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Abstract 
 
This paper aims to estimate the basic reproduction number for Avian Influenza outbreak in 
local and global poultry industries. In this concern, we apply the SEIAVR compartmental 
model which is developed based on the well-known SEIR model. The SEIAVR model 
provides the mathematical formulations of the basic reproduction number, final size 
relationship and a relationship between these two phenomena. The developed model 
Equations are solved numerically with the help of Range-Kutta method and the values of 
initial parameters are taken from the several literatures and reports. The calculated result of 
basic reproduction number shows that it is locally and globally stable if it is less than and 
greater than one at disease free equilibrium and at endemic equilibrium, respectively. 
Furthermore, we have compared among the calculated susceptive, expose, infective, removal, 
virus and asymptotic compartments where infection rate and expose period are observed very 
sensitive compared to other parameters. In addition, the model result of infective is compared 
with the field data and other’s model where the present model shows good performance 
against the field data.  
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1. Introduction 
 
Avian influenza, is known informally as avian flu or bird flu, is the common disease for birds 
and animals caused by the virus and though avian flu is adapted to birds, it can also stably 
adapt and sustain animal-to-animal and person-to-person transmission. The outbreak of this 
flu occurs almost in every year all over the World and death can be observed at several 
countries. Bird flu occurs not only for death of the bird but also for human death. Iwami et al. 
(2007) observed the high death rate for highly pathogenic avian influenza and that was about 
100% for birds and 70% for humans. Low pathogenic avian influenza also had breakouts in 
some countries and some area, such as in Germany, Sweden, America and Bangladesh. In 
past 2-3 years, bird flu was occurred in Bangladeshi poultry farm where the transmission was 
seen from bird to bird and developed into pandemic one (Biswas et al. 2008). Biswas et al. 
(2008) determined the attack rate of outbreaks epidemiology of avian influenza virus in 
chickens in Bangladesh and it’s range was from 0.004-0.008. In 2014, avian influenza was 
critically infected in China and birds as well as Humans death were occurred there. Avian 
influenza is also common diseases which makes a catastrophic disaster in poultry farm in 
Bangladesh and causes vast loss in economic. However, research on bird flu in developing 
country, especially in Bangladesh is very limited yet. Because biosecurity is very poor due to 
economic conditions, graphical situations, and awareness about the diseases and take care of 
birds, etc.  
 
Many researchers developed the mathematical formulae and investigated the avian influenza 
outbreak (Brauer et al. (2008); Wang et al. (2015); Tiwari et al. (2006); Brown et al. 2009; 
Bulaga (2003); Biswas et al. (2008); Rahman et al. (2012)). Brauer et al. (2008) discussed a 
model of seasonal influenza and determined the final size relation of the epidemic models, 
but environmental (virus compartment) class was not included. Wang et al. (2015), Tiwari et 
al. (2006) and Kung et al. (2003) showed that avian influenza virus was demonstrably 
presence in the environment, and this could be transmitted direct or indirect to the poultry 
farm. Wang et al. (2015) also observed a model in the presence of the avian influenza (H7N9) 
virus and showed that it oscillated seasonally with the point of peaks in spring and winter 
seasons. Brown et al. (2009) showed that the temperature, pH and salinity played a 
significant role in the transmission of avian influenza viruses in water and subsequently to the 
poultry farm. Rahman et al. (2012) observed that an avian influenza had the incubation period 
after attacks the bird and took some time to show the symptoms. They also added that the 
incubation periods for the disease were from 2 to 15 days. Seasonality also plays an important 
role for infectious diseases [Ratchagar et al. (2015)]. 
 
Further, Lin et al. (2016) fitted a simple epidemic model for avian influenza considering 
environmental compartment for the virus in the environment and this virus was proportional 
to individuals but avoided asymptomatic class. Longini et al. (2004) found that there was a 
significant portion of individuals those were infected but never exhibited any symptoms 
through the asymptomatic period. Kanamori et al. (2016) found that 5.2% to 35.5% birds 
were asymptomatic (absence of symptom) that is, they didn’t show any symptoms of avian 
influenza virus. Mouaouine et al. (2018) discussed the stability of the SIR epidemic model 
based on the basic reproduction number at two equilibrium points (disease-free and endemic). 
Similar results were found by Dubey et al. (2015) for SIR model with the nonlinear incidence 
of transmitting diseases. Huang (2018) represented a global stability of an epidemic model on 
multiplex network and found the similar result of the stability of the model as Mouaouine et 
al. (2018). Kang et al. (2019) proposed a model on an avian influenza and its transmission to 
virus compartment and showed how to control and minimize the outbreak from birds to 
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human. Li et al. (2018) described a dynamical transmission of the bird flu between poultry 
and human and they investigated the local and global stability of the two equilibriums and 
found the similar results as shown by Mouaouine et al. (2018), Huang (2018), Kang et al. 
(2019) and Li et al. (2009).  
 
From the above literatures and discussion, it is clear that the outbreak of the avian influenza 
and stability analysis of the model’s results were investigated by several researchers. 
However, the model (SEIAVR) considering six compartments at a time is a new approach in 
this study and hope it will work well for the poultry farm. In addition, this study also will 
highlight the basic reproduction number and final size relation of the population which will 
provide the control system and awareness of the outbreak of an avian influenza. 
 
2. Mathematical Formulation 
 
2. 1. Model Description 
 
The SEIAVR compartmental model is developed based on six individual compartments.  The 
compartments are: Susceptible (𝑆), Expose (𝐸), Infective (𝐼), Asymptomatic (𝐴), Removal 
(𝑅) and Virus compartment (𝑉). According Lin et al. (2016), all these compartments are 
depended on infective population. A diagram of this model is given in Figure 1. 
 
