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Abstract

In this paper, the effect of viscous force on the linear stability of equilibrium points of the circular
Robe’s restricted three-body problem (CRR3BP) with smaller primary as a finite straight segment
is studied. The present model comprises of a bigger primary m∗

1 which is a rigid spherical shell
filled with a homogeneous incompressible fluid of density ρ1 and the smaller primary m2 lies
outside the shell. The infinitesimal mass m3 is a small solid sphere of density ρ3 moving inside
m∗

1. The pertinent equations of motion of m3 are derived and solved for the equilibrium points.
Routh-Hurwitz criterion is used to detect the stability of the obtained equilibrium points. The
stability of the collinear equilibrium points has been studied systematically in the different regions
for the various values of the parameters involved. These points are found to be conditionally stable,
whereas the non-collinear and out-of-plane equilibrium points are always unstable for all the values
of the parameters. We observed that viscosity has no effect on the location of equilibrium points.
However, its effect along with the length parameter l is evident on the stability of equilibrium
points.

Keywords: Circular Robe’s restricted three-body problem; Finite straight segment; Viscosity;
Stability
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1. Introduction

Restricted three-body problem (Szebehely (1967)) is one of the most popularly researched problem
in celestial mechanics. In this problem two massive primaries move in circular orbits around their
common center of mass and a third infinitesimal body being influenced by the primaries but not
influencing them, moves in the plane of motion of the primaries. To describe the motion of the
infinitesimal body under the Newtonian gravitational attraction is known as the restricted three-
body problem.

Robe (1977) configured a new kind of restricted three-body problem by assuming the bigger pri-
mary m∗

1 to be a spherical shell filled with a homogeneous incompressible fluid of density ρ1 and
the smaller one m2 being a point mass that lies outside m∗

1. He considered the cases in which the
orbit of m2 around m∗

1 is either circular or elliptic. He studied the motion of the infinitesimal body
m3 which is a small solid sphere of density ρ3 lying insidem∗

1. The motion ofm3 is studied subject
to the attraction of m2, attraction of fluid of density ρ1 and the buoyancy force of the fluid. He
found that the centre of the shell (−µ, 0, 0) is the only equilibrium point and studied its stability in
continuation.

The existence and linear stability of equilibrium points in the RR3BP has been studied by Hallan
and Rana (2001a). They found that there exist other equilibrium points apart from the centre of
the first primary (−µ, 0, 0). Later, Hallan and Rana (2003) studied the effect of perturbations in
Coriolis and centrifugal forces on the location and stability of the equilibrium points in the circu-
lar Robe’s R3BP. Plastino and Plastino (1995) revisited the RR3BP with the assumption that the
hydrostatic equilibrium figure of m∗

1 is a Roche ellipsoid (Chandrashekhar (1987)). They obtained
the equations of motion governing the motion of m3 and investigated the location and stability of
equilibrium points.

The Robe’s restricted 2 + 2 body problem has been studied by Kaur and Aggarwal (2012); Aggar-
wal and Kaur (2014); Kaur and Aggarwal (2013a); Kaur and Aggarwal (2013b); Aggarwal et al.
(2014); Kaur et al. (2016). Kaur and Aggarwal (2012) extended the RR3BP to the problem of 2+2
bodies. Kaur and Aggarwal (2013a) extended their problem by taking the hydrostatic equilibrium
figure of m∗

1 as a Roche ellipsoid. The Robe’s restricted 2 + 2 body problem when the bigger and
smaller primaries are Roche ellipsoid and oblate spheroid respectively was studied by Kaur and
Aggarwal (2013b). Aggarwal and Kaur (2014) examined the existence and stability of Robe’s re-
stricted problem of 2 + 2 bodies with one of the primary as an oblate body. The perturbed version
of the Robe’s restricted problem of 2+2 bodies when the primaries form a Roche ellipsoid-triaxial
system has been studied by Kaur et al. (2016). They pointed out the effect of small perturbation in
centrifugal force on the location of the equilibrium points, however the stability is being affected
by the perturbation in Coriolis and centrifugal forces.

Jain and Sinha (2014b) investigated the stability of the equilibrium points in the R3BP when both
the primaries are finite straight segments. They also obtained the possible regions of motion for
m3. Non-linear stability of equilibrium points for the same problem has also been studied by Jain
and Sinha (2014a).
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Chauhan et al. (2018) studied the restricted three-body under the assumption that the smaller pri-
mary is a finite straight segment. They derived the equations of motion of the infinitesimal mass
under the influence of Albedo.

