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Abstract

Heat and mass transfer in blood flow through a tapered artery with mild stenosis is examined. The
blood is considered to be an incompressible, micropolar fluid flowing through a vessel with non-
symmetric axial and symmetric radial axes. The geometry of the model takes into account the shape
parameter, tapered angle and height of the stenosis.The variation in the shape parameter is used to
describe the changes in the axial shape of the stenosis in the artery. The governing equations for the
model, comprising the continuity, momentum, energy, and mass transfer equations are transformed
and simplified under the assumption of mild stenosis. Analytical solutions for the equations are
obtained. The effect of different parameters on temperature, concentration, velocity, resistance,
shear stress, pressure drop, Nusselt number, and Sherwood number are presented in graphical form,
analysed and discussed. It is discovered that the blood temperature increases as micropolar spin
parameter or the particle size increases. Also, its concentration is slowed down with an increase in
the micropolar parameter or coupling number. The temperature in the converging artery is higher
than that of diverging artery when compared under the same conditions.

Keywords: Heat and mass transfer; Micropolar fluid; Tapered artery; Blood flow; Stenosis; An-
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1. Introduction

The basic roles of the cardiovascular system are to convey oxygen and nutrients, to eliminate waste
and normalize temperature. Many cardiovascular diseases always lead to death. Over 17.8 million
died of different types of various cardiovascular diseases reported by World Health Organization
in 2018 as such cardiovascular disease is the number one world killer. Most of these cardiovascu-
lar diseases occurred due to restriction of blood flow in the artery when there is an excessive fatty
component with abnormal intravascular growth deposited within the lumen of the artery narrowing
or reshapeing the passage in the arteries, thereby causing the emergence of stenoses. Arterioscle-
rosis or stenoses is the constriction in the lumen of the arteries as a result of abnormal growth
and unnatural increase in the arterial wall segment that appears at different positions in the ar-
teries. The danger posed by cardiovascular diseases (angina, heart attack, myocardial infarction,
cerebral stroke, and heart failure) has attracted many researchers to experimental and theoretical
investigations of circulatory disorders. Studies have been carried out to explain the blood flow char-
acteristics in the stenosed artery as evidenced by the work of Mann et al. (1938), Young (1968),
Arunkumar (2015), Kumar (2015), Srinivasacharya and Madhavarao (2016), Prakash et al. (2004),
and Neelam (2016). The investigations were done to understand properties of flow in the stenosed
artery either by treating blood as Newtonian fluid or non-Newtonian fluid. Blood exhibits a non-
Newtonian property naturally in small arteries due to a low shear rate. However, in large arteries, it
behaves as a Newtonian fluid because of its high shear rate. Sanjev and Diwakar (2013) examined
a mathematical model for pulsatile blood flow by considering the blood as Non-Newtonian power-
law fluid. Sarivastava (1985) studied the effect of stenoses on the blood flow in the artery using a
couple of stress fluid model.

A lot of researchers have modeled blood as micropolar fluid for its great advantages. The micropo-
lar fluid (blood) considers fluid particle through an independent kinetic vector called a micropolar
vector. A micropolar fluid is a fluid in which microelements of the fluid are considered to be rigid
(Agarwal et al. (1987), Philip et al. (1995) and Prakash et al. (2015)). Erigen (1966) brought about
the concept of micropolar fluid particles to generalized concentrated suspension of neutrally buoy-
ant damaged particles in a viscous fluid. Many investigations have been carried out on blood flow
in a stenosed artery by taking the blood to be micropolar fluid. Bhavana et al. (2016) investigated
a mathematical model for mild stenosis, micropolar fluid flow through an artery with the effect of
stenosis, and post stenotic dilation. He found out that the resistance to flow and wall shear stress
increased with the height of stenosis. Ariam (1974) investigated blood flow in arteries taking it as
a rigid circular tube and concluded that it was better to model blood in a micropolar fluid because
it accounted for the micro-rotation of blood suspension.