We assume that  is the transmitted rate to the susceptible due to Infection (I), Asymptomatic 
(𝐴) and virus compartment (𝑉). Further, we assume that p is a portion of expose members 
proceeds to the in the infective compartment at the rate  , and the remainder portion of 
population goes to an asymptomatic compartment directly at the rate  . Asymptomatic has 
infectivity reduced and goes to the removal compartment at the rate  . We also assume that 
the infected individuals go up, the number of viruses shaded in the virus compartment which 
is also go up and this virus is proportional to the infected individual. Furthermore, 𝜏 is the 
rate at which virus copies imported and a rate   is the virus removed in the environmental 
class. Let infected members go to the removal compartment directly by a rate   and at a rate
, removal individual goes to susceptible. 
 
These above assumptions lead to the mathematical model as 

 
𝑆̇ =  𝜆𝑅 − 𝛽𝑆(𝐼 + 𝐴 + 𝑉),                                                  (1)    

 
𝐸̇ = 𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝜎𝐸,                                                   (2) 

                                                                                                      
𝐼̇ = 𝑝𝜎𝐸 − (𝜏 + 𝛾 + 𝜇)𝐼,                                                     (3) 

 
𝐴̇ = (1 − 𝑝)𝜎𝐸 − 𝜂𝐴,                                                              (4) 

 
𝑉̇ = 𝜏𝐼 − 𝜇𝑉,                                                                       (5) 

  
𝑅̇ = 𝛾𝐼 + 𝜂𝐴 − 𝜆𝑅,                                                                (6) 

 
with the initial conditions: 
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𝑆(0) = 𝑁, 𝐼(0) = 𝐼଴, 𝐸(0) = 0, 𝐴(0) = 0, 𝑉(0) = 0, 𝑅(0) = 0.                (7) 
                                                                 
 

 
 

Figure1. Sketch of the compartmental model described by the Equations (1) – (6) 

 

2.2.   Disease-free equilibrium 
 
For diseases-free equilibrium, an equilibrium solution of the systems of Equations (1) – (6)  
 

𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0

 
 
can be found with aid of 0E I  . After solving the above system and using the initial 
conditions, we have 0A T R   , where we set 0.S S  Thus, diseases-free equilibrium 

becomes 0( ,0,0,0,0,0)S . 
 
Theorem 2.2.1. 
 
The basic reproduction number of the propose model can be expressed as 

 

ℜ଴ = 𝛽𝑆଴ ൤
𝑝

𝛾 + 𝜏 + 𝜇
+

1 − 𝑝

𝜂
+

𝑝𝜏

𝜇(𝛾 + 𝜏 + 𝜇)
൨ . 

 
 
Proof:  
 
From the above proposed model, we can separate this into the disease and non-disease 
compartments which can be expressed as: 
 
For disease compartment 
 

𝐸̇ = 𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝜎𝐸, 
 

𝐼̇ = 𝑝𝜎𝐸 − (𝜏 + 𝛾 + 𝜇)𝐼, 
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𝐴̇ = (1 − 𝑝)𝜎𝐸 − 𝜂𝐴, 
 

𝑉̇ = 𝜏𝐼 − 𝜇𝑉. 
 

For non-disease compartment 
 

𝑆̇ =  𝜆𝑅 − 𝛽𝑆(𝐼 + 𝐴 + 𝑉), 
 

𝑅̇ = 𝛾𝐼 + 𝜂𝐴 − 𝜆𝑅. 
 
In general, the above model can be written in the tensor form as 
 

𝜕𝑥௜

𝜕𝑡
= 𝑓௜(𝑥௜ , 𝑦௜) − 𝑣௜(𝑥௜, 𝑦௜), 

 
𝜕𝑦௜

𝜕𝑡
= 𝑔௜(𝑥௜, 𝑦௜), 

 
where 𝑥 and 𝑦 be the sub-populations in disease and non-disease compartments. The 
functions if   and iv are rate of secondary infections only that increase the 𝑖th disease 

compartment and the rate of other progression such as death, recovery that decrease the 𝑖th 

disease compartment respectively, and are given by 
 

𝑓 = ൦

𝛽𝑆(𝐼 + 𝐴 + 𝑉)
0
0
0

൪      and        𝑣 = ൦

𝛼𝐸
−𝑝𝛼𝐸 + 𝜏𝐼 + 𝛾𝐼 + 𝜇𝐼

−(1 − 𝑝)𝛼𝐸 + 𝜂𝐴
−𝜏𝐼 + 𝜇𝑉

൪. 

 
The basic reproduction number can be determined using the next generation matrix 1/k F V

and basic reproduction number is the positive eigenvalue of the matrix 𝑘 at disease free 
equilibrium. To calculate the basic reproduction number, we have used the well-known 
method of Driessche et al. (2002) which is associated next-generation matrices. That is, 
 

𝐹 =
𝜕𝑓௜

𝜕𝑥௝

(0, 𝑦଴) and 𝑉ଵ =
𝜕𝑣௜

𝜕𝑥௝
(0, 𝑦଴)  

gives us 
 

𝐹 = ൦

0 𝛽𝑆଴ 𝛽𝑆଴ 𝛽𝑆଴

0 0 0 0
0 0 0 0
0 0 0 0

൪ and  𝑉ଵ = ൦

𝜎 0 0 0
−𝑝𝜎 𝜏 + 𝛾 + 𝜇 0 0

−(1 − 𝑝)𝜎 0 𝜂 0
0 −𝜏 0 𝜇

൪. 

 
According to Driessche et al. (2002), the basic reproduction number can be determined by the 
spectral radius of 1

1FV  . Thus, we obtain 

 

ℜ଴ = 𝛽𝑆଴ ൤
𝑝

𝛾 + 𝜏 + 𝜇
+

1 − 𝑝

𝜂
+

𝑝𝜏

𝜇(𝛾 + 𝜏 + 𝜇)
൨. 
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Theorem 2. 2. 
 
The disease-free equilibrium of the model is locally asymptotically stable if 0 1  , and 

unstable 0 1  . 
 
