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Abstract  

In this article, a well-known analytical approximation method, so-called the Homotopy 
perturbation method (HPM) is adopted for solving the nonlinear partial differential equations 
arising in the spatial diffusion of biological populations. The resulting solutions are compared 
with those of the existing solutions obtained by employing the Adomian’s decomposition 
method. The comparison reveals that our approximate solutions are in very good agreement with 
the solutions by Adomian’s method. Moreover, the results show that the proposed method is a 
more reliable, efficient and convenient one for solving the non-linear differential equations.   

Keywords: Homotopy perturbation method (HPM); Adomian’s decomposition method; 
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1.  Introduction 
   
Many problems arising in scientific fields including mathematical biology, fluid dynamics, 
visco-elasticity and mathematical physics can be successfully modeled by the use of nonlinear 
partial differential equations. Several approaches such as the Than method [Evans (2005), Fan 
(2000)], the Homotopy-Perturbation method [He (1999a, 2000a, 2005), Janalizadeh (2008), 
Yildirim (2010a, 2010b), Koçak (2009), Ganji (2006)], the Adomian’s decomposition method 
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[Adomian (1988,1994), Gorguis (2006), Momani (2005), Shakeri (2007)], the Variational 
Iteration Method [(He (1999b, 2000b, 2006), Mohyud-Din (2009), Abdou (2005), Xu (2009), 
Noor (2008), Shakeri (2007)], and some asymptotic methods [He (2006)] have been used to 
solve either linear or nonlinear differential equations. Among these methods, the variational 
iteration method and the homotopy perturbation method are the most efficient, convenient and 
effective methods for finding the analytical approximate solutions of nonlinear problems.  
 
In this article, the nonlinear degenerate parabolic equations arise in the study of spatial diffusion 
of biological populations subject to some initial conditions. Consider the first-order time 
derivative, nonlinear biological model in the following form: 
 

 
2 2 2 2

2 2
,

u u u
g u

t x y

  
  

  
                                                                                                        (1) 

 
with given initial condition  , ,0 ,u x y  where u  and g  denote the population density and 

population supply due to births and deaths, respectively. 
    
In this study, g  is considered as    1k dg u hu ru  , where , , ,h d k r  are real numbers. It is worth 

pointing out that there are two examples of constitutive equations for   :g u  if ,h c  1,d   0r  , 

this leads to Malthusian law [Gurtin (1977)], where c  is a constant and 1, 1,h c d k    2 1 ,r c c  

Verhulst law [Gurtin (1977)],  1 2,c c  are positive constants.  

     
The purpose of this paper is to extend the homotopy perturbation method for computing the 
approximate analytical solutions of the nonlinear biological population model and then see how 
these solutions compare with the available exact solutions implemented by Shekeri et al. 
[Shakeri (2007)] adopting an Adomian decomposition method. The homotopy perturbation 
method was originally proposed by He for nonlinear differential problems [He (1999a, 2000a)]. 
It’s main feature is the condition of homotopy by introducing an embedment parameter ,p  which 
takes the value from 0 to 1. If 0,p   the system of equations (homotopy equations) generally 
reduces to a very simplified form, which yields a rather simple solution.  On the other hand, 
when 1,p   it turns out to be the original problem and provides the required solution. The 
approximate solutions obtained using the HPM converges rapidly to the exact solution without 
any restrictive assumptions, linearization or transformations. In contrast to the traditional 
perturbation method [Holemen (1995), Nayfeh (2000)], the HPM method does not need a small 
parameter in the system. The detailed description of HPM is described in Section 2.   
    
This article is organized as follows. Section 2 is devoted to a short description of the analysis of 
homotopy perturbation method. In Section 3, we present the analytical approximate solutions 
obtained by implementing the HPM to the nonlinear biological population model followed by the 
comparison of results between the approximate solutions and the solutions obtained by adopting 
an Adomian decomposition method. Finally in Section 4, we summarize and discuss the results. 
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2.   Analysis of Homotopy Perturbation Method 
 
To illustrate the basis ideas of the homotopy-perturbation method, we consider the following 
nonlinear differential equation: 
 

      0,Lu Nu g                                                                                                            (2) 

 
with boundary conditions 
 

, 0,
u

B u
n

    
        ,                                                                                                         (3) 

 
where L  is a linear operator, N  denotes a non-linear operator, and  g   is a known analytical 

function,  u  is an unknown function,   is the boundary of the domain   and B is a boundary 

operator . 
 
By means of Homotopy perturbation method [He (1999a, 2000a)], we can construct a Homotopy 
 ,v p  for Equation (2) as follows:  

 
   , : 0,1 ,v p R     

 
which satisfies  
 

                0, 1 ,H v p p Lv Lu p Lv Nv g                                                       (4) 

 
or 
 

             0 0, ,H v p Lv Lu pLu p Nv g                                                               (5) 

 
where  0,1p is an embedding parameter,  v   is an unknown function and 0u  is an initial 

approximation that must satisfies the boundary condition (3). 
  
