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Abstract  
 
The unsteady MHD convective flow of an electrically conducting fluid embedded in a porous 
medium along moving infinite vertical plate with ramped wall temperature and radiation in a 
rotating system is investigated here. The fluid taken is incompressible and viscous. The 
governing PDE’s of the model are solved by using integral transform method. The analytical 
solutions for the velocity, concentration and temperature are obtained. The expressions for skin 
friction, rate of mass transfer and heat transfer near the plate are obtained. The effects of various 
parameters like porosity of the medium, magnetic field, Soret number, thermal radiation, 
rotation, radiation and Hall current on the flow field are discussed. It is observed that velocity 
increases with the increase in the porosity parameter K. It reveals that a porous medium having 
large permeability supports the movement of the fluid in the system. Also, it is noticed that Hall 
parameter reduces the resistive effect of the applied magnetic field. Such a study assumes 
importance because both rotation and Hall current induce secondary flow in the flow-field. The 
results of the research may be useful in many industrial applications.  
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1. Introduction 
 
Unsteady convection flows of viscous incompressible fluids past semi-infinite or infinite vertical 
flat surfaces have been investigated by many researchers due to their technological requirements. 
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Flow past a semi-infinite vertical plate was first investigated by Pohlhausen (1921) who solved it 
by integral method. Ostrach (1953) solved the same problem by similarity method. Transient 
convective flow past a semi-infinite vertical plate was studied by Siegel (1958).  Gebhart (1961) 
analysed the same problem by using an approximate method.  
 
Convective heat and mass transfer from a body with different geometries embedded in a 
saturated or unsaturated porous medium has many applications in engineering and science such 
as thermal insulators, solidification of binary alloys and crystal growth dispersion of dissolved 
materials. 
 
Extensive researches on thermal and species convection through a porous media under the 
influence of magnetic field are presented by Agarwal et al. (1983), Branover (1978), Osalusi and 
Sibanda (2006), Watanabe and Pop (1994), Nield and Bejan (2006),  Michiyochi et al. (1976) , 
Muthucumaraswamy and Prema (2016), Mazumdar et al. (1976), Attia (2005, 2009), Pop and 
Ingham (2002), Cowling (1957), Vajravelu and Nayfeh (1992), Jaimala et al. (2013), Vafai 
(2005), Riley (1976), Sparrow and Cess (1961) etc. In 2017 Sheikh et al. compared the solution 
of generalized Casson fluid model with heat generation and chemical reaction. They (2017) 
solved the model by Atangana-Baleanu and Caputo-Fabrizio derivative technique and observed 
that velocities increase gradually with time. Further Sheikh et al. (2018) used Atangana-Baleanu 
fractional derivative technique to theoretically analyze the performance of a solar collector using 
CeO2 and Al2O3 water based nanofluids with inclined plate. Recentely, heat transfer analysis in 
the flow of ethylene glycol-based Molybdenum disulfide generalized nanofluid (EGMDGN) 
over an isothermal vertical plate with heat transfer was done by Ali et al. (2019). 
 
In many flows heat and mass transfer take place simultaneously having an effect on each other 
and leading to the thermal-diffusion and diffusion-thermo effects. Such problems related to 
diffusion-themo (Dufour) and thermal-diffusion (Soret) effects have been examined in different 
physical condition by EL-Kabeir et al. (2010), Chamkha et al. (2013), Chamkha and Rashad 
(2014), Gangadhar (2013), Reddy and Rao (2012), Rani and Reddy (2013), Beg et al. (2009), 
Postelnicu (2007), Kafoussias and Williams (1995), Bhargava et al. (2009), Alam and Rahman 
(2006), Anghel (2000), Makinde (2011), Ibrahim (2009) and others. 
 
Further, the rotating fluids have great geophysical and astrophysical uses. Some natural 
phenomena involve rotating flows with heat and mass transfer like hurricanes tornadoes, ocean 
circulation currents, geophysical systems, etc. Various articles related to rotating flows have 
been published: (Greenspan (1968), Owen and Rogers (1959), Soong and Ma (1995), Soong 
(2001), Muthucumaraswamy et al. (2013)). 
 
Motivated by the above mentioned researches and their enormous applications, we extend our 
previous work (2018) to analyze the radiation and porosity effect under different moving 
conditions on unsteady MHD free convection flow past a moving vertical plate with ramped wall 
temperature. The time dependent, nonlinear and coupled governing equations of the model are 
obtained and solved by using Laplace transform scheme. The influence of different flow 
parameters on the concentration, temperature and transient velocity, as well as heat and mass 
transfer rates is analyzed.  
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2. Mathematical analysis  
 
Consider a coordinate system such that an infinite plate is lying in 0z   plane and a magnetic 
field (0,0, )oB B


is applied normal to the plate i.e. along z– axis. Both the plate and fluid are in a 

state of rigid body rotation with uniform angular velocity (0, 0, )     


about z – axis (as 
illustrated in Figure 1). Initially, the plate is at rest with a uniform temperature and concentration 
T and C respectively.  