Proof:  
 
The Jacobian matrix 𝐽 of the systems of Equations (1) – (6) is given by 
 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑑𝐸

.

𝑑𝐸

𝑑𝐸
.

𝑑𝐼

𝑑𝐸
.

𝑑𝐴

𝑑𝐸
.

𝑑𝑉

𝑑𝐸
.

𝑑𝑆

𝑑𝐸
.

𝑑𝑅

𝑑𝐼
.

𝑑𝐸

𝑑𝐼
.

𝑑𝐼

𝑑𝐼
.

𝑑𝐴

𝑑𝐼
.

𝑑𝑉

𝑑𝐼
.

𝑑𝑆

𝑑𝐼
.

𝑑𝑅

𝑑𝐴
.

𝑑𝐸

𝑑𝐴
.

𝑑𝐼

𝑑𝐴
.

𝑑𝐴

𝑑𝐴
.

𝑑𝑉

𝑑𝐴
.

𝑑𝑆

𝑑𝐴
.

𝑑𝑅

𝑑𝑉
.

𝑑𝐸

𝑑𝑉
.

𝑑𝐼

𝑑𝑉
.

𝑑𝐴

𝑑𝑉
.

𝑑𝑉

𝑑𝑉
.

𝑑𝑆

𝑑𝑉
.

𝑑𝑅

𝑑𝑆
.

𝑑𝐸

𝑑𝑉
.

𝑑𝐼

𝑑𝑉
.

𝑑𝐴

𝑑𝑉
.

𝑑𝑉

𝑑𝑉
.

𝑑𝑆

𝑑𝑉
.

𝑑𝑅

𝑑𝑅
.

𝑑𝐸

𝑑𝑅
.

𝑑𝐼

𝑑𝑅
.

𝑑𝐴

𝑑𝑅
.

𝑑𝑉

𝑑𝑅
.

𝑑𝑆

𝑑𝑅
.

𝑑𝑅⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Now, the expression of differential coefficients can be found from the systems of Equations 
(1) – (6), which produces the following relation

 

 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝛼 𝛽𝑆 𝛽𝑆 𝛽𝑆 𝛽(𝐼 + 𝐴 + 𝑉) 0

𝑝𝜎 −(𝜏 + 𝛾 + 𝜇) 0 0 0 0

(1 − 𝑝)𝜎 0 −𝜂 0 0 0
0 𝜏 0 −𝜇 0 0

0 −𝛽𝑆 −𝛽𝑆 −𝛽𝑆 −𝛽(𝐼 + 𝐴 + 𝑉) 𝜆
0 𝛾 𝜂 0 0 −𝜆⎦

⎥
⎥
⎥
⎥
⎤

.          (8) 

 
At disease-free equilibrium, then the above Jacobian matrix can be written as 
 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝛼 𝛽𝑁 𝛽𝑁 𝛽𝑁 0 0
𝑝𝜎 −(𝜏 + 𝛾 + 𝜇) 0 0 0 0

(1 − 𝑝)𝜎 0 −𝜂 0 0 0
0 𝜏 0 −𝜇 0 0
0 −𝛽𝑁 −𝛽𝑁 −𝛽𝑁 0 𝜆
0 𝛾 𝜂 0 0 −𝜆⎦

⎥
⎥
⎥
⎥
⎤

. 

We can write the above matrix shortly as 

 

𝐽 = ൤
𝐹 − 𝑉ଵ 0

𝑈ଵ 𝑈ଶ
൨, 
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where 
 

𝐹 − 𝑉ଵ = ൦

−𝜎 𝛽𝑁 𝛽𝑁 𝛽𝑁
𝑝𝜎 −𝜏 − 𝛾 − 𝜇 0 0

(1 − 𝑝)𝜎 0 −𝜂 0
0 𝜏 0 −𝜇

൪,   

 

    𝑈ଵ = ൤
0 −𝛽𝑁 −𝛽𝑁 −𝛽𝑁
0 𝛾 𝜂 0

൨, 

 
and  

𝑈ଶ = ቂ
0 𝜆
0 −𝜆

ቃ . 

 
 
The disease-free equilibrium is locally asymptotically stable, if the eigenvalues of Jacobian 
matrix at disease free equilibrium have negative real part (Driessche et al. (2002)). Since the 
eigenvalues of J  are those of 

1( )F V  and U2 which are negative. Thus, the stability of 𝐽 is 

depended on the eigenvalues of 
1( )F V . That is, disease free equilibrium is stable if all the 

eigenvalues of 
1( )F V  have negative real part. Here, F  is non-negative and 1V  is non-

singular. 
 
The characteristic Equation of the Jacobian matrix is  
 

|𝜆𝐼 − 𝐽| = 0, 
 

which can be written into a biquadratic Equation in the form 
 

𝑎ସ𝑆ସ + 𝑎ଷ𝑆ଷ + 𝑎ଶ𝑆ଶ + 𝑎ଵ𝑆 + 𝑎଴ = 0,                                    (9) 
 
where 
 

𝑎ସ = 1, 
 

𝑎ଷ = 2𝜇 + 𝜂 + 𝜏 + 𝛾 + 𝜎, 
 

𝑎ଶ = (2𝜇 − (1 − 𝑝)𝛽𝑁 + 𝜂 + 𝜏 + 𝛾)𝜎 + 𝜇ଶ + (2𝜂 + 𝜏 + 𝛾)𝜇 − 𝑝𝜎𝛽𝑁 + 𝜂(𝜏 + 𝛾), 
 

𝑎ଵ = (𝜇ଶ + ((−2 + 2𝑝)𝛽𝑁 + 2𝜂 + 𝜏 + 𝛾)𝜇 + ((−1 + 𝑝)𝛽𝑁 + 𝜂)(𝜏 + 𝛾))𝜎 + 𝜂𝜇ଶ 
 

+൫−𝑝𝜎𝛽𝑁 + 𝜂(𝜏 + 𝛾)൯𝜇 − 𝑝𝜎𝛽𝑁(𝜏 + 𝜂), 
 
and 
 

𝑎଴ = (𝜏 + 𝛾 + 𝜇)((𝑝 − 1)𝛽𝑁 + 𝜂)𝜇𝜎 − 𝜂𝑝𝜎𝛽𝑁(𝜇 + 𝜏). 
 