Naturally, the shape of the arteries is tapered. Mekheimer (2008) investigated the flow of blood in a
tapered artery in the presence of mild stenoses in a micropolar fluid. Ranama and Srikamath (2015)
worked on blood flow through an overlapping clogged tapered artery in the presence of cather
under the assumption of mild stenosis. Kumar and Diwakar (2013) studied the effects of multiple
stenoses and post stenotic dilation, treating blood as Bingham plastic fluid and observed that an
increase in yield stress decreases the blood viscosity. Mir Golam et al. (2013) developed a model
on pulsatile non-Newtonian blood flow through arterial stenosis. It was discovered that there is a
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sudden increase in stress at the center of stenosis. Arun Kumar (2016) developed a mathematical
model on blood flow under the atherosclerosis condition. It was observed that resistance to flow
decreases as the stenosis shape parameter increase but decreases as the size of stenosis increases.
The above studies, though facilitating, considered the flow of blood in a stenosed artery without
accounting for the heat and mass transfer of the blood flow.

The importance of heat transfer on the flow in a blood vessel has led some researchers to study
the effects of heat transfer in the blood (Makinde et al. (2017), Charm et al. (1968), Chaiyoka and
Makinde (2014)). Also, Ogulu and Abbey (2005) examined the effect of heat transfer on the motion
of blood in a stenosed or disease artery under the optically thin fluid. Chakvarty and Sen (2005)
described the dynamic response of heat and mass transfer in blood flow in bifurcated arteries under
the influence of stenosis. Moreover, the amount and nature of heat transfer in a biological system
(human being) can be known using an external magnetic field. Consequently, Nadeem et al. (2011)
investigated the influence of heat and mass transfer on Newtonian Biomagnetic fluid on blood flow
through a tapered porous artery with mild stenoses but not as micropolar fluid flow. Abubakar and
Adeoye (2020) investigated the influence of radiative heat and magnetic field on blood flow in an
inclined tapered stenosed artery.

Although the above studies on heat transfer in blood flow are impressive, however, there is a dearth
of knowledge on combined effects of heat and mass transfer in micropolar blood flow with stenoses
in a tapered artery. Hence, this paper examines the effects of heat and mass transfer in a micropolar
fluid model for blood flow through a tapered artery with stenosis.

2. Mathematical formulation

Let (r, θ, x) be the cylindrical polar co-ordinates with r = 0 as the axis of symmetry of the tube.
The flow considered is incompressible micropolar fluid with constant viscosity µ and density ρ

in the tube of length L. wx and wr are radial and axial velocity components respectively. Let the
radius of the tapered stenotic artery at point x be expressed as

h(x) =

{
r(x)

[
1− η(an−12 (x− a1)− (x− a1)n

]
, a1 ≤ x ≤ a1 + a2,

r(x), otherwise,
(1)

with

r(x) = r0 + ξx, (2)

where r0 and r(x) are the radii of the non tapered artery and tapered arterial segment in the non
stenotic region, respectively, ξ is the tapered angle (ξ = tanφ), for converging (ξ ≤ 0), diverging
(ξ ≥ 0) and non- tapered angle ξ = 0. a2 is the length of the stenosis , (n ≥ 2) is the shape parameter
determining the shape of the constriction region which is symmetric at n = 2 and

η =
δnn|n−1

r0an2 (n− 1)
, (3)

where δ denote the maximum height of the stenosis located at

x = a1 +
a2

nn|(n−1)
. (4)
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The geometry of the stenosis is described in Figures 1 and 2 below.

Figure 1. The geometry of the tapered artery

Figure 2. Geometry of arterial segment under consideration for different tapered angles

The governing equations for the steady flow of an incompressible micropolar fluid in the absence
of body and couple forces may be expressed as follows:

∇.w = 0, (5)

ρ(w.∇w) = −∇p + k∇×w + (µ+ k)∇2w, (6)

ρj(u.∇u) = −2ku + k∇×w − γ(∇×∇×w) + (α+ β + γ)∇(∇.u), (7)

ρcp(T · ∇T) = k∇2T + S.L, (8)

and

(C · ∇C) = D∇2C +
DkT
Tm
∇2T, (9)

where

S = −ρI + µB1, B1 = L+ L1, (10)

where L is the gradient of vector w, p is the fluid pressure, u is the micro rotation vector, j is
the microgyration parameter, cp is the specific heat at constant pressure, Tm is temperature of the
medium, D is the coefficients of mass diffusivity, kT is the thermal diffusion ratio, k denotes the
thermal conductivity andC is the concentration of the fluid. µ, k′ are coefficients of shear and vortex
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viscosity respectively. γ , β, α are respectively coefficients of viscosities. The material constants µ,
k′, α, β and γ satisfy the following inequalities (Eringen 1966),