Kumar et al. (2019) extended the RR3BP by taking one of the primaries as a finite straight segment.
The effect of length parameter has been perceived on the location and stability of the equilibrium
points. The collinear equilibrium points are found to be conditionally stable for the density, mass
and length parameters k, µ and l respectively. However, the non-collinear and out-of-plane equi-
librium points are always unstable for every value of the parameters µ, k and l. Recently, they
investigated their problem by considering the effect of small perturbations in the Coriolis and cen-
trifugal forces in Kaur et al. (2020).

RR3BP has been studied with many variations in the configuration of involved bodies by many
authors in the series of papers like Singh and Mohammed (2012); Singh and Sandah (2012); Singh
(2012); Singh and Mohammed (2013); Singh and Omale (2014). Ansari et al. (2019a) studied the
effect of oblateness and viscosity in the circular RR3BP. The bigger primary has been considered
as a rigid spherical shell filled with homogeneous, incompressible and viscous fluid, and shape of
the second primary is taken to be an oblate spheroid. They summarised that the viscosity of the
fluid has no impact on the positions of the equilibrium points, however it has a subsequent effect
on the stability of the obtained equilibrium points.

Ansari et al. (2019b) investigated the motion of m3 in the perturbed CRR3BP. They assumed
the shape of bigger primary as in Ansari et al. (2019a) and smaller primary to be a point mass.
They discussed the problem with viscous force of the fluid and small perturbations in the Coriolis
and centrifugal forces. They obtained the equilibrium points for their problem and systematically
investigated their linear stability by using Routh-Hurwitz criterion.

Robe’s model with the smaller primary as a finite straight segment has been studied by Kumar et
al. (2019) without taking into consideration the effect of viscosity of the fluid ρ1 on m3. This effect
of viscosity was considered by Ansari et al. (2019b). Motivated by Kumar et al. (2019) and Ansari
et al. (2019b), we have made an effort to study the combined effects of viscosity and finite straight
segment on the locations and stability of the equilibrium points. Routh-Hurwitz criterion has been
used to determine the stability without factorizing the characteristic polynomial which is obtained
by using the variational equations.

This paper is organized into five sections. Section 1 is an introductory in which the development of
the problem is mentioned. The statement of the problem and the pertinent equations of motion are
stated in Section 2. In Section 3, the collinear, non-collinear and out-of-plane equilibrium points
are stated as in Kumar et al. (2019). Section 4 comprises of stability of equilibrium points by
using the well established Routh-Hurwitz criterion. Section 5 includes the discussion and Section
6 concludes the paper.
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Figure 1. Robe’s restricted three-body problem when smaller primary is a finite straight segment

2. Description of the dynamical system

Let there be two primaries of masses m∗
1 and m2, the bigger primary m∗

1 be a rigid spherical shell
filled with homogeneous incompressible fluid of density ρ1 and m2 be a finite straight segment of
length 2l (l << 1, such that o(l3) ≈ 0) lying outside m1 (as in Figure 1). They revolve in circular
orbit with angular velocity ω. The line joining the centres of the primaries m∗

1 and m2 is taken as
x-axis of the synodic co-ordinate system. The center of mass of the primaries is taken as origin O.
The line perpendicular to the x-axis passing through O in the plane of motion of the primaries is
taken as y-axis. The z-axis is the line perpendicular to the plane of motion of primaries through O.
Let the synodic co-ordinate system, Oxyz initially coincident with the inertial co-ordinate system
OXY Z, rotate with the same angular velocity ω as that of the primaries.

Let the third body of mass m3 be a small solid sphere of density ρ3 inside the shell, with the as-
sumption that its mass and radius are infinitesimal. We assume that the mass m3 does not influence
the motion ofm∗

1 andm2 but is influenced by them. Kumar et al. (2019) studied this model without
considering the force acting on m3 due to viscosity of the fluid ρ1. By introducing the parameters
Vx, Vy and Vz due to viscosity, the equations of motion of m3 in the uniformly rotating coordinate
system in dimensionless variables (Kumar et al. (2019)) are

ẍ− 2ωẏ = Wx + Vx,

ÿ + 2ωẋ = Wy + Vy,

z̈ = Wz + Vz, (1)
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where

W (x, y, z) =
1

2
ω2(x2 + y2)− k

2
[(x+ µ)2 + y2 + z2] +

µ

2l
log

(
r1 + r2 + 2l

r1 + r2 − 2l

)
,

k =
4π

3
ρ1

(
1− ρ1

ρ3

)
, ω2 = 1 + l2, µ =

m2

m∗
1 +m2

, 0 < µ < 1,

r21 =(x− 1 + µ+ l)2 + y2 + z2, r22 = (x− 1 + µ− l)2 + y2 + z2,

with

Vx = −αẋ, Vy = −αẏ, Vz = −αż (Ansari et al. (2019b))

and α is a positive constant. Wx,Wy and Wz represent the partial derivatives of W with respect to
x, y and z respectively. The dot (.) signifies the derivatives with respect to time t, where time t is
chosen such that the value of gravitational constant G becomes unity.