According to Routh-Hurwitz condition, the system will be stabile if  
 

𝑎଴ > 0, 𝑎ଵ > 0, 𝑎ଶ > 0, 𝑎ଷ > 0, 𝑎ଷ𝑎ଶ > 𝑎ସ𝑎ଵ and  𝑎ଷ𝑎ଶ𝑎ଵ > 𝑎ସ𝑎ଵ
ଶ + 𝑎଴𝑎ଷ

ଶ. 
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. 
 
By simple algebraically process with comparing terms and the conditions, we have 
 

ℜ଴ = ൤
1 − 𝑝

𝜂
+

𝑝

𝛾 + 𝜏 + 𝜇
+

𝑝𝜏

𝜇(𝛾 + 𝜏 + 𝜇)
൨ < 1. 

        
Consequently, we can prove the system will be unstable if 0 1.   This is the complete proof.   
 
Theorem 2.2.3. 
 
The disease-free equilibrium of the model is globally asymptotically stable if 0 1  , and 

unstable 0 1  . 

 
Proof:  
 
We can define Lyapunov function in the linear form as 
 

𝑉ଶ = 𝑘ଵ ቀ𝑆 − 𝑆଴ − 𝑆଴ 𝑙𝑛
ௌ

ௌబ
ቁ + 𝑘ଶ𝐸 + 𝑘ଷ𝐼 + 𝑘ସ𝐴 + 𝑘ହ𝑉 + 𝑘଺𝑅,               (10) 

 
where, 1 2 3 4 5 6, , , , andk k k k k k  are constants and the derivative of Lyapunov function can be 

found using the value of S , E , I , A , V , R from Equations (1) - (6)  and 0S N as 

          

𝑉̇ଶ = 𝑘ଵ(1 −
𝑁

𝑆
)(𝜆𝑅 − 𝛽𝑆(𝐼 + 𝐴 + 𝑉)) + 𝑘ଶ(𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝜎𝐸) 

               
+𝑘ଷ(𝑝𝜎𝐸 − (𝜏 + 𝛾 + 𝜇)𝐼) + 𝑘ସ൫(1 − 𝑝)𝜎𝐸 − 𝜂𝐴൯ + 𝑘ହ(𝜏𝐼 − 𝜇𝑉) 

                      
+(𝑘଺ + 𝑘ଵ)(𝛾𝐼 + 𝜂𝐴 − 𝜆𝑅).                                           (11) 

 
 
Applies perturbation method in Equation (11) and which provides   

 
𝑘ଵ = 𝑘ଶ = 𝑝, 

 

𝑘ଷ = 1 +
𝑘ସ(𝑝 − 1)

𝑝
, 

 

𝑘ସ =
𝑝𝛽𝑁

𝜂
+

(1 − 𝑝)𝛽𝑁(𝜏 + 𝛾 + 𝜇)

𝜂𝛾
, 

 

𝑘ହ =
𝛽𝑁𝑝

𝜇
, 

 
and 
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𝑘଺ + 𝑝 =
(1 − 𝑝)𝛽𝑁(𝜏 + 𝛾 + 𝜇)

𝜂𝛾
. 

 
 

Now using the values of 1k , 2k  , 3 ,k 4 ,k 5 ,k  and 6k  into Equation (11) and after simplifying, 

we get  
 

𝑉̇ଶ = −𝑝𝑁𝜏
ℜ଴

𝑆
+ (𝜏 + 𝛾 + 𝜇) ൤𝛽𝑁 ൜

𝑝

(𝜏 + 𝛾 + 𝜇)
+

𝑝𝜏

𝜇(𝜏 + 𝛾 + 𝜇)
+

1 − 𝑝

𝜂
ൠ − 1൨ 𝐼 

 

⇒ 𝑉̇ଶ = −𝑝𝑁𝜏
ℜ଴

𝑆
+ (𝜏 + 𝛾 + 𝜇)[ℜ଴ − 1]𝐼. 

 
 

The disease-free equilibrium is globally asymptotically stable if 2 0V , which becomes 
0 1 

.  
 
2.3. Endemic equilibrium 
 
For endemic equilibrium, an equilibrium solution of the systems of Equations (1) – (6) can be 
found  
 

𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0, 

 
with the help of 0E I  . After solving the above system in the case of endemic 
equilibrium, we have the following relations 
 

0
e

N
S 


,  

e eE I
p

  


 
 , 

  00

1
(1 )

1
e

Np
I

R

N
  

 

 
 

   
 

, 

 
 (1 )

e e

p
A I

  


  
 , 

e eV I



 ,  
e eR I

p

  


 
 . 

 
Thus, endemic equilibrium is  , , , , ,e e e e e eS E I A V R . 

 
Theorem 2.3.1. 
 
The endemic equilibrium of the model is locally asymptotically stable if 0 1  , and unstable 

if 0 1.   

 
Proof:  
 
The Jacobian matrix 𝐽 which is derived in Equation (8) can be written also for endemic 
equilibrium  , , , , ,e e e e e eS E I A V R  as  
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𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝛼 𝛽𝑆 𝛽𝑆 𝛽𝑆 𝛽(𝐼 + 𝐴 + 𝑉) 0
𝑝𝜎 −(𝜏 + 𝛾 + 𝜇) 0 0 0 0

(1 − 𝑝)𝜎 0 −𝜂 0 0 0
0 𝜏 0 −𝜇 0 0
0 −𝛽𝑆 −𝛽𝑆 −𝛽𝑆 −𝛽(𝐼 + 𝐴 + 𝑉) 𝜆
0 𝛾 𝜂 0 0 −𝜆⎦

⎥
⎥
⎥
⎥
⎤

. 