If 0,p   then Equation (5) becomes 
  

      0,0 0H v Lv Lu                                                                                                   (6) 

 
and when 1,p   Equation (5) takes the original form of the Equation (2), i.e., 
 

        ,1 0.H v Lv Nv g                                                                                           (7) 

   
To solve the problem (2), it is necessary to use the perturbation technique as discussed in 
Holemen (1995) and Nayfeh (2000). So the combination of the perturbation method and the 
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homotopy method is known as the homotopy-perturbation method. By applying the perturbation 
technique the solution of Equation (2) can be expressed as a power series in p    
 

2 3
0 1 2 3 .v v pv p v p v                                                                                                     (8) 

 
Letting 1p   in Equation (8), the approximate solution of (2) can be obtained easily as follows  
 

  2 3
0 1 2 3

1
lim
p

u v pv p v p v


     0 1 2 3 .v v v v                                                            (9) 

  
The detailed convergence analysis of the HPM has been discussed in He (1999a, 2000a). The 
rate of convergence of power series (8), stated in He (1999a), depends upon the nonlinear 
operator of Equation (2) which satisfies the following two conditions: 
 
I. The second derivative of nonlinear operator  Nv  must be small enough, otherwise the 

parameter may be large, that is, p approaches to 1. 

II. The norm of 1 N
L

v
 


must be smaller than 1. 

  
 
3.   Application of Homotopy Perturbation Method 
 
In this section, the homotopy perturbation method described in the previous section for solving 
three different types of problems arising in biological population models is applied. Then 
comparison is made with the available analytical results obtained by Shakeri et al.  (2007) using 
the Adomian’s decomposition method to assess the accuracy and the effectiveness of the 
homotopy perturbation method.  
 
 
Example 1. 
 
Let us consider the following biological population model:  
 

         
2 2 2 2

2 2

, , , , 8
, , , , 1 , , ,

9t

u x y t u x y t
u x y t u x y t u x y t

x y

          
                                          (10)   

                                                                                                   

subject to the initial condition    1
, ,0 exp .

3
u x y x y

   
 

                                                           (11) 

 
 
According to the homotopy perturbation method, we can construct the homotopy for Equation 
(10) which satisfies: 
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     0, , , ,
1

u x y t u x y t
p

t t

  
     

 

                 +
         

2 2 2 2

2 2

, , , , , , 8
, , 1 , , .

9

u x y t u x y t u x y t
p u x y t u x y t

t x y

                
                      (12) 

 
Substituting (8) into (12) and equating the terms with identical powers of ,p  we obtain the 
following set of linear partial differential equations  
 

0 :p  
 0 , ,

0,
u x y t

t





                      0

1
, , exp .

3
u x y t x y

   
 

                                                (13) 

 

 1 :p
         

2 2 2 2
1 0 0 2

0 02 2

, , , , , , 8
, , , , 0,

9

u x y t u x y t u x y t
u x y t u x y t

t x y

  
    

  
    1 , ,0 0,u x y       (14) 

 

2 :p
           2 2

0 1 0 12

2 2

, , , , , , , ,, ,
2 2

u x y t u x y t u x y t u x y tu x y t

t x y

 
 

  
 

                                                                 +      1 0 1

16
, , , , , , 0,

9
u x y t u x y t u x y t     

              2 , ,0 0,u x y                                                                                                                  (15) 

 ڭ      
       
 
Solving the above equations, we obtain the following approximations 
 

   0

1
, , exp

3
u x y t x y

   
 

,                                                                                                  (16) 

 

   1

1
, , exp

3
u x y t t x y

    
 

,                                                                                               (17) 

 

   
2

2

1
, , exp

2 3

t
u x y t x y

   
 

,                                                                                              (18) 

 ڭ      
 

and so on, in the same manner the rest of the components can be obtained using the Maple 
package. 
 
 
According to the HPM, we can obtain the solution in a series form as follows 
 

       
21 1 1

, , exp exp exp
3 3 2! 3

t
u x y t x y t x y x y

                
     

  
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                   
21

exp 1
3 2!

t
x y t

        
  

  

                       
0

11
exp

3 !

n n

n

t
x y

n





   
 

 ,                                                                                    (19)                          

 
which has the exact solution 
 

       1 1
, , exp exp exp

3 3
u x y t x y t x y t

           
   

.                                                          (20) 

     
From the above solution process, it can be seen clearly that, the approximate solution converges 
very fast to its exact solution. The solution in Equation (20) which obtained by HPM is 
absolutely same as that of the solution investigated by Shkeri et al. [Shakeri (2007)] using the 
Adomian decomposition method. Furthermore, the main advantage in using the HPM for solving 
the considered model is that the exact solutions obtained successfully without requiring a small 
parameter in the equation and without calculating the complicated Adomian’s polynomials. 
 
 
Example 2. 
 