3. The location of the equilibrium point

To determine the equilibrium points (x, y, z), we have to solve the following system of equations,

Wx(x, y, z) = 0,Wy(x, y, z) = 0, and Wz(x, y, z) = 0

simultaneously, where

Wx(x, y, z) =ω2x− k(x+ µ)− 2µ

[(r1 + r2)2 − 4l2]

(
(x− 1 + µ+ l)

r1
+

(x− 1 + µ− l)
r2

)
,

Wy(x, y, z) =ω2y − ky − 2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)
y,

Wz(x, y, z) =z

[
k +

2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)]
.

The equilibrium points as categorized by Kumar et al. (2019) are as follows.

• The points collinear with the centres of the primaries m∗
1 and m2 are collinear equilibrium

points. The co-ordinates of the collinear equilibrium points are (−µ, 0, 0) and (x1, 0, 0), where

x1 =
1

2(k − 1− l2)

[
(1 + l2)(µ− 2) + 2k(1− µ)−

{
µ(−4 + 4k + µ) + 2l2

(
2 + 2k2

+ 2k(µ− 2)− 4µ+ µ2

)}1/2]
. (2)

The point (−µ, 0, 0) is always an equilibrium point, whereas (x1, 0, 0) will be an equilibrium
point provided k > 1 + l2.
• The points lying in xy-plane with y 6= 0 are non-collinear equilibrium points. These points are

of the form (x, y, 0), where x and y satisfy the equation

(1− µ− x)2 + y2 = 1− 2

3
l2, (3)
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provided k = 1− µ+ l2(1− µ). The points lying on the above circle within the bigger primary
m∗

1 are infinite in number.
• The points in the xz-plane are the out-of-plane equilibrium points. These points are(

k(1− l2), 0,±
√
b21 − a21

)
,

for k < 0 and k + µ+ 2µl2 > 0, where

a1 = 1− µ− k and b1 =

(
−µ
k

+
µl2

k − 1 + µ

)1/3

.

4. Linear stability of equilibrium points

In order to examine the stability of an equilibrium point, its position is slightly displaced via pertur-
bations. If the resultant motion of the infinitesimal body is a rapid departure from its vicinity, such
location of equilibrium point is called unstable, else stable. In the series of papers investigating the
stability of equilibrium points, nature of characteristic roots of the variational equations, obtained
by linearizing the equations of motion, establish the stability or unstability of the equilibrium point.

Let the third body be displaced to (x0 + ξ, y0 + η, z0 + ζ) from its equilibrium position (x0, y0, z0)
with a small displacement (ξ, η, ζ). Substituting these values in system of Equations (1) by retain-
ing only the linear terms of ξ, η, ζ , ξ̇, η̇ and ζ̇ , we obtain the following variational equations

ξ̈ − 2ωη̇ =V 0
xẋξ̇ + V 0

xẏη̇ + V 0
xż ζ̇ +

(
W 0

xx + V 0
xx

)
ξ +

(
W 0

xy + V 0
xy

)
η +

(
W 0

xz + V 0
xz

)
ζ,

η̈ + 2ωξ̇ =V 0
yẋξ̇ + V 0

yẏη̇ + V 0
yż ζ̇ +

(
W 0

yx + V 0
yx

)
ξ +

(
W 0

yy + V 0
yy

)
η +

(
W 0

yz + V 0
yz

)
ζ,

ζ̈ =V 0
zẋξ̇ + V 0

zẏη̇ + V 0
zż ζ̇ +

(
W 0

zx + V 0
zx

)
ξ +

(
W 0

zy + V 0
zy

)
η +

(
W 0

zz + V 0
zz

)
ζ, (4)

where the W 0
ij, i, j = x, y, z denotes the second order partial derivatives of W with respect to

i and j; V 0
ij , i = x, y, z and j = x, y, z, ẋ, ẏ, ż denotes the first order partial derivative of Vi

with respect to j, being evaluated at the point (x0, y0, z0, 0, 0, 0). Routh–Hurwitz stability criterion
(Clark (1996)) has been used to investigate the stability of the obtained equilibrium points without
factorizing the characteristic polynomial.