 

At disease-free equilibrium  , , , , ,e e e e e eS E I A V R , the above matrix becomes 

 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡

−𝜎 𝛽𝑆௘ 𝛽𝑆௘ 𝛽𝑆௘ 𝛽(𝐼௘ + 𝐴௘ + 𝑉௘) 0
𝑝𝜎 −(𝜏 + 𝛾 + 𝜇) 0 0 0 0

(1 − 𝑝)𝜎 0 −𝜂 0 0 0
0 𝜏 0 −𝜇 0 0
0 −𝛽𝑆௘ −𝛽𝑆௘ −𝛽𝑆௘ −𝛽(𝐼௘ + 𝐴௘ + 𝑉௘) 𝜆
0 𝛾 𝜂 0 0 −𝜆⎦

⎥
⎥
⎥
⎥
⎤

. 

 

For convenient, this can be written as 𝐽 = ൤
𝑃ଵ 𝑃ଶ

𝑃ଷ 𝑃ସ
൨,

  
where 
 

1

0 0

(1 ) 0 0

0 0

e e eS S S

p
P

p

   
   
 

 

 
    
  
  

, 2

( ) 0

0 0

0 0

0 0

e e eI A V

P

   
 
 
 
 
 

, 

 

3

0

0 0
e e eS S S

P
  
 
   

  
 

 ,             4

( )

0
e e eI A V

P
 


   

   
. 

 

The endemic equilibrium is locally asymptotically stable, if the eigenvalues P1 and P2 of 
Jacobian matrix J at endemic equilibrium have negative real part (Driessche et al. (2002)). 

Moreover, the eigenvalues of 4P  will be negative if   e e eI A V     is positive.  That is, 

         

𝛽 ൬1 +
𝜏 + 𝛾 + 𝜇

𝑝
+

𝜏

𝜇
൰ 𝐼௘ > 0. 

 
Applying the value of Ie, the above equation becomes 
 

𝛽 ൬1 +
𝜏 + 𝛾 + 𝜇

𝑝
+

𝜏

𝜇
൰

𝑁𝑝

ቀ
ଵ

ఙ
+

ோబ

ఉே
ቁ (𝜏 + 𝛾 + 𝜇)

(1 −
1

ℜ଴
) > 0. 

 
Furthermore, we have  
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0

1
(1 ) 0 


, Since

 0

 1 0
1

Np

p R

N

   
   

 

  
          

 

. 

 
Thus,  0 1  . 
 
Theorem 2. 3. 2. 
 
If 0 1  , then prove that the endemic equilibrium ( , , , , , )e e e e e eS E I A V R is globally asymptotically 

stable. 
 
Proof:  
 
Consider the Lyapunov function in the following form 
 
 

𝑉ଷ = 𝑘ଵ(𝑆 − 𝑆௘ − 𝑆௘ 𝑙𝑛
𝑆

𝑆௘
) + 𝑘ଶ(𝐸 − 𝐸௘ − 𝐸௘ 𝑙𝑛

𝐸

𝐸௘
) + 𝑘ଷ(𝐼 − 𝐼௘ − 𝐼௘ 𝑙𝑛

𝐼

𝐼௘
) 

            +𝑘ସ(𝐴 − 𝐴௘ − 𝐴௘ 𝑙𝑛
஺

஺೐
) + 𝑘ହ(𝑉 − 𝑉௘ − 𝑉௘ 𝑙𝑛

௏

௏೐
) + 𝑘଺(𝑅 − 𝑅௘ − 𝑅௘ 𝑙𝑛

ோ

ோ೐
).     (12) 

 
After differentiating, the Lyapunov function can be found as 
 

𝑉̇ଷ = 𝑘ଵ ൬1 −
𝑆௘

𝑆
൰ 𝑆̇ + 𝑘ଶ ൬1 −

𝐸௘

𝐸
൰ 𝐸̇ + 𝑘ଷ ൬1 −

𝐼௘

𝐼
൰ 𝐼̇ + 𝑘ସ ൬1 −

𝐴௘

𝐴
൰ 𝐴̇ + 𝑘ହ ൬1 −

𝑉௘

𝑉
൰ 𝑉̇ 

+𝑘଺(1 −
𝑅௘

𝑅
)𝑅̇ 

 
 
Substituting the expressions of , , , ,S E I A V      and R in the above Equation, we get 

𝑉ଷ̇ = 𝑘ଵ ൬1 −
𝑆௘

𝑆
൰ ൫𝜆𝑅 − 𝛽𝑆(𝐼 + 𝐴 + 𝑉)൯ + 𝑘ଶ ൬1 −

𝐸௘

𝐸
൰ (𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝜎𝐸) 

𝑘ଷ ൬1 −
𝐼௘

𝐼
൰ (𝑝𝜎𝐸 − (𝜏 + 𝛾 + 𝜇)𝐼) + 𝑘ସ ൬1 −

𝐴௘

𝐴
൰ ൫(1 − 𝑝)𝜎𝐸 − 𝜂𝐴൯ 

+𝑘ହ ቀ1 −
௏೐

௏
ቁ (𝜏𝐼 − 𝜇𝑉)+𝑘଺ ቀ1 −

ோ೐

ோ
ቁ (𝛾𝐼 + 𝜂𝐴 − 𝜆𝑅)                           (13) 

  

After simplifying, Equation (13) can be written as

 

  

𝑉̇ଷ = (𝑘ଵ𝜆𝑅 − 𝑘ଵ𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝑘ଵ𝜆
𝑆௘𝑅

𝑆
+ 𝑘ଵ𝛽𝑆௘(𝐼 + 𝐴 + 𝑉)) 