2µ+ k′ ≥ 0, k′ ≥ 0, 3α+ β + γ ≥ 0 γ ≥ |β|. (11)

The flow is axis symmetric and the velocity vector for the flow is expressed by w =(wr, 0, wx) where
wr, wx are velocities in r and x directions, respectively. Fluids with microstructure has the ability to
rotate independently of the fluid movement (Gregorz Lukaseicz( 1999)). Hence, the micro rotation
vector u is expressed as u= (0, $, 0). The model governing equations becomes

∂wr
∂r

+
wr
r

+
∂wx
∂x

= 0, (12)

ρ

[
wr
∂wx
∂r

+ wx
∂wx
∂x

]
= −∂p

∂x
+ (µ+ k′)

[
∂2wx
∂r2

+
1

r

∂wx
∂r

+
∂2wx
∂x2

]
+
k′

r

∂(r$)

∂r
, (13)

ρ

[
wr
∂wr
∂r

+ wx
∂wr
∂x

]
= −∂p

∂r
+ (µ+ k)

[
∂2wr
∂r2

+
1

r

∂wr
∂r
− wr
r2

]
− k∂($)

∂x
, (14)

ρj

(
wr
∂$

∂r
+ wx

∂$

∂x

)
= −2k$ − k

(
∂wx
∂r
− ∂wr

∂x

)
+ γ

(
∂

∂r

(
1

r

∂(r$)

∂r

)
+
∂2$

∂x2

)
, (15)

ρcp

[
wr
∂T

∂r
+ wx

∂T

∂x

]
= k′

[
∂2T

∂r2
+
∂T

∂r

]
+ (µ+ k)

[
∂wx
∂r

]2
, (16)

and (
wr
∂C

∂r
+ wx

∂C

∂x

)
= D

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂x2

)
=
DkT
Tm

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
, (17)

with the following boundary conditions

∂wx
∂r

= 0 at r = 0, (18)

wx = 0 at r = h(x), (19)

$ = 0 at r = h, (20)

$,wx are finite at r = 0, (21)

∂θ

∂r
= 0 at r = 0, (22)

∂σ

∂r
= 0, at r = 0, (23)

and

σ = 0, θ = 0 at r = h(x). (24)
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Introducing the following non dimensional variables

x′ =
x

a2
, δ′ =

δ

r0
, r′ =

r

r0
, p′ =

p
µ$a2
r20

,

ξ′ =
ξ′a2
r0

, γ1 =
a1
a2
, h =

h′

r0
,

w′x =
wx
ω
, w′r =

a2wr
ωδ

,

$′ =
r0$

ω
, δ′ =

δ

r0
,

θ =
T − T1
Tw − T1

, Ec =
w2
x

cp(Tw − T1)
, Pr =

µcp
k
,

σ =
C − C1

Cw − C1
, Sc =

ν

D
, and

Sr =
DKT

νTm

(Tw − T1)
(Cw − C1)

.



(25)

The average velocity over section of the tube of the width r0 is ω. Making use of dimensionless
variables (25) and after implementing the additional following conditions (Mekheimer and Elkot
2008),

(i) Re
δn

1

(n−1)

b
<< 1, (26)

(ii)
r0n

1

(n−1)

b
≈ (1), (27)

Equation (1) describing the geometry of the stenosis in the artery is

h(x) =

{
[(1− ξx)(1− η1(x− γ1)− (x− γ1)n] , γ1 ≤ x ≤ γ1 + 1,

1 + ξx′, otherwise,
(28)

where

η1 =
δ′n

n

(n−1)

n− 1
. (29)

Dropping the prime on dimensionless variables, Equations (12) - (17) for the case of mild
( δr0 << 1) reduce to

∂wx
∂r

= 0, (30)

∂p

∂r
= 0, (31)

∂p

∂x
=

1

1−N

(
∂2wx
∂r2

+
1

r

∂wx
∂r

+
N

r

∂(r$)

∂r

)
, (32)

2$ = −∂wx
∂r

+
2−N
m2

∂

∂r

(
1

r

∂(r$)

∂r

)
, (33)

∂2θ

∂r2
+

1

r

∂θ

∂r
+Br(K1 + 1)

(
∂wx
∂r

)2

= 0, (34)
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1

Sc

[
1

r

∂σ

∂r
+
∂2σ

∂r2

]
+ Sr

[
1

r

∂θ

∂r
+
∂2θ

∂r2

]
= 0, (35)

where N =
k′

µ+ k′
, (0 ≤ N ≤ 1) is coupling number, Br = EcPr,

m2 =
r20k
′(2µ+ k′)

γ(µ+ k′)
, (36)

is the micropolar parameter, Sc is the Schmidt number, Sr is the Soret number,

K1 =
k

µ
, (37)

where K1is the micropolar or material parameter.