4.1. Linear stability of (−µ, 0, 0)

For the equilibrium point (−µ, 0, 0), we have

W 0
xx = 1 + 2µ− k + l2(1 + 4µ), W 0

yy = 1− µ− k + l2(1− 2µ), W 0
zz = −µ− k − 2µl2,

W 0
xy = 0, W 0

yz = 0, W 0
zx = 0, V 0

xẋ = V 0
yẏ = V 0

zż = −α,
and other derivatives of Vx, Vy and Vz are zero. Therefore the system of Equations (4) becomes

ξ̈ − 2ωη̇ = −αξ̇ +
(
1 + 2µ− k + l2(1 + 4µ)

)
ξ, (5a)

η̈ + 2ωξ̇ = −αη̇ +
(
1− µ− k + l2(1− 2µ)

)
η, (5b)

ζ̈ = −αζ̇ −
(
µ+ k + 2µl2

)
ζ. (5c)
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Figure 2. Geometry of the stability regions for (−µ, 0, 0) in µk-plane

From Equation (5c), we infer that the motion of m3 parallel to the z−axis is stable when µ + k +
2µl2 > 0, that is, when m3 is denser than the fluid of density ρ1 (ρ3 > ρ1). To analyse the stability
of the motion of m3 in xy−plane, we take the trial solutions ξ = Aexp(λt) and η = Bexp(λt) of
Equations (5a) and (5b), respectively. The characteristic equation corresponding to them is given
by

λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0, (6)

where

p1 =2α, p2 = α2 + 2− µ+ 2k + 2l2(1− µ), p3 = −α
(
2 + µ− 2k + l2(2 + 2µ)

)
,

p4 =
(
1 + 2µ− k + l2(1 + 4µ)

) (
1− µ− k + l2(1− 2µ)

)
.

Now, we draw the regions in µk−plane to investigate the stability of the equilibrium points for
the different values of µ and k. For a fixed value of l, l1 : 1 + 2µ − k + l2(1 + 4µ) = 0 and
l2 : 1− µ− k + l2(1− 2µ) = 0 divide the strip {(µ, k) : 0 < µ < 1, and k > 0} in the following
regions,

Region I = {(µ, k) : 1− µ− k + l2(1− 2µ) ≥ 0},
Region II = {(µ, k) : 1− µ− k + l2(1− 2µ) < 0 and 1 + 2µ− k + l2(1 + 4µ) > 0},

Region III = {(µ, k) : 1 + 2µ− k + l2(1 + 4µ) < 0},

and the line l1 as shown in Figure 2. We conclude the following about the motion of m3.

• In Region I, p3 < 0. Therefore, by the Routh-Hurwitz criterion, the motion of m3 is unstable.
• In Region II, the motion is unstable since p4 < 0.
• In Region III, all the coefficients pi, i = 1, 2, 3, 4 of Equation (6) are positive. In order to

determine the stability, we form the Routh-Hurwitz array as follows

1 p2 p4
p1 p3 0
∆1 p4
∆2 0
p4

,
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where

∆1 =3 + 3l2 + α2 + µ

(
l2 +

1

2

)
,

and ∆2 =
α

2∆1

[
9µ2

(
2l2 + 1

)2 − 16

{
1 + l2 − k + µ

(
l2 +

1

2

)}(
1 + l2 +

α2

4

)]
.

By Routh-Hurwitz criterion the equilibrium point (−µ, 0, 0) is asymptotically stable in this
region since ∆1 > 0 and ∆2 > 0.
• When k = 1 + 2µ + l2(1 + 4µ), the coefficients pi > 0, i = 1, 2, 3 and p4 = 0. Thus, the

characteristic Equation (6) reduces in the following form

λ(λ3 + p1λ
2 + p2λ+ p3) = 0. (7)

One can notice that λ = 0 is one of the root of Equation (7). Other roots are the solutions of the
equation

λ3 + p1λ
2 + p2λ+ p3 = 0.

The Routh-Hurwitz array for the above equation is

1 p2
p1 p3
∆3 0
p3

,

where ∆3 = 1
2

[7(1 + l2) + 2α2 + k + µ(1 + 2l2)] > 0. Therefore, by the Routh-Hurwitz Cri-
terion the equilibrium point (−µ, 0, 0) is marginally stable.