 

 

Figure 1.  Geometry of the Problem 
 

At time t > 0, the plate suddenly begins to move vertically upward in its own plane in positive x 
direction with a velocity  ou f t  and concentration are lowered or raised to pC . At the same time 

the plate temperature is changed to  p oT T T t / t   (0 < t < to) and Tp ( t   to). The movement 

of the plate and the free convection cause the fluid motion. The model governs the coupled and 
non-linear PDEs. However, within the boundary layer general behaviour of the fluid motion can 
be examined by simplified problem with some assumptions, stipulated below. 

i)  The fluid far away from the plate is undisturbed.  

ii)  The plate is of infinite extent, so all the physical variables can be considered as a function of 
t and z only. 

iii)  No polarization or applied voltages exist. 
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iv)  The fluid has small value of magnetic Reynolds number; hence the induced magnetic field 
can be neglected. 

v)  All the fluid properties are constants and the variation in density is neglected everywhere 
except in the buoyancy term. 

vi)  In the generalized Ohm's law, effect of Hall currents is taken into account and thermoelectric 
effect and ion-slip are neglected.  

vii)  The plate is electrically non-conducting. 

 
The governing equations of a viscous, incompressible and electrically conducting fluid under the 
above said assumptions are: 

Energy transport equation 
 

2 (r)

2

1
.

p p

T k T q

t c z c z 
  

 
  

                (1) 

 
Mass transport equation 
 

2 2

2 2
.T T

m

D kC C T
D

t z T z

  
 

  
                (2) 

 
Momentum transport equation 
  

2
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  
 
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where 
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Notation and symbols-  

D   Mass diffusion coefficient 

K   Permeability parameter of the medium 

g   Acceleration due to gravity 

im   Ion-slip parameter 

TD   Thermal diffusion coefficient 
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u   Component of the fluid velocity along  

      x- axis  (primary velocity) 

v  C of the fluid velocity along  

      y- axis (secondary velocity) 

C  Concentration at any time t in the fluid 

T   Temperature at any time t in the fluid 

    Density of the fluid 

m   Hall parameter 

     Kinematic viscosity of the fluid 

    Electric conductivity of the fluid 

mT    Mean fluid temperature 

Tk    Thermal diffusion ratio 

*  Volumetric coefficient of 

       concentration expansion 

k      Thermal conductivity of the fluid 

    Volumetric coefficient of thermal  

       expansion 

pc    Heat capacity of the fluid  

 
The admissible initial and boundary conditions are taken as 
 

for 𝑡 ≤ 0:  𝑢 = 𝑣 = 0,   
 
𝑇 = 𝑇∞, 𝐶 = 𝐶∞,   
 
for all 𝑧 and for 𝑡 > 0: 
 
𝑢 = 𝑢ଵ, 𝑣 = 0, 
 
  𝐶 = 𝐶∞,  
 
𝑇 = 𝑇ଵ at 𝑧 = 0 and 

 
0  0   as u , v ,T T , C C z ,                                                                                (5)    

    
where 
 

  
 

1 1 2

, 
,  and 

  

p o
oo o

o
p o

t
T T T t t

tu u f t T t .
u

T , t t

 
      
 

 

 
The radiative heat flux (r)q can take form (Rosseland appro. (Brewster (1992)) 
 

 
4

(r) 4
,

3
s

e

T
q

k z

 
 


                (6) 

 
where s and ek are the Stefan-Boltzmann constant and mean absorption coefficient respectively. 
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Considering the temperature difference within the flow very small, we can take 4T  as 
 

4 3 44 3T T T T    (Neglecting higher order terms in Taylor expansion),          (7) 

 
with the help of (6) and (7), (1) takes form 
 

32 2

2 2

16
.