The corresponding non dimensional boundary conditions are
∂wx
∂r

= 0 at r = 0, (38)

wx = 0 at r = h(x), (39)

$ = 0 at r = h, (40)

$,wx are finite at r = 0, (41)

∂θ

∂r
= 0 at r = 0, (42)

∂σ

∂r
= 0, at r = 0, (43)

σ = 0, θ = 0 at r = h(x). (44)

3. Problem solution

Equation (32) can be rewritten as

∂

∂r

(
r
∂wx
∂r

+Nr$ − (1−N)
r2

2

∂p

∂x

)
= 0. (45)

Integrating Equation (45) to get
∂wx
∂r

= −N$ + (1−N)
r

2

∂p

∂x
+
c1(x)

r
, (46)

From Equations (46) and (33), we have

1

m2

∂2$

∂r2
+

1

rm2

∂$

∂r
−
(

1

r2m2
+ 1

)
$ =

(1−N)

4− 2N

{
r

2

∂p

∂x
+
c1(x)

r

}
. (47)

The general solution of Equation (47) is

$ = C2(x)I1(mr) + C3(x)K1(mr)−
(1−N)

4− 2N

{
r
∂p

∂x

}
, (48)
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where I1(mr) and K1(mr) are modified first order Bessel function of first and second kind, respec-
tively. Substituting Equation (48) into Equation (46) and integrate with respect to r to obtain

wx =
(1−N)

(4− 2N)
r2
∂p

∂x
− N

m
[c2(x)I0(mr) + c3(x)K0(mr)] + c4(x), (49)

where I0(mr) and K0(mr) are modified zero order Bessel function of first and second kind, re-
spectively, and c4(x) is the constant of integration. Based on the definition of K0(mr), the arbitrary
function c3=0 for $, wx must be finite on r = 0. The remaining arbitrary functions in Equations
(48) and (49) are determined using the boundary conditions (39) and (40). Hence,

c2(x) =

(1−N)
(2−N)

h
2
∂p
∂x

I1(mh)
, (50)

c4(x) =

N
m

[(
1−N
2−N

)
h
2
∂P
∂X

]
I0(mh)

I1(mh)
− (1−N)

(2−N)

∂p

∂x

(
h2

2

)
, (51)

and

wx = χ

{
r2 − h2 +

Nh

mI1(mh)
[I0(mh)− I0(mr)]

}
, (52)

where

χ =
(2−N)

(4−N)

∂p

dx
. (53)

The corresponding stream function is obtained by using

ψ =

∫
rwxdx. (54)

Therefore,

ψ = −χ∂p
dx

{
2h2r2 − r4

4
− Nh

mI1(mh)
[
r2mI0(mh)− 2rI1(mr)

2m
]

}
. (55)

Substituting the derivative of wx in Equation (52) into Equation (34) to obtain

∂2θ

∂r2
+

1

r2
∂θ

∂r
= g(r), (56)

where

g(r) = −Br(1 +K1)

{
(1−N)2

(4− 2N)2

(
∂p

∂x

)2 [
4r2 +

4rNhI1(mr)

I1(mh)
+
N2h2[I1(mr)]

2

[I1(mh)]2

]}
, (57)

Integrating Equation (56) with respect to r, we have

∂θ

∂r
= ζ

(
r3 +

f01
I1 (mh)m2

+
f12

2 (I1 (mh))2
+

C5 (r)

r

)
, (58)

where

f01 = 4Nh (I0 (mr)mr − 2 I1 (mr)) ,

f12 = N2h2r
(

(I1 (mr))2 − I0 (mr) I2 (mr)
)
,
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and

