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Abstract
The object of this paper is to give a generalization of Gauss hypergeometric function, and to
investigate its basic properties. Further, we define some fractional integral operators and their

inverses in terms of the Mellin transform. Several well known integral operators, including Saigo
operators can be derived from the results established here.
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1. Generalized Gauss Hypergeometric Function
The important role played by special functions, particularly the hypergeometric function in

solving numerous problems of Mathematical Physics, Engineering and Applied Mathematics is
well known [see, for instance, Kilbas et al. (2004), Kiryakova (1994), Mathai et al. (1973),
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Samko et al. (1993) and Virchenko et al. (2001)]. This fact has inspired the investigation of
several generalizations of hypergeometric functions. With this objective in mind, we introduce a
generalization of the Gauss’s hypergeometric function in the following form:

miz"‘l( )" (1-zt) q){'ﬁ(a;y;—t(lr_t)Jdt, 1)

rﬁ(a,b;c;z) = ,,]5

where Rec>Reb>0, r>0; r=0, |z]<l; Rey>Rea>0, 7,c®R >0, r-p<l,
B(--) is the beta function [Abramowitz et al. (1972)].

The function 1CID{’ﬁ(a;c;z) denotes the generalized confluent hypergeometric (introduced by
Virchenko (2006)) as follows:

O (a;¢;2) = Lj’tal (L) oy, [(c; T

M@ (c—a) (:6) }“' @

0

where 1‘Pl(z) is the particular case of the so-called generalized Wright hypergeometric function
,'¥,(z) (introduced by Wright (1935)) defined for complexa,, b ; and real 4, B; (i=1p,
j=1¢) by the series

qu{(al,Al),.. (ap, p)|z]zH1 (a,+A4n) i )

(bl’Bl)""’(bq’Bq) n=0 (b +Bn) n

In a series of papers, Wright (1935, 1940) also investigates its asymptotic behavior for the large
values of argument z under the condition

iBj—ZAi>—1. (4)

Certain basic properties of 'V, (z) were also studied in Kilbas et al. (2002). In particular, it was

proved that ¥, (z) is an entire function of z, under condition (4).

Further, for # =1, generalized Gauss hypergeometric function given by (1) has the following
next form



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1418 — 1427] 323

= R - 1 1b—1_0*b*1 Y o gyt
F(abie;z)= F —B(b,c—b)gt (1-0)7"" (1-z2) 1(131(05,;/, t(l—t)]dt' 5)

In the next sections, we prove certain basic properties (Theorems 1-6, below) for the generalized
Gauss’s hypergeometric function ,F(z) and we also define some fractional integral operators

and their inverses. Corresponding results for the Gauss hypergeometric function and integral
operators of Kalla & Saxena (1969) can be easily derived from general results established here.

2. Basic Properties of 7 (z)

As indicated above, this section consists of six theorems which provide some properties of this
function. The first theorem deals with a series representation, while the second gives us some
differential properties.

Theorem 1. The series representation of , 7 (z). Under the valid conditions of existence of the

function | 7 (z) (see (1)), the following formula holds true,

- 1 > "
rF(a,b;c;z):mZ;(a)n TﬁBg (b+n,c—b;r)%, (6)

where (a) is the Pochhammer symbol and _ /B’ (...) is the (7, 8)—generalized beta-function
defined by [see Virchenko (2006)]:

r,/}BZ, (xvy;i’,é',a)):

F =Y o iy ——ar, 7
( ) 171 [ v t(;(l_t){uJ ()

O L

here Rex>0, Rey>0, >0, #>0; §>0, >0 and ,®]” is given by (2).

Theorem 2. The differential relations for F(z) . With due regard to convergence, the function
,F(a,b;c;z) satisfies the following differential formulas:
d" rﬁ((l, b’ C; Z) _ (a)n (b)n

T = (c) rﬁ(a+n,b+n;c+n;z), (8)

n

% z”’lrﬁ(a+n,b;c;z), 9)

n

(Z”””’l]:”(a, b;c; z)) = (a)
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zi rﬁ'(a,b;c;z) = a(rﬁ(a +1,b;¢;z) - rﬁ(a,b;c;z)). (10)

dz

Some recurrence formulae, addition and multiplication properties are given in the following
theorems:

Theorem 3. The functional relations for 7 (z). Under the conditions of existence of the

function ,F(z) the next functional relations are valid:
b, F(a,b+Lc;z)+(c—b-1) F(abc;z)=(c-1),F(abc-1Lz), (11)

F(a,b;c;z)- (c—b), F(a,bic+1z)= brl:“(a,b+1;c+1;z). (12)

Theorem 4. The addition and multiplication theorem. If the conditions of existence of the
function | 7 (z) are valid, then the following functional relations hold

ﬁ'(a,b;c;x+y):i(a)” (b) y F(a+n,b+n;c+n;x), (13)
= n!

abcxy =i (1—y) ,,F(a+n,b+n;c+n;x). (14)

—s c n!

n

The following two theorems deals with integral representations and transformation formulae for
ﬁ(z) :

”

Theorem 5. Integral representations of  F (z). For the valid conditions of existence of the

function 7 (z), we have the following integral representations of | 7 (a,b;c;z):

. ) ¢ w(t—l)b_l(t+l)a_” sl ._r(t+l)2

Flabie )_B(b,c—b)(1+z)”'! @_Hf} e R Tre Tl L
z+1

2 %(sinco)ZH(cosco)z"_”’_1 Tﬁ( 4 j

F(a,b,c,z)—B(b,c_b)_([ (1—zsin2a))a D7 ay; Sn7on do, (16)
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Za 2c+1 2c—a-b-1 -3

bra 2 -1 -1
(a b;c; z b J. (Che )a KOS 06;7:-@ 0, (17)

c—b)q ( +lch6’) 2sh™6

——z
2 2

5 w 2h-1 a—c—b+1 3

(a bic;z) - J‘ (sho)™ " (ch®+1) orF a.y._w do . (18)
b c— b o 1+z+ch9(1 z)) s 2sh*0

sh@ and ch@ stand for usual hyperbolic sine and cosine, respectively.

Theorem 6. Transformations for 7 (z). Under the conditions of existence of the functions
F(a,b;c;z) the following generalized relations of Kummer’ types are valid:

F(abia+b+l-cl-z)=z" F(a,a-c+La+b—c+L1-z7), (19)
rﬁ'(a +1-c¢,b+1l-c; 2—c;z) = (l—z)c_a_l ,_F(a +1—c,1—b;2—c;ilj , (20)
-
rﬁ(c—a,c—b;chl—a—b;l—Z)=Z”_” rﬁ(c—a,l—a;c+l—a—b;l—z‘l), (21)
rﬁ(a,b;c;z) :(1—2)%1 rﬁ(a,c—b;c;ilj. (22)
-
Proofs.

We observe that the Theorems 1-3 can be easily derived, using definitions (1) & (7), and simple
transformations. To prove the results (13) and (14), we use formula (8) of Theorem 2, and then
Taylor theorem about analytical functions [Kilbas et al. (2004)].

Proof of the Theorem 5:

Using main integral representation (1) of  F(a,b;c;z) and substituting r=2 = 1
y+

. 9 2 chf -1 .
t=sin“w, t= t= , we get respectively formulae (15), (16), (17) and (18).

chd+1’ chd +1
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Proof of the Theorem 6:

Simple transformations lead to results (19) to (22). For example, let us prove (19) and (22). We
make the following transformations:

~ . . 1 b h— a—c —a T, C e r
F(abia+b+1l-c;l-z) =my - (1-(1-2)) " 0p (a,}/,—t(l_t)]dt
1 1

“B(ha—crg) (7Y A2 e (“:y;‘(l—ry)y}'y

0

=z rﬁ(a,a—c+1;a+b+1—c;l—z’1).

Similarly, we have

,ﬁ’(a,b;c;z):

This proves the result (22).

3. The Integral Operators with , 7 (z).

Riemann-Liouville operators of fractional integration and differentiation are basic in the theory
of fractional calculus. Several authors, like Love, Saxena, Kalla & Saxena (1969), Saigo,
McBride etc. [see, Kiryakova (1994)] have defined different forms of hypergeometric operators
of fractional integration. Kalla (1969) has defined integral operators involving Fox H-function.

In this part of the paper, we define some fractional integral operators involving the function

ﬁ(z) given by equation (5) and their inverses in terms of the Mellin transform. The

corresponding results for hypergeometric operators mentioned above can be derived from
general formulas established here.