The stability regions of the equilibrium point (−µ, 0, 0) are represented in Figure 3. These regions
are obtained for the increasing values of length parameter l. The lines for the fixed values of l,
represented by different colours, shows the marginally stable regions. For a fixed value of l, the
region shown by light green colour lying above that line is asymptotically stable region. It is clear
from the Figure 3 that the stability region is affected by the length parameter l. The region moves
upward as the value of the length parameter l increases. Thus, it can be inferred that for the stability
of motion of m3 at (−µ, 0, 0), more denser m3 is required for larger value of the length parameter
l.

4.2. Linear Stability of the equilibrium point (x1, 0, 0)

For the equilibrium point (x1, 0, 0), we have

W 0
xx = 1 + l2 − k + 4A1 − 2A2 = ℘1, W

0
yy = 1 + l2 − k − 2A1 + A2 = ℘2,

W 0
zz = −k − 2A1 + A2 = ℘3, W

0
xy = 0, W 0

yz = 0, W 0
zx = 0,

V 0
xẋ = V 0

yẏ = V 0
zż = −α,
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Figure 3. The regions of stability of (−µ, 0, 0) for the increasing values of l = 0.0001, 0.1, 0.15, 0.2, 0.3 and 0.35 are
shown in (a). The zoomed portion of intersection of lines with k-axis is shown in (b)

where

A1 =
4µ(k − 1)3(

µ+
√
µ(4k + µ− 4)

)3 ,
A2 =

16(k − 1)2l2µ√
µ(4k + µ− 4)

[√
µ(4k + µ− 4) + µ

]5
[

3(k − 1)µ
{
k2 + k

(√
µ(4k + µ− 4)− 2

)
+ 1
}

+ 3
{
kµ3 + kµ2

(√
µ(4k + µ− 4) + 3k − 3

)}
+ (k − 1)3

{
−
√
µ(4k + µ− 4)

}]
,

and rest of the derivatives of Vx, Vy and Vz are zero. Therefore, the system of Equations (4) becomes

ξ̈ − 2ωη̇ =− αξ̇ + ℘1ξ, (8)

η̈ + 2ωξ̇ =− αη̇ + ℘2η, (9)

ζ̈ =− αζ̇ + ℘3ζ. (10)

Since α and −℘3 are always positive, therefore, the Equation (10) shows that the motion of m3

parallel to z-axis is always stable. The characteristic equation corresponding to the Equations (8)
and (9) is

λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0, (11)

where

p1 = 2α, p2 = α2 + 4(1 + l2)− (℘1 + ℘2), p3 = −α(℘1 + ℘2), p4 = ℘1℘2.

The location of the roots of Equation (11) in argand plane will depend on the values of ℘1 and
℘2 in the ℘1℘2−plane (shown in Figure 4). For the stability of the equilibrium point (x1, 0, 0), we
have the following cases

• In the region Γ1 = {(℘1, ℘2) : ℘1 ≥ 0, ℘2 > 0 or ℘1 > 0, ℘2 ≥ 0}, the coefficient p3 < 0.
Therefore, the motion of m3 is unstable in this region.
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℘1

℘2

Γ5

Γ4

Γ3

Γ2 Γ1

Γ2

Figure 4. Geometry of the stability regions for (x1, 0, 0) in ℘1℘2-plane

• In the region Γ2 = {(℘1, ℘2) : ℘1 < 0, ℘2 > 0 or ℘1 > 0, ℘2 < 0} the motion is unstable since
p4 < 0.
• At ℘1 = 0 and ℘2 = 0 both the coefficients p3 and p4 are zero, which results in unstable motion.
• In the region Γ3 = {(℘1, ℘2) : ℘1 < 0 and ℘2 < 0}, all the coefficients pi, i = 1, 2, 3, 4 of

characteristic Equation (11) are positive. The Routh’s array corresponding to the Equation (11)
is given by

1 p2 p4
p1 p3 0
∆1 p4
∆2 0
p4

,

where

∆1 =
1

2

[
6(1 + l2) + 2α2 + 2k − 2A1 + A2

]
,

and ∆2 =
α

2∆1

[
9(3A1 − A2)

2 − 2

{
2(1 + l2)− 2k + 2A1 − A2

}{
4(1 + l2) + α2

}]
.