ζ = −Br(1 +K1)
(1−N)2

(4− 2N)2

(
∂p

∂x

)2

. (59)

Applying the boundary conditions on Equation (58) and with C5(r) 6= 0, the expression in RHS
will be undefined. Therefore, C5(r) = 0 and

∂θ

∂r
= ζ

(
r3 +

f01
I1 (mh)m2

+
f12

2 (I1 (mh))2

)
. (60)

Integrating Equation (60) and applying the boundary condition (44) to obtain

θ(r) = ζ(1/4 r4 +G1(r)−G2(r) +G3(r) +G4(r)−G5(r) +G6(r),

where

G1(r) =
4NrI1 (mr)hm+ 8NI0 (mr)h

m3I1 (mh)
,

G2(r) =
N2h2m2r43F4(3/2, 2, 2; 1, 3, 3, 3; −m2r2)

64 (I1 (mh))2
,

G3(r) =
N2h2

(√
πr2m2 (I0 (mr))2 − 2

√
πrmI0 (mr)I1 (mr) +

√
πr2m2 (I1 (mr))2

)
4m2
√
π (I1 (mh))2

,

G4(r) =
1

4
h4 +

4Nh2mI1 (mh) + 8NI0 (mh)

m3I1 (mh)
,

G5(r) =
N2h6m2

3F4(3/2, 2, 2; 1, 3, 3, 3; −m2h2)

64 (I1 (mh))2
,

G6(r) =
N2h2

(√
πh2m2 (I0 (mh))2 − 2

√
πhmI0 (mh)I1 (mh) +

√
πh2m2 (I1 (mh))2

)
4m2
√
π (I1 (mh))2

,

where 3F4(3/2, 2, 2; 1, 3, 3, 3; −m2r2) is hyper-geometry functions and Ii(mh) is a Bessel function
of order i.

Nusselt number (Nu) is calculated using

Nu =
∂θ

∂r

∣∣∣∣
r=h

. (61)

Equation (35) may be written as
1

Sc

[
1

r

∂

∂r

(
r
∂σ

∂r

)]
=
−1

Sr

[
1

r

∂

∂r

(
r∂θ

∂r

)]
. (62)

Substituting Equation (58) into Equation (62), it becomes
∂σ

∂r
=
Sc

Sr
ζ

(
r3 − f01

m2I1 (mh)
+

f12

2 (I1 (mh))2

)
. (63)

Solving Equation (63) using the boundary condition (44), we have

σ(r) = ζ
Sc

Sr

(
1/4 r4 +G1(r)−G2(r) +G3(r) +G4(r)−G5(r) +G6(r)

)
.
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The Sherwood number at r = h is calculated as follows

Sh =
∂σ(r)

∂r
|r=h. (64)

The volumetric flow rate is defined by

Q =

∫ h

0
rwxdr. (65)

Therefore,

Q =

(
1−N
2−N

)
∂p

∂x

(
−h4

4
+
Nh2I0(mr)

2mI1(mh)
− Nh2

m2

)
. (66)

It implies that
∂p

∂x
=

Q

(1−N2−N )
(
−h4

4 + Nh2I0(mr)
2mI1(mh)

− Nh2

m2

) . (67)

As the micropolar fluid parameter N → 0, the fluid becomes Newtonian fluid.

The pressure drop ∆p across the stenotic artery from x = 0 to x = L is

∆p =

∫ L

0

(
−∂p
∂x

)
dx = 8Q

∫ L

0
T ′(x)dx, (68)

where

T ′(x) =
2(2−N)m2I1(mh)

(1−N)[h2[h2m2I1(mh)− 2mNI0(mh) + 4I1(mh)]]
. (69)

So, the resistance impedance is

λ = 8

[
(L− b)J +

∫ a+b

a
T ′(x)dx

]
, (70)

where

J =
(2−N)m2I1(m)

(1−N)[m2I1(m)− 2mNI0(m) + 4I1(m)]
. (71)

Let

λ̄ =
λ

λ0
, (72)

where λ0 = 3L.

Therefore,

λ̄ =
8

3L
(L− b)J +

8

3L

∫ a+b

a
T ′(x)dx. (73)

The stress tensor is not symmetric for micropolar fluid, therefore, the non dimensionless wall shear
stress is given by

τxr =

(
∂wx
∂r
− N

(1−N
$

)
, (74)

τrx =
−1

(1−N)

(
∂p

∂x
+N$

)
, (75)
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τrx =
−1

2
(1−N)

∂p

∂x
h, (76)

using Equation (46) with the boundary conditions (38) and (40).