3
s o

e

TT T T

t z k k z

   
 

  
               (8) 

 
For changing the above equations into non-dimensional form, following non-dimensional 
parameters and variables are taken: 
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By using equation (9), equations (2), (3), (4), (5) and (8), change to 
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1
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                                     (10) 
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1
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* *2 2 2 *
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i
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11

for 0: 0  0, 0

for all  and for 0  0  1,  at 0

* * *

* * * * *

t u v , ,

z t u u , v , T z ,

 

 

    
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and 
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0  0  0  0 as * * *u , v , , z ,                                                                             (14)   

 
where 
  

 
2

11 3 2

, 1  3
 ,    and 

3 4 41   1
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* e o

a*
s o o

t t k k BR
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R T u, t

          
 

 
For equations (12) and (13), put * * *u   iv V   ( 1i   ), we get the simplified form of the 
equation as 
 

* 2 *
*

* *2
,r m

V V
bV G G

t z
  

   
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             (15) 

 
and boundary conditions (14) changes to 
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and 
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   
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Notation and symbols- 
                             

mG  Mass Grashof number 

rG  Thermal Grashof number  

   Thermal diffusivity 

cS  Schmidt  number 

*K  Dimensionless permeability parameter 

*v   Dimensionless secondary velocity of  

      the fluid 

*u    Dimensionless primary velocity of  

       the fluid 

*t    Dimensionless time 

M    Magnetic field parameter 

rP    Prandtl number 

rS    Soret number 

*z   Dimensionless spatial coordinate 

       normal to the plate 

    Dimensionless temperature 

    Dimensionless concentration 

*   Dimensionless rotation parameter 

 R     Radiation parameter 
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Without loss of generality, after removing the star ( * ), the above set of equations reduce to 
 

2
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with boundary conditions 
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Applying the Laplace operator to the PDE’s (17), (18) and (19), we get a set of ODE’s in 
variables z and s as follows: 

2

2
( ,  ) ( ,  ) 0,a r

d
z s R P s z s

dz
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V z s b s V z s G z s G z s
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The changed boundary conditions are 
 

 (0,  ) ( ) ,  ( ,  ) 0,V s L f t V s                (24) 
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1
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se
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1
(0,  ) ,  ( ,  ) 0,s s

s
                  (26) 

 

where Laplace transforms of ( ,  ),V z t  ( ,  )z t and ( ,  )z t are denoted as ( ,  ),V z s  ( ,  )z s and 

( ,  )z s respectively. 
 
By using equation (25) into equation (21), we get 
 

2
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( ,  ) r a

s
z sP Re

z s e
s



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              (27) 
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By using the characteristic of inverse Laplace transform:    
                                                            

If 1{ ( )} ( ),L G s g t   then 1{ ( )}ksL e G s  ( ) ( )g t k H t k    
 

and the equation (27) gives the temperature profile 
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here 1L  indicates the inverse Laplace transform, ( 1)H t   is the Heaviside unit step function and 

   . 1 .Erfc Erf  is the complimentary error function. 

 
Now to obtain the solution for the concentration, we substitute equation (27) into equation (22), 
and then using the boundary conditions (26), we get 
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or 
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Substituting equations (27) and (29) into equation (23), and using the prescribed boundary 
conditions (24), the solutions for transient velocity for the two cases are obtained as 
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where 
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Case 1: Motion of the plate with uniform velocity: 

Consider   ( )f t H t , So   1
L f t

s
   . 
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Therefore, 
 

  1 1
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2
k z k zV z  t cosh k z e Erf k t e Erf k t       

1 1( , ) ( , ) ( , 1) ( 1).oV z  t V z  t V z  t H t                            (31) 

 
Case 2: Motion of the plate with periodic acceleration: 

Consider (t) ( )f Sin t  H t , So   2 2
(t)L f

s







. 

Therefore, 
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2
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z
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2.1. Nusselt number, Sherwood number and Skin friction coefficient 
 
By using (9), non-dimensional 

Sherwood number  Sh      
0

2
1 1c

r a c
z

S a
P R S t t H t

z t


 

         
   (33) 

and Nusselt number  Nu   
   

0

1
2 2 1r ar a

z

P R tP R t
H t .

z


 

      
       (34) 

And the skin friction components along x-axis and y-axis are 

 x

u

z
  

 


  and y

v

z
  

 


 respectively, 

the non-dimensional form (using equation (9) of skin friction can be written as 

 1

*
* * x

*
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u
z , t
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


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*
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
  


 where 2

o ou  . 