Routh’s criterion is satisfied since ∆1 and ∆2 are positive in this region. Therefore, the motion
of m3 is asymptotically stable.
The regions of asymptotic stability of the equilibrium point (x1, 0, 0) are shown in Figures 5, 6
and 7 by the light green colour. The regions of stability change for the different values of µ, k
and l in their respective planes.
• In the region Γ4 = {(℘1, ℘2) : ℘1 = 0, ℘2 < 0 and ℘1 < 0, ℘2 = 0} the coefficients pi > 0, i =

1, 2, 3 and p4 = 0. The characteristic equation in this case becomes

λ(λ3 + p1λ
2 + p2λ+ p3) = 0. (12)

λ = 0 is the root of Equation (12) and other roots are the solution of following equation

λ3 + p1λ
2 + p2λ+ p3 = 0.
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The Routh-Hurwitz array for the above equation is

1 p2
p1 p3
∆3 0
p3

,

where ∆3 = 3(1 + l2) + α2 + k −A1 +A2/2. In this region ∆3 > 0, therefore the equilibrium
point (x1, 0, 0) is marginally stable.
The regions of marginal stability of the equilibrium point (x1, 0, 0) are represented by the light
green coloured curves lying in the light pink regions in Figures 8, 9 and 10. These regions
of stability changes for the different values of µ, k and l in their respective planes. Figures 5,
6, 7, 8, 9 and 10 explain that the stability region is affected by all the parameter involved in
the problem. For example, from Figure 5(a) it is clear that for µ = 0.1 the equilibrium point
(x1, 0, 0) is unstable whenever k ≥ 1.15, but from Figure 5(f) it is observed that there are some
values of k greater than or equal to 1.15 for which the equilibrium point (x1, 0, 0) is stable
provided µ = 0.3. Thus, for k ≥ 1.15 the stability of the equilibrium point (x1, 0, 0) depends
on the all other parameter involved.
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Figure 5. The regions of asymptotic stability of (x1, 0, 0) in the Region Γ3 in lk−plane with 1.00000001 < k < 1.20
and 0.001 < l < 0.4 (a) for µ = 0.0001 , (b) for µ = 0.1, (c) for µ = 0.15, (d) for µ = 0.2 , (e) for µ = 0.3
and (f) for µ = 0.35
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Figure 6. The regions of asymptotic stability of (x1, 0, 0) in the Region Γ3 in µl−plane with 0 < µ < 0.5 and
0 < l < 1 (a) for k = 1.42985 , (b) for k = 1.59234, (c) for k = 1.65241, (d) for k = 1.72943 , (e) for
k = 1.87295 and (f) for k = 1.91123
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Figure 7. The regions of asymptotic stability of (x1, 0, 0) in the Region Γ3 in µk−plane with 0 < µ < 0.5 and
1.25 < k < 2 (a) for l = 0.0001 , (b) for l = 0.1, (c) for l = 0.13, (d) for l = 0.15 , (e) for l = 0.17 and (f)
for l = 0.2
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Figure 8. The regions of marginal stability of (x1, 0, 0) in the Region Γ4 in lk−plane with 1.00000001 < k < 1.20
and 0.001 < l < 0.4 (a) for µ = 0.0001 , (b) for µ = 0.1, (c) for µ = 0.15, (d) for µ = 0.2 , (e) for µ = 0.3
and (f) for µ = 0.35
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Figure 9. The regions of marginal stability of (x1, 0, 0) in the Region Γ4 in µl−plane with 0 < µ < 1 and 0 < l < 0.5
(a) for k = 1.009 , (b) for k = 1.039, (c) for k = 1.1, (d) for k = 1.29 , (e) for k = 1.35 and (f) for k = 1.4
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Figure 10. The regions of marginal stability of (x1, 0, 0) in the Region Γ4 in µl−plane with 0 < µ < 0.5 and 0 < l < 1
(a) for k = 1.42985 , (b) for k = 1.59234, (c) for k = 1.65241, (d) for k = 1.72943 , (e) for k = 1.87295
and (f) for k = 1.91123

4.3. Stability of the non-collinear equilibrium points

The coordinates of any point on the circle

(1− µ− x)2 + y2 = 1− 2

3
l2,

are of the form (
1− µ−

(
1− 1

3
l2
)

cos θ,

(
1− 1

3
l2
)

sin θ, 0

)
.