Hence,

∂wx
∂r

∣∣∣∣r=h =
−1

2
(1−N)

∂p

∂x
h . (77)

The shearing stress has its maximum height at the throat which is located at

x =
a1
a2

+
1

n1|(n−1)
. (78)

It implies that

τs = τrx|h=1−δ , (79)

τs = 4Q(1− δ)I, (80)

where τs is wall shear at the throat and I is defined by

I =
(2−N)m2I1(mδ1)

(1−N)[(δ1)2m2I1(mδ1)− 2mNI0(mδ1) + 4I1(mδ1)]
. (81)

where δ1=1− δ.

Therefore,

¯τrx =
(2−N)m2I1(mh)

(1−N)[h2m2I1(mh)− 2mNI0(mh) + 4I1(mh)]
, (82)

where

τ̄s =
τs
τ0
, ¯τrx =

τrx
τ0
, ¯τrx = τ, τ0 = 4Q, (83)

with τ0 as the wall shear stress for a flow in normal artery.

4. Results and discussion

Numerical evaluation of the analytical expression for dimensionless concentration (σ), temperature
(θ), pressure drop (∆p), Nusselt number (Nu), Sherwood (Sh), velocity (wx), shear stress or skin
friction (τ), resistance to flow for non tapered, diverging tapering, and converging tapering arteries
were presented using Maple 18 software in this section. The effect of different parameters such
as micropolar spinning parameter (m), coupling number (N), shape parameter(n), Soret number
(Sr), and Brickmann number (Br) were discussed for different fluid flow properties displayed at
the Appendix in Figures 3-27.

Figures 3-4 show the effects of m (micropolar spin parameter) and N (particles size parameter) on
axial velocity profile. The effects of convergence, divergence and non tapering on axial velocity are
presented. It is observed that as m increases, axial velocity increases while as N increases, there is
reduction in axial velocity. Axial velocity is higher in a diverging artery than converging artery.
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Figures 5-6 show the resistance against δ with variation of ξ and L. It is shown that the resistance to
flow or impedance is higher in a converging artery than diverging artery at the symmetric stenoses
(n = 2). It is observed that the greater the length of the tube, the lower the resistance to flow.

Figures 7-8 depict the wall shear stress against x with variation of ξ and m. It shows that the wall
shear stress distribution increases in the diverging region than the converging region at n = 2. Also,
it reveals that as microplolar parameter increases, there is an increase in wall shear stress.

Figures 9-13 show the temperature profile against ξ, K1, N , m, and Br. It is discovered that the
blood temperature increases as micropolar spinning parameter or coupling number increases. The
temperature in the converging artery is higher than that of diverging artery when compared under
the same conditions. An increase in Brikmann number causes an increase in temperature. It is
observed that temperature increases with an increase in K1.

Figures 14-19 show the variation in concentration against r varying N , ξ, Br, Sr, and m. It is
evident from the figures that an increase in micropolar parameter or coupling number decreases
concentration. Concentration is higher in a diverging artery than converging artery at n = 2. Hence,
the concentration profile shows that as material parameters, Brikmann number or Soret number
increases, concentration decreases.

Figures 20-21 show the variation in Nusselt number Nu against Br and K. It is noticed that a rise
in N , decreases Nusselt number. Also, it is observed that as the value of Br increases, there is
an increase in Nu. Figures 22-23 show the graph of Sherwood number against x, it is noted that
as Sr or Br increases, there is an increase in Sherwood number, Sh. Figures 24-26 showed the
pressure drop in the stenotic region along x-axis. The values for the pressure drop are negative
which implied a rise in pressure in the stenotic region as x increased for all values of δ. Also, the
converging artery has highest pressure rise in the stenotic region comparing with diverging artery.
Figure 27 depicts the streamline profiles for different values of ξ (non tapered, convergence and
divergence) for comparison in the flow patterns.