Take      1 2
* * * * * *z , t i z , t z , t    and after omitting the star (* ), the non-dimensional skin 

friction changes to 
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Therefore, the coefficients of skin friction at the plate in complex form is given as 
 

   
1
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Hence, the coefficients of skin friction in the primary (x-axis) and secondary (y-axis) directions 
respectively can be obtained as follows: 
 

 
xf fS Re S  and  

yf fS Im S .              (37) 

 
3. Results and discussion   
 
The analytical solution of fluid velocity having two components, one along the direction of 
motion of the plate (primary velocity u), and the other along the transverse direction (secondary 
velocity v), is displayed graphically in Figures 2 to 7. It is noticed that in both the cases: primary 
velocity and secondary velocity secure an individual extreme value in the region near the plate 
and then decrease slowly up to free stream value. The effect of Hall and ion slip parameters on 
the velocity profile is displayed in Figures.2–4. It is examined that the magnitude of secondary 
velocity increases gradually with the increase in Hall parameter in the range 0 < 𝑚 < 2 and it 
decreases for  𝑚 ≥ 2 . This may be referred to the fact that for large value of m, the term 
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21 1/ m    is sufficiently small; so large value of Hall parameter reduces the resistive effect of 
the applied magnetic field. On the other hand, the primary component of velocity speeds up with 
the increase in m. Figure 4 depicts that for a large and fixed value of magnetic field parameter, 
the primary velocity speeds up and secondary velocity slows down when im  is increased. It is 

because an increase in im  causes the reduction of the magnetic force on u. 
 
In case 2, the effect of Soret number and Schmidt number can be seen from the Figure 7. It is 
noticed that Soret number enhances the flow while Schmidt number retards the flow.  Figures 5–
6 depicts the effect of magnetic parameters, permeability parameter and rotation in both the cases. 
It is found that the secondary velocity increases and primary velocity decreases with increase in 
the rotation parameter. So, rotation can enhance the secondary flow and reduce the flow along 
the plate. Physically it may be attributed to the fact that the Coriolis force has a tendency to 
accelerate the secondary flow and retard the primary flow. It can also be seen that the velocity 
increases with the increase in K; a porous medium having large permeability supports the 
movement of the fluid through it. While if the magnetic parameter is increased the primary 
velocity decreases and secondary velocity increases. It is because of the fact that a transverse 
applied magnetic field causes the Lorentz force which acts in the transverse direction and hence 
opposes the primary flow. It is evident from Figures. 8–9 that the Skin-Friction components 

xfS  

and 
yfS decreases with the increase in K / Sr. While 

xfS increases and 
yfS decreases with the 

increase in  . Furthermore, dimensionless Schmidt number cS  is defined as the ratio of 

momentum diffusivity to the mass diffusivity of the fluid and it is observed from the Figure 10 
that an increase in Sc causes the reduction of concentration within the boundary layer whereas the 
concentration increase with the increase in Sr. Also, the temperature in the boundary layer can be 
reduced by increasing R / Pr (Figure 11). 
 
Solution obtained in equations (33) and (34) for Sherwood number Sh and Nusselt number Nu 
respectively are shown graphically in Figures.12– 13. It is found that Sherwood number 
increases with the increase in Sc, and it gets decreased by increasing Sr / R; while on the other 
hand it rises up with the rise in Pr / R.  
 
4. Conclusion  
 
Effect of Hall parameter on fluid velocity is noticed only for large value of applied magnetic 
field. Hall parameter m can speed up the primary velocity, while it reduces the secondary 
velocity for m > k, where k depends on M. Both the components of the fluid velocity are 
increased when the permeability of the porous medium is increased. It is in good agreement with 
the fact that a porous medium with large porosity enhances the flow through it. 
 
Some other important conclusions noticed are: 
 

 At a particular time the fluid velocity components achieve an extreme value in the region 
near the plate and then slows down up to free stream value. 

 With the increase in radiation parameter; Sherwood number decreases while Nusselt 
number increases. 
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 Large value of magnetic field / rotation reduces the primary velocity, and enhances the 
magnitude of secondary velocity. 

 An increase in Soret number causes the decrease in both the component of the Skin 
friction. 
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Figure 2. Velocity profile for m (< 2) in case 1 

 

 

Figure 3. Velocity profile for m (≥ 2) in case 1 
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Figure 4. Velocity profile for mi in case 1 

 

 

Figure 5. Velocity profile for M, K and Ω in case 1 
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Figure 6. Velocity profile for M, K and Ω in case 2 

 

 

 

Figure 7. Velocity profile for Sr, Sc and Ω in case 2 
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Figure 8. Primary skin friction K, Ω and Sr in case 1 

 

 

 

Figure 9. Secondary skin friction K, Ω and Sr in case 1 
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Figure 10. Concentration profile for Sc 

 

 

 

Figure 11. Temperature profile for R 

 



AAM: Intern. J., Vol. 15, Issue 2 (December 2020) 1171 

 
 

 

 

Figure 12. Sherwood number profile with time 

 

 

Figure 13. Nusselt number profile with time 

 