At these point, we have

W 0
xx =3µ cos2 θ +

{
35

2
µ cos4 θ − 12µ cos2 θ +

3µ

2

}
l2 = ℘

′

1,

W 0
yy =3µ sin2 θ +

{
1

2
µ sin2 θ − 5

2
µ cos2 θ +

35

2
µ sin2 θ cos2 θ +

µ

2

}
l2 = ℘

′

2,

W 0
xy =− 3µ sin θ cos θ +

{
9

2
µ sin θ cos θ − 35

2
µ sin θ cos3 θ

}
l2 = ℘

′

3,

W 0
zz =− 1−

{
5

2
µ cos2 θ + 1− µ

2

}2

< 0,

and W 0
yz = W 0

xz = 0.
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Thus, the system of Equations (4) becomes

ξ̈ − 2ωη̇ =− αξ̇ + ℘
′

1ξ + ℘
′

3η, (13)

η̈ + 2ωξ̇ =− αη̇ + ℘
′

3ξ + ℘
′

2η, (14)

ζ̈ =− αζ̇ +W 0
zzζ. (15)

Since α and −W 0
zz are positive for all the values of the parameters, therefore, the motion of m3

parallel to z-axis is always stable. The characteristic equation corresponding to the Equations (13)
and (14) is given by

λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0, (16)

where

p1 = 2α, p2 = α2 − 3µ+ 4−
{

5

4
µ cos 2θ +

15

4
µ− 4

}
l2,

p3 = −α
{

3µ+

(
5

4
cos 2θ +

15

4

)
µl2
}
, p4 = −1

4
µ2

{
21 cos 2θ + 3

}
l2.

For the stability of non-collinear equilibrium points, we study the following cases in ℘′

1℘
′

2−plane
(Figure 11)

℘ '2

Γ1


℘ '1

Γ4


Γ2


Γ3


Figure 11. Geometry of the stability regions for non-collinear equilibrium points in ℘
′

1℘
′

2-plane

• In the Region Γ
′

1 = {(℘′

1, ℘
′

2) : ℘
′

1 ≥ 0, ℘
′

2 > 0 or ℘′

1 > 0, ℘
′

2 ≥ 0}, the coefficient p3 < 0.
Thus, the motion of m3 is unstable.
• In the Region Γ

′

2 = {(℘′

1, ℘
′

2) : ℘
′

1 > 0, ℘
′

2 < 0 or ℘′

1 < 0, ℘
′

2 > 0 or ℘′

1 < 0, ℘
′

2 < 0}, the
coefficient p4 < 0. Thus, the motion of m3 is unstable.
• In the Region Γ

′

3 = {(℘′

1, ℘
′

2) : ℘
′

1 < 0, ℘
′

2 = 0 or ℘′

1 = 0, ℘
′

2 < 0}, we have ℘′

3 6= 0. If ℘′

3 = 0,
then ℘′

1 > 0, which is not possible to happen in this region. Therefore, p4 < 0 which implies
that the motion of m3 is unstable.
• In the Region Γ

′

4 = {(℘′

1, ℘
′

2) : ℘
′

1 = 0, and ℘′

2 = 0}, the coefficient p3 = 0. Next, we have two
cases.
• When ℘′

3 6= 0, the coefficient p4 < 0 which results in unstable motion.
• When ℘′

3 = 0, then the characteristic Equation (16) reduces in the form λ2(λ2 +p1λ+p2) =
0. Thus, the motion of m3 is unstable.
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4.4. Linear Stability of the out-of-plane equilibrium points

The coordinates of the out-of-plane equilibrium points are
(
k(1− l2), 0,±

√
b21 − a21

)
. At these

points, we have

W 0
xx = 1− 3a21k

b21
, W 0

yy = 1 + l2, W 0
zz = 1 +

3k

b21
(a21 − b21) + l2, W 0

xz = ±−3ka1
√
b21 − a21

b21
,

W 0
xy = W 0

yz = 0.

Thus, the system of Equations (4) becomes

ξ̈ − 2ωη̇ =

(
1− 3a21k

b21

)
ξ ±

(
3ka1

√
b21 − a21
b21

)
ζ − αξ̇,

η̈ + 2ωξ̇ =
(
1 + l2

)
η − αη̇, (17)

ζ̈ =

(
±3ka1

√
b21 − a21
b21

)
ξ +

{
1

3k

b21

(
a21 − b21

)
+ l2

}
ζ − αζ̇.

