density, C is also chosen constant which is a good 
approximation for the low concentration of small particles [Drew (1979); Srivastava et al. 
(1994)]. 
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The expressions for the viscosity of suspension, s and the drag coefficient of interaction, S 

for the present problem have been chosen [Srivastava and coworker (1989; 1996)] as  
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where T is measured in absolute temperature ( oK ), ao is the radius of a red cell and o  is the 

plasma viscosity. The empirical relation for the suspension viscosity, s suggested by Charm 

and Kurland (1974), is found to be reasonably accurate up to C = 0.6 (i.e., 60% hematocrit). 
One may recall here that hematocrit in human blood lies between 30% and 55%. Charm and 
Kurland (1974) tested equation (8) with a cone and plate viscometer and found it to be in 
agreement within 10% in the case of blood. Equation (9) derived by Tam (1969), represents 
the classical Stokes drag for small particle Reynolds number. 
 
Due to the non-linearity of the convective acceleration terms, the solutions of equations (2)–
(7) are formidable task. Depending on the stenosis size, however, certain terms in these 
equations are of less importance than others. Considering the case of a mild stenosis and 
under the conditions [Young (1968); Srivastava (2003)]: 1)/2(Re, 1/  oo LR   and 

2Ro/Loo(1), Re being the tube Reynolds number; equations (2)–(7) are simplified to  
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The boundary conditions are 
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3.   Analysis 
 
The integration of equations (10) and (11) under the boundary conditions (12), yields the 
expressions for the plasma, fu  and erythrocyte, up velocities as  
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The volumetric flow flux, Q is now calculated as  
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with  =R1/Ro and  =8C(1-C) 2/ os RS , a non-dimensional suspension parameter. 

 

The pressure drop, p  (i.e., p at z = 0, - p at z = L) across the stenosis is obtained as  
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The flow resistance (resistive impedance),   and the wall shear stress, R  are now calculated 
as 
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The shearing stress, s  at the stenosis throat located at z = d+ Lo/2, is thus obtained as 
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The first and the third integrals in the expression for G (equation (19)) are straight forward 
where as the analytical evaluation of the second integral is a formidable task. In view of this, 

one obtains the final expression for the flow resistance,    as  
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The expressions for the dimensionless flow resistance, , the wall shear stress, R  and the 

shearing stress at the stenosis throat, s may now be written as   
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o and o  are resistive impedance and wall shear stress, respectively for an uncatheterized 

normal artery (no stenosis) in the absence of the particle phase. 
 
Under the limit 0 (no catheter), the expressions for the flow characteristics,  , R  and 

s  obtained in equations (22)-(24), take the form 
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which correspond to the macroscopic two-phase blood flow through an axisymmetric 
stenosis. In addition in the absence of particle phase, these expressions reduce to 
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which are the same results as derived in Young (1968) for the flow of a single-phase 
Newtonian viscous fluid through a circular tube with a mild stenosis. 
 
 
3.   Numerical Results and Discussion 
 
In order to discuss the results of the study quantitatively, computer codes are developed to 
evaluate the analytical results obtained above numerically at the temperature of 25.5oC and 
some of the critical values are displayed graphically in figures. 2-9. The parameter values are 
selected as [Young (1968); Back (1994); Srivastava (2003)] ao (radius of an erythrocyte) = 



106                                                                                                                                          Srivastava and Rastogi 

 

8 m ; C (hematocrit %) = 0, 0.2, 0.4, 0.6; Ro (artery radius) = 0.01 cm; oR/  (stenosis 

height) = 0, 0.05, 0.10, 0.15, 0.20;  Lo (stenosis length, cm) = 1;  L (artery length, cm) = 1, 2, 
5;   (catheter size)= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The present study corresponds to the 
particulate suspension of blood flow through an axisymmetric stenosis, to the flow through a 
normal catheterized artery and to the flow of a viscous Newtonian fluid for the parameter 
values, 0 , oR/ = 0 and  C = 0 , Respectively. 
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The flow resistance,   increases with the stenosis height as well as with the hematocrit for 
any given catheter size, . It is noticed that for any given set of other parameters, the 
impedance increases with the catheter size   (Figure 2). In addition,   increases with the 
stenosis length, Lo (Figure 3). For a given hematocrit, even a small increase in the catherter 
size, , significant increase in the magnitude of the flow resistance,  occurs (Figure 4). The 
blood flow characteristic  steeply increases for small increasing values of the parameter,   
but increases rapidly for larger catheter size,   (Figure 5).  
 
The wall shear stress distribution, R  in an uncatheterized artery increases from its 
approached magnitude (i.e., at z = 0) in the upstream of the throat with the axial distance and 
achieves its maximal at the stenosis throat (i.e., at z = d + Lo/2) and then decreases in the 
downstream and attains its approached magnitude at the end of the constriction profile (i.e. at 
z/Lo = 1). Interestingly, however, the shear stress distribution, R  possesses an opposite 

characteristics in a catheterized artery. The flow characteristic, R .  
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decreases from its approached magnitude in the upstream, achieves its minimal at the throat 
and then increases in the downstream and attains its approached magnitude at the end of the 
constriction profile. One further notices that R decreases with increasing catheter size,   for 
other parameters fixed (Figure 6).  
 
Shearing stress at the stenosis throat, s  increases with the stenosis size (height and length) 

for any given hematocrit C and the catheter size,  (Figure 7). s  increases with hematocrit, 

C for any given stenosis size and the catheter size,   (Figure 8). The wall shear stress at the 
maximum height of the stenosis, s  decreases with catheter size,   for a given hematocrit. 

The flow characteristic, s assumes higher magnitude for higher stenosis height for small 

catheter size,  [between  = 0 and  1.3 (approximately)] but the property reverses for large 
values of   (Figure 9). One notices that s  achieves an asymptotic magnitude when the 

catheter size becomes approximately fifty percent of the artery size.  
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4.   Concluding Remarks 
 
A macroscopic two-phase model of blood has been used to study the effects of hematocrit 
and the size of the inserted catheter on flow characteristics- impedance and shear stress in the 
stenotic artery. As mentioned earlier that in the absence of the catherter (i.e., under the limit 

0 ), the results of the present study reduces to the same as obtained in Srivastava (1995). 
The impedance increases with the increasing size of the catheter and assumes considerable 
higher magnitude in a catheterized artery (present study) than its corresponding magnitude in 
uncatheterized [Srivastava (1995)] for any given set of other parameters fixed. Also, for any 
given catheter size the impedance increases with hematocrit and with the stenosis size (height 
and length). The wall shear stress distribution in the stenotic region possesses almost an 
opposite characteristics in catheterized artery (present study) in comparison to its variations 
in an uncatheterized artery [Srivastava (1995)]. The variations in the magnitude of the shear 
stress at stenosis throat are observed having opposite characteristics in comparison to the 
variations in the magnitude of impedance (flow resistance). 
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