+(𝑘ଶ𝛽𝑆(𝐼 + 𝐴 + 𝑉) − 𝑘ଶ𝜎𝐸 − 𝑘ଶ𝛽
𝑆𝐸௘

𝐸
(𝐼 + 𝐴 + 𝑉) + 𝑘ଶ𝜎𝐸௘) 

+(𝑘ଷ𝑝𝜎𝐸 − 𝑘ଷ(𝜏 + 𝛾 + 𝜇)𝐼 − 𝑘ଷ𝑝𝜎
𝐸𝐼௘

𝐼
+ 𝑘ଷ(𝜏 + 𝛾 + 𝜇)𝐼௘) 
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+(𝑘ସ(1 − 𝑝)𝜎𝐸 − 𝑘ସ𝜂𝐴 − 𝑘ସ(1 − 𝑝)𝜎
𝐸𝐴௘

𝐴
+ 𝑘ସ𝜂𝐴௘) 

+(𝑘ହ𝜏𝐼 − 𝑘ହ𝜇𝑉 − 𝑘ହ𝜏
𝐼𝑉௘

𝑉
+ 𝑘ହ𝜇𝑉௘) 

+(𝑘଺𝛾𝐼 + 𝑘଺𝜂𝐴 − 𝑘଺𝜆𝑅 − 𝑘଺𝛾
ூோ೐

ோ
− 𝑘଺𝜂

஺ோ೐

ோ
+ 𝑘଺𝜆𝑅௘)                       (14) 

 
To eliminate the linear terms of , , ,E I A V  and R from Equation (14), we have used 
 

−𝑘ଶ𝜎 + 𝑘ଷ𝜎𝑝 + 𝑘ସ(1 − 𝑝)𝜎 = 0,                                      (15) 
 

𝑘ଵ𝛽𝑆௘ − 𝑘ଷ(𝜏 + 𝛾 + 𝜇) + 𝑘ହ𝜏 + 𝑘଺𝛾 = 0,                              (16) 

  
𝑘ଵ𝛽𝑆௘ − 𝑘ସ𝜂 + 𝑘଺𝜂 = 0,                                                 (17) 

  
𝑘ଵ𝛽𝑆௘ − 𝑘ହ𝜇 = 0,                                                        (18) 

  
𝑘ଵ𝜆 − 𝑘଺𝜆 = 0.                                                          (19) 

   
From Equations (15) to (19), we have 
 

𝑘ଵ = 𝑘ଶ = 1, 𝑘ଷ(𝜏 + 𝛾 + 𝜇) = 𝛽𝑆௘ + 𝛽𝑆௘

𝜏

𝜇
+ 𝛾, 𝑘ସ =

𝛽𝑆௘

𝜂
+ 1, 

 

𝑘ହ =
ఉௌ೐

ఓ
,   and     𝑘଺ = 1.                                             (20) 

 
Since ( , , , , , )e e e e e eS E I A V R is the solution set of a compartmental model, so we have the 

following: 
 

 𝜆𝑅௘ − 𝛽𝑆௘(𝐼௘ + 𝐴௘ + 𝑉௘) = 0,                                              (21) 

  
𝛽𝑆௘(𝐼௘ + 𝐴௘ + 𝑉௘) − 𝜎𝐸 = 0,                                              (22) 

  
𝑝𝜎𝐸௘ − (𝜏 + 𝛾 + 𝜇)𝐼௘ = 0,                                               (23) 

  
(1 − 𝑝)𝜎𝐸௘ − 𝜂𝐴௘ = 0,                                                   (24) 

  
𝜏𝐼௘ − 𝜇𝑉௘ = 0 ,                                                     (25) 

  
𝛾𝐼௘ + 𝜂𝐴௘ − 𝜆𝑅௘ = 0.                                                    (26) 

 
From Equations (21) – (26), we can derive the following relations: 
 

ூ೐ா

ூ
𝑘ଷ𝜎𝑝 = ቀ𝛽𝑆௘ + 𝛽𝑆௘

௏೐

ூ೐
+ 𝛾ቁ

ூ೐
మா

ா೐ூ
,                                  (27) 
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ா஺೐

஺
𝑘ସ(1 − 𝑝)𝜎 = (𝛽𝑆௘ + 𝜂)

ா஺೐
మ

ா೐஺
,                                   (28) 

 
 

𝜎𝐸 = ቀ𝛽𝑆௘ + 𝛽𝑆௘
௏೐

ூ೐
+ 𝛾ቁ

ூ೐ா

ா೐
+ (𝛽𝑆௘ + 𝜂)

஺೐ா

ா೐
,                         (29) 

 

Now substituting the expressions of 1k , 2k  , 3 ,k 4 ,k 5 ,k  and 6k
  from Equation (20) into 

Equation (14) and using Equations (27) – (29), we get  
 

𝑉̇ଷ = −𝜆
𝑆௘𝑅

𝑆
− 𝛽

𝐸௘

𝐸
𝑆(𝐼 + 𝐴 + 𝑉) + 𝜎𝐸௘ − ൬𝛽𝑆௘ + 𝛽𝑆௘

𝑉௘

𝐼௘
+ 𝛾൰

𝐼௘
ଶ𝐸

𝐼𝐸௘
 

+ ൬𝛽𝑆௘ + 𝛽𝑆௘

𝑉௘

𝐼௘
+ 𝛾൰ 𝐼௘ − (𝛽𝑆௘ + 𝜂)

𝐸𝐴௘
ଶ

𝐸௘𝐴
− (𝛽𝑆௘ + 𝜂)𝐴௘  

−𝛽𝑆௘
௏೐

మூ

ூ೐௏
+ 𝛽𝑆௘𝑉௘ − 𝛾

ோ೐ூ

ோ
− 𝜂

ோ೐஺

ோ
+ 𝜆𝑅௘                                    (30) 

 