5. Conclusion

A mathematical model for the effects of heat and mass transfer in a micropolar fluid flow in stenotic
tapered artery has been analysed. The results have been studied for the case of mild stenosis and
the following major findings are obtained.
(i) Temperature is higher in converging artery than diverging artery.
(ii) Concentration is lower in converging artery than diverging artery.
(iii) Brickmann number Br increases the temperature and decreases the concentration.
(iv) Micropolar spin parameter and coupling number increase the temperature.
(v) Micropolar parameter and coupling number decrease the concentration.
(vi) As Soret number increases, concentration decreases.
(vii) Pressure rise in a stenotic region for all value of x.
(viii) As Sr and Br numbers increase, there is an increase in Sherwood number.

Steady blood flow is applicable to the capillary bed which is being controlled by an auto regulation
there by making the organ to maintain constant flow rate. However, flow in artery may be char-
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acterized as time dependent. Hence, future studies and challenges could be focused on unsteady
blood flow in a micropoloar fluid.
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Appendix

Salient flow properties are displayed in Figures 3-27.

Figure 3. Graph of the axial velocity wx against r at N = 0.8, K1 = 0.2, n = 2 and δ = 0.2 for variation of m

Figure 4. Graph of axial velocity wx against r at m = 5, n = 2, δ = 0.2 and m = 5 for variation of N

Figure 5. Graph of dimensionless resistance to flow λ, against δ at N = 0.8, m = 5, and n = 2 varying ξ
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Figure 6. Graph of dimensionless resistance to flow λ, against δ at N = 0.8, m = 5 and n = 2 varying L

Figure 7. Graph of dimensionless wall shear stress τ against x at N = 0.8, L = 1 and δ = 0.2 varying ξ

Figure 8. Graph of dimensionless wall shear stress τ against x for L = 1 and δ = 0.2 varying m and N

Figure 9. Graph of temperature against r at m = 5, Br = 0.83, n = 2, and δ = 0.2 for different values of K1
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Figure 10. Graph of temperature against r at m = 5,Br = 0.83, n = 2, K1 = 0.2 and δ = 0.2 varying ξ

Figure 11. Graph of temperature against r at N = 0.6, Br = 0.83, K1 = 0.2, n = 2, ξ and δ = 0.2 varying N

Figure 12. Graph of temperature against r at N = 0.6, ξ = 0, K1 = 0.2, n = 2, and δ = 0.2 for variation of Br

Figure 13. Graph of temperature against r at N = 0.6, Br = 0.83, K1 = 0.2, n = 2, and δ = 0.2 varying m
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Figure 14. Graph of concentration against r at m = 5, n = 2, Br = 0.83, K1 = 0.2, and δ = 0.2 varying ξ

Figure 15. Graph of concentration against r at m = 5, n = 2, Br = 0.83, ξ = 0, and δ = 0.2 varying K1

Figure 16. Graph of concentration against r at N = 0.8, Br = 0.83, K1 = 0.2, n = 2, and δ = 0.2 varying m

Figure 17. Graph of concentration against r at Br = 0.83, K1 = 0.2, n = 2, δ = 0.2, and m = 5, varying N

Figure 18. Graph of concentration against r at m = 5, K1 = 0.2, N = 0.8, n = 2, and δ = 0.2 varying Br
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Figure 19. Graph of concentration against r at m = 5, K1 = 0.2, Br = 0.83, n = 2, and δ = 0.2 varying Sr

Figure 20. Graph of Nusselt number Nu against Br at m = 5, K1 = 0.2, n = 2, and δ = 0.2 varying N

Figure 21. Graph of Nusselt number Nu against K at m = 5, K1 = 0.4, n = 2, and δ = 0.2 varying Br

Figure 22. Graph of Sherwood number Sh against x at m = 5, K1 = 0.4, n = 2, and δ = 0.2 varying Sr
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Figure 23. Graph of Sherwood number Sh against x at m = 5, K1 = 0.2, δ = 0.2 varying Br

Figure 24. Graph of pressure drop against x at m = 5, n = 2, N = 0.4 and ξ = 0.005 varying δ

Figure 25. Graph of pressure drop against x at m = 5, n = 2, N = 0.4 and ξ = −0.05 varying δ
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Figure 26. Graph of pressure drop along x axis m = 5, n = 2, N = 0.4 and ξ = 0 varying δ

Figure 27. Graph of streamlines at the stenotic region for m = 5, n = 2, N = 0.4, ξ = 0, ξ = 0.05 and ξ = −0.05