The characteristic equation corresponding to the system of Equations (17) is

λ6 + p1λ
5 + p2λ

4 + p3λ
3 + p4λ

2 + p5λ+ p6 = 0, (18)

where

p1 =3α, p2 = −3 + 3k − 2l2 + 4ω2 + 3α2, p3 = 4α + 6α(k − 1) + α3,

p4 =
1

b21

{
3b21 − 6kb21 + 4b21l

2 − 3a21kl
2 − 3b21kl

2 − 4b21ω
2 − 12a21kω

2 + 12b21kω
2 − 4b21l

2ω2 − 3b21α
2

+ 3b21kα
2 − 2b21l

2α2

}
,

p5 =
1

b21

{
3b21α− 6b21kα + 4b21l

2α− 3ka21l
2α− 3b21kl

2α

}
,

p6 =
1

b21

{
(3k − 1)b21 + (3kb21 + 3ka21 − 2b21)l

2

}
.

By Descartes rule of sign there is at least one positive root of the Equation (18) since p6 < 0.
Therefore the equilibrium points are unstable.

5. Discussion

In the present paper, we have discussed the effect of viscosity and finite straight segment simul-
taneously in the CRR3BP. We have obtained collinear, non-collinear and out of plane equilibrium
points. It has been found that there exist two equilibrium points (-µ,0,0) and (x1,0,0) collinear with
the centres of the primaries m∗

1 and m2. The point (-µ,0,0) is always an equilibrium point whereas
the point (x1,0,0) is an equilibrium point provided k > 1+ l2. The non-collinear equilibrium points

are infinite in number and lie on a circle of radius
√

1− 2
3
l2 with center at the mid-point of smaller
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primary m2. These points exist only when k = 1−µ+ (1−µ)l2. The two out of plane equilibrium
points (k(1− l2), 0,±

√
b21 − a21) exist only when k < 0 and k+µ+ 2µl2 > 0. These are the same

as those obtained by Kumar et al. (2019) in which they have not considered the viscous force.

Further, we have analyzed the stability of all these equilibrium points. We have found that the
equilibrium point (−µ, 0, 0) is asymptotically stable for k > 1 + 2µ + (1 + 4µ)l2 and marginally
stable for k = 1 + 2µ + (1 + 4µ)l2. The equilibrium point (x1, 0, 0) is asymptotically stable in
the region Γ3 and marginally stable in the region Γ4. It has been noticed that the viscosity has a
significant effect on stability. We observed that due to the presence of viscous force and length
parameter, the stability of equilibrium points changes its nature from being marginally stable to
asymptotically stable. All the other equilibrium points remain unstable whenever they exist.

On eliminating the effect of viscosity in our present model, the results of Kumar et al. (2019)
can be obtained. By taking l = 0 = α, the result of Hallan and Rana (2001a) are obtained, in
which the equilibrium points (−µ, 0, 0) and (x1, 0, 0) are marginally stable. Our results are in
tuned with Ansari et al. (2019a) in the absence of oblateness of the bigger primary in their paper
and considering m2 to be a point mass in the present paper. The results of our present work are in
accordance with those of Ansari et al. (2019b) in absence of perturbation in Coriolis and centrifugal
forces in their paper and considering m2 as a point mass in our work.

Moreover, we have discussed the regions of stability for the equilibrium points (−µ, 0, 0) and
(x1, 0, 0). For the equilibrium point (−µ, 0, 0), we have drawn the regions of stability in µk- plane
(Figure 3) for different values of length parameter l. In Figure 3 the lines for fixed values of l,
represented by different colours, show the marginally stable regions. For fixed values of l the
asymptotically stable region are represented by light green colour lying above the respective lines.
For the equilibrium point (x1, 0, 0), the regions of stability in the lk-plane, µl-plane and µk-plane
are drawn for the different values of µ, k and l (Figures 5, 6, 7). Here, the asymptotically stable
regions change in accordance with the change in the values of µ, k and l. Similarly, the marginally
stable regions change for the different values of µ, k and l as depicted in Figures 8, 9 and 10,
respectively.

6. Conclusion

The combined effect of viscosity and finite straight segment on the motion of the infinitesimal body
in CRR3BP has been studied. The bigger primary is considered as a rigid spherical shell filled
with a homogeneous incompressible fluid and the smaller one a finite straight segment that lies
outside the shell. There is an infinitesimal body that lies inside the bigger primary. For the present
model, two collinear, infinite number of non-collinear and two out of plane equilibrium points
are obtained. It is noticed that all the equilibrium points are affected by the length parameter,
but there is no impact of the viscosity parameter on them. Furthermore, the linear stability of
the obtained equilibrium points is also studied. The collinear equilibrium points are found to be
conditionally stable. It is observed that both length and viscosity parameters have subsequent effect
on the stability of the collinear equilibrium points. The non-collinear and out-of-plane equilibrium
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points are always unstable. It is also observed that the unstable nature of these points are not
affected by the viscosity parameter.
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