Applying Equation (26) into Equation (30), we have  
 

𝑉̇ଷ = −𝜆
𝑆௘𝑅

𝑆
− 𝛽

𝐸௘

𝐸
𝑆(𝐼 + 𝐴 + 𝑉) − ൬𝛽𝑆௘ + 𝛽𝑆௘

𝑉௘

𝐼௘
൰

𝐼௘
ଶ𝐸

𝐼𝐸௘
+ ൬𝛽𝑆௘ + 𝛽𝑆௘

𝑉௘

𝐼௘
൰ 𝐼௘ − 𝛾

𝐼௘
ଶ𝐸

𝐼𝐸௘
 

−𝛽𝑆௘
ா஺೐

మ

ா೐஺
− 𝜂

ா஺೐
మ

ா೐஺
+ 𝛽𝑆௘𝐴௘ − 𝛽𝑆௘

௏೐
మூ

ூ೐௏
+ 𝛽𝑆௘𝑉௘ − 𝛾

ோ೐ூ

ோ
− 𝜂

ோ೐஺

ோ
+ 3𝜆𝑅௘              (31) 

 

Implies that 
 

𝑉̇ଷ = 𝛽𝑆௘𝐼௘ ൬3 −
𝐸௘𝑆𝐼

𝐸𝑆௘𝐼௘
−

𝐼௘𝐸

𝐼𝐸௘
−

𝑆௘

𝑆
൰ + 𝛽𝑆௘𝐴௘ ൬3 −

𝐸௘𝑆𝐴

𝐸𝑆௘𝐴௘
−

𝐴௘𝐸

𝐴𝐸௘
−

𝑆௘

𝑆
൰ 

 

+𝛽𝑆௘𝑉௘ ൬4 −
𝐼𝑉௘

𝐼௘𝑉
−

𝐸𝐼௘

𝐸௘𝐼
−

𝐸௘𝑆𝑉

𝐸𝑆௘𝑉௘
−

𝑆௘

𝑆
൰ − 𝜆

𝑆௘𝑅

𝑆
+ 𝛽𝑆௘𝐼௘ ൬1 +

𝑆௘

𝑆
൰ 

                          

+𝛽𝑆௘𝐴௘ ൬1 +
𝑆௘

𝑆
൰ + 𝛽𝑆௘𝑉௘ ൬1 +

𝑆௘

𝑆
൰ − 𝛾

𝐼௘
ଶ𝐸

𝐼𝐸௘
− 𝜂

𝐴௘
ଶ𝐸

𝐴𝐸௘
− (𝛾𝐼 + 𝜂𝐴)

𝑅௘

𝑅
. 

 
 

After rearranging, we have 
 

       

𝑉̇ଷ = 𝛽𝑆௘𝐼௘ ൬3 −
𝐸௘𝑆𝐼

𝐸𝑆௘𝐼௘
−

𝐼௘𝐸

𝐼𝐸௘
−

𝑆௘

𝑆
൰ + 𝛽𝑆௘𝐴௘(3 −

𝐸௘𝑆𝐴

𝐸𝑆௘𝐴௘
−

𝐴௘𝐸

𝐴𝐸௘
−

𝑆௘

𝑆
) 

+𝛽𝑆௘𝑉௘(4 −
𝐼𝑉௘

𝐼௘𝑉
−

𝐸𝐼௘

𝐸௘𝐼
−

𝐸௘𝑆𝑉

𝐸𝑆௘𝑉௘
−

𝑆௘

𝑆
) 

+𝛽𝑆௘(𝐼௘ + 𝐴௘ + 𝑉௘)[1 +
ௌ೐

ௌ
−

ௌ೐ோ

ௌோ೐
− 𝑝

ூ೐ா

ூா೐
− (1 − 𝑝)

஺೐ா

஺ா೐
− 𝑝

ோ೐ூ

ோூ೐
− (1 − 𝑝)

ோ೐஺

ோ஺೐
]        (32) 
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Since the arithmetic mean exceeds the geometric mean, so we can express the following 
inequalities:   
 

3 −
𝐸௘𝑆𝐼

𝐸𝑆௘𝐼௘
−

𝐼௘𝐸

𝐼𝐸௘
−

𝑆௘

𝑆
≤ 0, 

 

3 −
𝐸௘𝑆𝐴

𝐸𝑆௘𝐴௘
−

𝐴௘𝐸

𝐴𝐸௘
−

𝑆௘

𝑆
≤ 0, 

 

4 −
𝐼𝑉௘

𝐼௘𝑉
−

𝐸𝐼௘

𝐸௘𝐼
−

𝐸௘𝑆𝑉

𝐸𝑆௘𝑉௘
−

𝑆௘

𝑆
≤ 0. 

 
Note that 
 

1 +
𝑆௘

𝑆
−

𝑆௘𝑅

𝑆𝑅௘
− 𝑝

𝐼௘𝐸

𝐼𝐸௘
− (1 − 𝑝)

𝐴௘𝐸

𝐴𝐸௘
− 𝑝

𝑅௘𝐼

𝑅𝐼௘
− (1 − 𝑝)

𝑅௘𝐴

𝑅𝐴௘
≤ 0 

 
and from Equation (32), it follows that 3 0V . Therefore, by the Lyapunov function and the 

LaSalle’s principle, every solution of the proposed model approaches to the endemic 
equilibrium as t for  0 1   and 

 

1 +
𝑆௘

𝑆
−

𝑆௘𝑅

𝑆𝑅௘
− 𝑝

𝐼௘𝐸

𝐼𝐸௘
− (1 − 𝑝)

𝐴௘𝐸

𝐴𝐸௘
− 𝑝

𝑅௘𝐼

𝑅𝐼௘
− (1 − 𝑝)

𝑅௘𝐴

𝑅𝐴௘
≤ 0. 

. 
 