Let us introduce the following four integral operators:

(rlx f)(x)—mj(x—t) rF(a,—b—c,a—c, tJf(t)dt, (23)

0 x+d
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wherea>0,¢>0; b and 4 are real, the function f'(x) is continuous on(o,«);

(réfl’;]if)(x) = x]"]i(xt)bm_lr }?(a,b;c;—xt)f(t)dt, (O<a<l, ¢>0); (24)

—a-b-2d x

)

t!(x-1)" If“(a+b+d,—a—c;—a;l—iJf(t)dt,

X
(a>0,d>-1; b,c arereal); (25)

(1 1)(x)-

~

7 x2 G ogu -u A . 1ox
(,\P},,V,Sf)(x)z (1+'u)'([t (x+1) rF(—v,v—s+l,,u—2s+1,z—zjf(t)dt. (26)

—

It is interesting to observe that forr» =0, the operator given by (25) yields to the Saigo’s
fractional integral operator [see Kiryakova (1994)].

The Mellin and Laplace transforms are used to obtain the inverse operators. The operators
defined by (23) to (26), give the following respective inverse operators

(ri;z,b,Cf)’l _ Kl—lix—a,bﬂvrc,—cM{rj;z,b,Cf1c} , 27)

where M {} denotes the Mellin integral transform and

x - F(;/)F C)F(a—cr)F(a+b+c)F(—b)F(a—c) (28)
b [(-b—c)T(a+b)T(a)l(y—cr)T(a+c)
The inverse operator for (24) is as follows:
(,B.f) =5 KD (L x)im Lh(x), (29)

where

h(x) = (1-x)(r(x)-r(2)),
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r<x>clxi”v{f” < {f - M{,é:md}m}}(x),

—b+d-A1-——-1
P

(_x)”—l P
n!(n — 2)! dx®t

L.f(x)= (x"f(x)}, (n=234,..),

L(7)0(d)T(a—dr)T(c—b+d)T(b+d)T(a)
B(b,c-b)I'(a)T(y—dr)I(c+2d) '

K, =

Now we consider the inverse operator for (25),

(r i;z,b,c,df)*l _ K3_1 (If,b,c,d )flM {(rl;z,b,c,df)(r)’a} ’

where

x—a—b—2d X

(I;J,b,c,df)(x): F(a) E')‘td (x_t)“‘lzFi(a+b+d,—c;a;l—éjf(t)dt,

I(y)T(a—ar)T(a+c)l(—c)I(-a)

F(}/)F(;/ az’) ( a—c)F(c)F(a) .

K=

Finally, the inverse operator for (26) is derived as follows:

(,¥,../) =K (Tl vi'w, |, VIt M{( ‘i’#vvysf)(r),s}](x),

Ey+v+l Z; +2v+z -v-1 7;1+1

where

T f(x)=x""L" (tl_“f(t),t - x) :

N. Virchenko et al.

(30)

(31)

(32)

(33)
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-1 = - 7 -1 j—
L™ is the inverse Laplace’ transform, W, /=W, , . f and

w,. [ isthe Erdelyi-Kober fractional integral operator, [see Kiryakova (1994), pp.65 - 66]

1 1

Vi (x)=2 2x Zf(xzj, Vif(x)=22x21(x7),

F(]/)F(S)F(Ot—sz')l"(v +l).27v—1

B R (@) (r=sr) (D) B(v—s +La—v—s)[ (u+v+1)

The above inversion formulae can be derived easily. The representation of integral
operator ¥ uv.s N the following form can be used to prove the result (32).

(,7,.. f)(x):Kle{Tﬂ I T, f,r}, (34)

i 2 yava £
2 2

where

I,.f(x)= F(Za) x”'T(tz —x’ )H £ (1)t (35)

X

and M is the inverse Mellin transform.

Several special cases can be derived from these general results. Inversion formula for Saigo’s
operator can be derived from (31).

4. Discussions

We have given a generalization of Gauss’ hypergeometric function and derived some of its
properties. This function is used to define new operators of fractional integration. Their inverse
operators are obtained by an appeal to the Laplace and Mellin transforms. Further, the
generalized Gauss’s hypergeometric function and its properties established in this paper are of
general forms and may be used to define new density functions in probability theory. These
operators of fractional integration can be used to solve certain fractional integrodifferential
equations.
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