Let us consider the following biological population model: 
 

       
2 2 2 2

2 2

, , , ,
, , , , ,t

u x y t u x y t
u x y t hu x y t

x y

 
  

 
                                                               (21)                          

 
with the initial condition  , ,0 .u x y xy                                                    

 
Similarly, by using the homotopy perturbation method, a homotopy of (21) can be obtained as 
follows 
 

     0, , , ,
1

u x y t u x y t
p

t t

  
      

       
2 2 2 2

2 2

, , , , , ,
, ,

u x y t u x y t u x y t
p hu x y t

t x y

   
      

.       (22) 

 
Substituting (8) into (22) and equating the terms with identical powers of ,p  we obtain the 
following set of linear partial differential equations  
 

0 :p   
 0 , ,

0,
u x y t

t





    0 , , ,u x y t xy                                                                                 (23) 

 

1 :p
       

2 2 2 2
1 0 0

02 2

, , , , , ,
, , 0,

u x y t u x y t u x y t
hu x y t

t x y

  
   

  
  1 , ,0 0,u x y                            (24) 
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2 :p
           2 2

0 1 0 12
2 2

, , , , , , , ,, ,
2 2

u x y t u x y t u x y t u x y tu x y t

t x y

 
  

  
  1 , , 0,hu x y t   

         2 , ,0 0,u x y                                                                                                                (25) 

 
 ڭ         
    
Using the initial approximation  0 , , ,u x y t xy  and solving the above equations, we obtain the 

approximations as follows   
 

 0 , ,u x y t xy ,                                                                                                                   (26) 

 
 1 , , ,u x y t h xyt                                                                                                                  (27) 

 

 
2

2
2 , , ,

2!

t
u x y t h xy                                                                                                             (28) 

 ڭ

 , , .
!

n
n

n

t
u x y t h xy

n
                                                                                                             (29) 

 
Inserting the values of u0,u1,u2,…un  in Equation (9), yields the exact solution of (21) as follows 
 

 
2

2, , lim
2! !

n
n

n

t t
u x y t xy h xyt h xy h xy

n

 
     

 
  

              
 

0

lim
!

n

n
n

ht
xy

n






  ,htxye                                                                                    (30) 

 
 
which is the same exact solution obtained by Shakeri et al. (2007) using the Adomian 
decomposition method, if we use the parameter 1 5.h    
 
 
Example 3. 
 
Consider the following biological population model: 
 

       
2 2 2 2

2 2

, , , ,
, , , ,t

u x y t u x y t
u x y t u x y t

x y

 
  

 
,                                                                  (31)   

                                                                                                   
subject to the initial condition  , ,0 sin sinh .u x y x y         

  
 
For solving (31) by the homotopy-perturbation technique we consider the following homotopy  
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     0, , , ,
1

u x y t u x y t
p

t t

  
      

       
2 2 2 2

2 2

, , , , , ,
, ,

u x y t u x y t u x y t
p u x y t

t x y

   
      

.         (32) 

 
Substituting the value of u  from Equation (8) into (32) and equating the terms of the same 
powers of ,p it yields that 
 

 0 :p  
 0 , ,

0,
u x y t

t





  0 , , sin sinh .u x y t x y                                                                       (33) 

1 :p
       

2 2 2 2
1 0 0

02 2

, , , , , ,
, , 0,

u x y t u x y t u x y t
u x y t

t x y

  
   

  
               1 , ,0 0,u x y                 (34)                    

2 :p
             

2 2
0 1 0 12

12 2

, , , , , , , ,, ,
2 2 , , 0,

u x y t u x y t u x y t u x y tu x y t
u x y t

t x y

 
   

  
               

        2 , ,0 0,u x y                                                                                                                 (35)                

 ڭ
             

 
Using the initial approximation  0 , , sin sinh ,u x y t x y  and solving the above equations, we 

obtain the approximations as follows   
 

 0 , , sin sinh ,u x y t x y                                                                                                        (36) 

 
 1 , , sin sinh ,u x y t x yt                                                                                                       (37) 

 

 
2

2 , , sin sinh ,
2!

t
u x y t x y                                                                                                    (38) 

 ڭ

 , , sin sinh .
!

n

n

t
u x y t x y

n
                                                                                                    (39) 

 
 
Therefore, the exact solution of (31) can be expressed as  
 

 
2

, , lim sin sinh sin sinh sin sinh sin sinh
2! !

n

n

t t
u x y t x y x yt x y x y

n

 
    

 
                       

                     
2

lim sin sinh 1 sin sinh
2! !

n
t

n

t t
x y t x ye

n

 
      

 
 .                                             (40) 
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4.  Conclusions 
   
The main goal of this work was to employ homotopy perturbation method for finding the 
approximate analytical solution of biological population models. Three examples were presented 
in this study to illustrate the reliability and applicability of the method. The analytical solution in 
each of the examples obtained in terms of an infinite series with easily computable components 
which converges very rapidly to the exact solution without using any restrictive assumption, 
perturbation or discretization of the variables. Furthermore, the approximate solutions obtained 
using HPM are in excellent agreement with those obtained by the decomposition method of 
Adomian.  However, due to its ease in calculations, the HPM is a more reliable and powerful 
mathematical tool that can be applied to other non-linear partial differential equations.  
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