2.4. Final size relation 
 
Final size relation is the relation between the basic reproduction number and the number of 
populations in the epidemic which remain at each disease-free compartment. Arino et al. 
(2007) discussed final size relation of the epidemic model and found the relation as 
 

ln
𝑆଴

𝑆∝
=

ℜ଴

𝑆଴

[𝑆଴ − 𝑆∝] + 𝛽𝑏𝑉ଵ
ିଵ𝑥(0), 

 
where 𝑏 = [0 1 1 1] and 𝑥(0) = [0 𝐼଴ 0 0]ᇱfrom initial conditions 𝐸(0) = 0, 𝐼(0) = 𝐼଴,
𝐴(0) = 0 and 𝑉(0) = 0.  
 
The final size relation of the model becomes  
 

ln
ௌబ

ௌ∝
=

ℜబ

ௌబ
[𝑆଴ − 𝑆∝] + 𝛽

ூబ(ఓାఛ)

ఓ(ఊାఛାఓ)
.                                    (33) 

         
 

Equation (33) shows that 0S  , since right side of Equation (33) is finite. That is, final size 

number population in the epidemic indicates that some susceptive will be uninfected. 
 
 
3. Numerical Computations and Results 
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3. 1 Numerical method 
 
The systems of Equations (1) – (6) have been used as the governing Equations with the initial 
condition in Equation (7). These Equations are solved numerically with the aid of Range-
Kutta method. We have solved the Equations numerically using various choices of 
parameters (Table 1) and time intervals and have found the solution for each compartment. 
 

Table 1: Various choices of parameters with references that are used in the model 
Name of the parameter Value Reference 
Infection rate (𝛽) 0.004-0.008 Biswas et al.(2008) 
Expose rate (𝜎) 0.5-0.05 Rahman et al.(2012) 
Asymptomatic rate (1 − 𝑝) 5.2% - 35.5% Kanamori et al.(2016) 
Mortality rate (𝜇) 90%-100% Payungporn et al.(2006) 
Shaded virus rate (𝜏)  0.75-1.80 Lin et al.(2016) 
Removal rate (𝛾) from infected 10%-0% Payungporn et al.(2006) 
Removal to Susceptive rate (𝜆) 90%-100%                 --- 
Removal rate (𝜂)from asymptomatic  50%-80% Kanamori et.al. (2016) 
Initials susceptive ( 0S ) 650 Alam et. al. (2010) 

Initials infective ( 0I ) 6 Alam et. al. (2010) 

 
 
3. 2. Computed results of successive, expose, infective and removal 
 
Some typical results of susceptive, expose, infective, removal and asymptotic are estimated 
which are presented in Figures (2) – (7). In Figure 2, the variation of susceptive decreases 
rapidly at the initial stages and after that it has no variations with the increasing of time. 
Moreover, it can be seen that the susceptive rate is very sensitive to the expose rate (Figure 
2(b)). Furthermore, the rest of the parameters have found the similar effects on successive 
compartment.  
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               Figure 2. Profiles of the susceptive individuals for several parameters  
 
In Figure 3, it is seen that the expose increases from initial position to a certain point and then 
decreases exponentially to dismiss. But in Figure 3(b), the expose shows the divergent nature 
as the decreasing of the value . Expose compartment is affected by the infection rate, 
symptomatic rate, expose period and shad virus and other parameters (mortality rate, removal 
rates) have the less effect those are shown in Figures 3(e) - 3(f). 
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                  Figure 3. Variations of the expose individuals for several parameters  
 
Furthermore, infective compartment (symptomatic compartment) is significantly affected by 
the infection rate, expose period, asymptomatic fraction, shaded virus rate and removal rate 
(Figures 4(a-e)) and other rate have less effect which is seen Figure (4f). Infective 
compartment is increased with the increasing of infection rate, expose rate, and symptomatic 
fraction, but decreases with the increasing of shades virus rate and removal rate, Figure 4.  
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Figure 4. Variations of infective individuals with the variation of time for several parameters  
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                   Figure 5. Variations of the asymptomatic individuals for several parameters  
 
In Figures (5) and (6), we have presented the results for asymptomatic and removal 
individuals, respectively.  Although the trends of the asymptomatic and removal curves are 
similar to the expose and infective curves in Figures 3 and 4, but removal curves in Figure 6 
are significantly varies with . These types works were done by (Lin et al. 2016, Modnak el 
al. 2017, Putri et al. 2016). They derived the infected, exposed, asymptomatic, removal and 
found similar results.  
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Figure 6. Profiles of removal compartment with the variation of time for several parameters 
  
3.3. Comparison between computed results and data 
 
The computed results of infected, exposed, asymptomatic, removal, shaded virus are plotted 
at the same time in Figure 7. It is observed that all the individual increases first and then 
decrease gradually to dismiss. Furthermore, it is also seen that the infection rate and expose 
period are very effective compared to other parameters.  
 
Finally, the SEIAVR compartmental model’s result, Lin et al. (2016) result and field data are 
compared in Figure 8. The result of our six-compartmental model shows good performance 
against the field data compared to Lin et al. (2016) result. The data were conducted by Alam 
et al. (2010) for avian influenza.   
 

 
                      Figure 7. The graphical representation of individual model results   
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                        Figure 8. Comparison between the model results of infection and data 
 
4. Conclusion 
 
In this study, we presented a SEIAVR compartmental model based on avian influenza and 
discussed its local and global stability at the two equilibrium conditions. We also derived the 
basic reproduction number, final size relation and a relationship between these two 
phenomena. Final size relationship was pointed out that some susceptive population remained 
uninfected during epidemiology. The developed Equations were solved numerically with the 
help of Range-Kutta method and the values of initial parameters were taken from the several 
literatures and reports. The calculated results of susceptive expose, infective, removal, virus 
and asymptotic compartments were presented individually where all the parameters varied 
significantly for , , p and . Furthermore, the above parameters also were compared at the 
same time and the infection rate and expose period observed very sensitive compared to other 
parameters. In addition, the model result of infection rate was compared with the field data 
and found satisfactory result.  
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